A Dual Load-Modulated Doherty Power Amplifier Design Method for Improving Power Back-Off Efficiency
Abstract
:1. Introduction
2. Analysis Of The Proposed D-DPA
2.1. Peak Path Load Modulation Process Under Fixed Phase Delay
2.2. Phase Delay Variation Under Different Load
2.3. Real Dynamic Load Modulation Process
2.4. D-DPA Design Strategy
3. Design and Realization of the Proposed D-DPA
3.1. Design of the Proposed D-DPA
3.2. Realization and Experimental Verification
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, Y.; Qiao, Y.; Li, G.; Li, W.; Tian, Q. Random Time Division Multiplexing Based MIMO Radar Processing with Tensor Completion Approach. Sensors 2023, 23, 4756. [Google Scholar] [CrossRef]
- El-Gendy, M.S.; Ali, M.M.M.; Thompson, E.B.; Ashraf, I. Triple-Band Notched Ultra-Wideband Microstrip MIMO Antenna with Bluetooth Band. Sensors 2023, 23, 4475. [Google Scholar] [CrossRef]
- Xu, Y.; Oh, J.; Sun, Z.; Lim, M.S. A novel method for PAPR reduction of the OFDM signal using nonlinear scaling and FM. Front. Inf. Technol. Electron. Eng. 2019, 20, 1587–1594. [Google Scholar] [CrossRef]
- Liu, X.; Lv, G.S.; Wang, D.H.; Chen, W.H.; Ghannouchi, F.M. Energy-efficient power amplifiers and linearization techniques for massive MIMO transmitters: A review. Front. Inf. Technol. Electron. Eng. 2020, 21, 72–96. [Google Scholar] [CrossRef]
- Sayag, A.; Cohen, E. Transmit Efficiency Enhancement Using Over-the-Air Beamforming Phased Array for High PAPR Signals. IEEE Trans. Microw. Theory Tech. 2021, 69, 344–356. [Google Scholar] [CrossRef]
- Haider, M.F.; Xiao, Z.; You, F.; He, S. Harmonic-tuned high-efficiency GaN power amplifier with precise AM-AM and AM-PM characteristics. Microw. Opt. Technol. Lett. 2022, 65, 785–790. [Google Scholar] [CrossRef]
- Choi, H. An Inverse Class-E Power Amplifier for Ultrasound Transducer. Sensors 2023, 23, 3466. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Wang, M.; Yan, X.; Qin, K.; Xiao, Z.; Hu, W. A lumped-element balun design with multi-interference suppression for push–pull power amplifier. Int. J. Circuit Theory Appl. 2022, 51, 2016–2029. [Google Scholar] [CrossRef]
- Chen, J.; Liu, Z.; Dong, T.; Shi, W. Design of Ultra-Wideband Doherty Power Amplifier Using a Modified Combiner Integrated with Complex Combining Impedance. Sensors 2023, 23, 3882. [Google Scholar] [CrossRef]
- Lee, H.; Park, H.G.; Le, V.D.; Nguyen, V.P.; Song, J.M.; Lee, B.H.; Park, J.D. X-band MMICs for a Low-Cost Radar Transmit/Receive Module in 250 nm GaN HEMT Technology. Sensors 2023, 23, 4840. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Chan, W.S.; Sharma, T.; Xia, J.; Chen, S.; Feng, W. A Doherty power amplifier with extended high-efficiency range using three-port harmonic injection network. IEEE Trans. Circuits Syst. I Reg. Papers 2022, 69, 2756–2766. [Google Scholar] [CrossRef]
- Makhsuci, S.; Masoumeh Navidi, S.; Sanduleanu, M.; Ismail, M. A review of Doherty power amplifier and load modulated balanced amplifier for 5G technology. Int. J. Circuit Theory Appl. 2023, 51, 2422–2445. [Google Scholar] [CrossRef]
- Xia, J.; Chen, W.; Meng, F.; Yu, C.; Zhu, X. Improved Three-Stage Doherty Amplifier Design with Impedance Compensation in Load Combiner for Broadband Applications. IEEE Trans. Microw. Theory Tech. 2019, 67, 778–786. [Google Scholar] [CrossRef]
- Gao, R.; Pang, J.; Cai, T.; Shen, C.; Shi, W.; Dai, Z.; Li, M.; Zhu, A. Dual-Band Three-Way Doherty Power Amplifier Employing Dual-Mode Gate Bias and Load Compensation Network. IEEE Trans. Microw. Theory Tech. 2022, 70, 2328–2340. [Google Scholar] [CrossRef]
- Yang, Z.; Yao, Y.; Li, M.; Jin, Y.; Li, T.; Dai, Z.; Tang, F.; Li, Z. Bandwidth Extension of Doherty Power Amplifier Using Complex Combining Load With Noninfinity Peaking Impedance. IEEE Trans. Microw. Theory Tech. 2019, 67, 765–777. [Google Scholar] [CrossRef]
- Pang, J.; He, S.; Huang, C.; Dai, Z.; Peng, J.; You, F. A Post-Matching Doherty Power Amplifier Employing Low-Order Impedance Inverters for Broadband Applications. IEEE Trans. Microw. Theory Tech. 2015, 63, 4061–4071. [Google Scholar] [CrossRef]
- Shi, W.; He, S.; Zhu, X.; Song, B.; Zhu, Z.; Naah, G.; Zhang, M. Broadband Continuous-Mode Doherty Power Amplifiers With Noninfinity Peaking Impedance. IEEE Trans. Microw. Theory Tech. 2018, 66, 1034–1046. [Google Scholar] [CrossRef]
- Zhou, X.Y.; Chan, W.S.; Feng, W.; Fang, X.; Sharma, T.; Chen, S. Broadband Doherty Power Amplifier Based on Coupled Phase Compensation Network. IEEE Trans. Microw. Theory Tech. 2022, 70, 210–221. [Google Scholar] [CrossRef]
- Cui, J.; Li, P.; Sheng, W. High linearity U-band power amplifier design with novel linearity analysis method: From intermodulation point. Front. Inf. Technol. Electron. Eng. 2022, 21, 1–11. [Google Scholar] [CrossRef]
- Zhou, L.H.; Zhou, X.Y.; Chan, W.S. A Compact and Broadband Doherty Power Amplifier Without Post-Matching Network. IEEE Trans. Circuits Syst. II Express Briefs 2023, 70, 919–923. [Google Scholar] [CrossRef]
- Li, M.; Li, Z.; Zheng, Q.; Lin, L.; Tao, H. A 17–26.5 GHz 42.5 dBm broadband and highly efficient gallium nitride power amplifier design. Front. Inf. Technol. Electron. Eng. 2022, 23, 346–350. [Google Scholar] [CrossRef]
- Li, M.; Cheng, X.; Dai, Z.; Zhong, K.; Cai, T.; Huang, C. A novel method for extending the output power back-off range of an asymmetrical Doherty power amplifier. Front. Inf. Technol. Electron. Eng. 2022, 21, 1–10. [Google Scholar] [CrossRef]
- Fang, X.H.; Liu, H.Y.; Cheng, K.K.M.; Boumaiza, S. Two-Way Doherty Power Amplifier Efficiency Enhancement by Incorporating Transistors Nonlinear Phase Distortion. IEEE Microw. Wirel. Components Lett. 2018, 28, 168–170. [Google Scholar] [CrossRef]
- Liu, H.Y.; Cheng, K.K.M.; Zhai, C.; Fang, X.H. Peak-Current-Ratio-Enhanced Compact Symmetrical Doherty Amplifier Design by Using Active Harmonic Control. IEEE Trans. Microw. Theory Tech. 2021, 69, 3158–3170. [Google Scholar] [CrossRef]
- Moon, J.; Kim, J.; Kim, J.; Kim, I.; Kim, B. Efficiency Enhancement of Doherty Amplifier Through Mitigation of the Knee Voltage Effect. IEEE Trans. Microw. Theory Tech. 2011, 59, 143–152. [Google Scholar] [CrossRef]
- Colantonio, P.; Giannini, F.; Giofre, R.; Piazzon, L. Increasing Doherty Amplifier Average Efficiency Exploiting Device Knee Voltage Behavior. IEEE Trans. Microw. Theory Tech. 2011, 59, 2295–2305. [Google Scholar] [CrossRef]
- Xia, J.; Zhu, X.; Zhang, L.; Zhai, J.; Sun, Y. High-Efficiency GaN Doherty Power Amplifier for 100-MHz LTE-Advanced Application Based on Modified Load Modulation Network. IEEE Trans. Microw. Theory Tech. 2013, 61, 2911–2921. [Google Scholar] [CrossRef]
- Kim, J. Highly Efficient Asymmetric Class-F GaN Doherty Amplifier. IEEE Trans. Microw. Theory Tech. 2018, 66, 4070–4077. [Google Scholar] [CrossRef]
- Ruhul Hasin, M.; Kitchen, J. Exploiting Phase for Extended Efficiency Range in Symmetrical Doherty Power Amplifiers. IEEE Trans. Microw. Theory Tech. 2019, 67, 3455–3463. [Google Scholar] [CrossRef]
- Hasin, M.R.; Kitchen, J. Optimized Load Trajectory for Finite Peaking OFF-State Impedance-Based Doherty Power Amplifiers. IEEE Microw. Wirel. Components Lett. 2019, 29, 486–488. [Google Scholar] [CrossRef]
- Zhou, X.Y.; Chan, W.S.; Chen, S.; Feng, W.; Pang, J.; Ho, D. Linearity Enhanced Harmonic-Modulated Impedance Inverter Doherty-Like Power Amplifier. IEEE Trans. Circuits Syst. I Regul. Pap. 2020, 67, 2029–2041. [Google Scholar] [CrossRef]
Case 1: Perfect | 52 | 144 | 1 − j0.8 | 2 |
90 | 180 | 1 | 2 | |
128 | 222 | 1 + j0.8 | 2 | |
Case 2: Good | 52 | 154 | 1 − j1.6 | 2 − j0.6 |
90 | 196 | 1 − j0.4 | 2 − j0.9 | |
128 | 230 | 1 + j0.3 | 2 − j0.6 | |
Case 3: Not Good | 52 | 163 | 1 − j2.2 | 2 − j1.1 |
90 | 200 | 1 − j0.54 | 2 − j1.1 | |
128 | 196 | 1 + j2.2 | 2 + j1.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, Y.; Dai, Z.; Ran, X.; Xu, C.; Li, M. A Dual Load-Modulated Doherty Power Amplifier Design Method for Improving Power Back-Off Efficiency. Sensors 2023, 23, 6598. https://doi.org/10.3390/s23146598
Jin Y, Dai Z, Ran X, Xu C, Li M. A Dual Load-Modulated Doherty Power Amplifier Design Method for Improving Power Back-Off Efficiency. Sensors. 2023; 23(14):6598. https://doi.org/10.3390/s23146598
Chicago/Turabian StyleJin, Yi, Zhijiang Dai, Xiongbo Ran, Changzhi Xu, and Mingyu Li. 2023. "A Dual Load-Modulated Doherty Power Amplifier Design Method for Improving Power Back-Off Efficiency" Sensors 23, no. 14: 6598. https://doi.org/10.3390/s23146598
APA StyleJin, Y., Dai, Z., Ran, X., Xu, C., & Li, M. (2023). A Dual Load-Modulated Doherty Power Amplifier Design Method for Improving Power Back-Off Efficiency. Sensors, 23(14), 6598. https://doi.org/10.3390/s23146598