Identifying Current Feelings of Mild and Moderate to High Depression in Young, Healthy Individuals Using Gait and Balance: An Exploratory Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Instruments
2.3.1. Self-Reported Feelings of Depression
2.3.2. Prior Night’s Sleep
2.3.3. Balance Assessment
2.3.4. Gait
2.4. Procedure
2.5. Statistical Analyses
2.5.1. Pre-Processing of Data
2.5.2. Primary Analysis
2.5.3. Post Hoc Analysis
3. Results
3.1. Participant Characteristics
3.2. Classification Models for Depression Detection Using Gait and Balance Variables
3.2.1. Not Depressed vs. Mild Depression
3.2.2. Not Depressed vs. Moderate to High Depression
3.2.3. Mild Depression vs. Moderate to High Depression
4. Discussion
4.1. Practical Implications
4.2. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Friedrich, M.J. Depression Is the Leading Cause of Disability Around the World. JAMA 2017, 317, 1517. [Google Scholar] [CrossRef]
- Pemberton, R.; Tyszkiewicz, M.D.F. Factors Contributing to Depressive Mood States in Everyday Life: A Systematic Review. J. Affect. Disord. 2016, 200, 103–110. [Google Scholar] [CrossRef]
- Ortiz, A.; Grof, P. Electronic Monitoring of Self-Reported Mood: The Return of the Subjective? Int. J. Bipolar. Disord. 2016, 4, 28. [Google Scholar] [CrossRef] [Green Version]
- DSM-5. Available online: https://www.psychiatry.org/psychiatrists/practice/dsm (accessed on 1 May 2020).
- Horwath, E.; Johnson, J.; Klerman, G.L.; Weissman, M.M. Depressive Symptoms as Relative and Attributable Risk Factors for First-Onset Major Depression. Arch. Gen. Psychiatry 1992, 49, 817–823. [Google Scholar] [CrossRef] [PubMed]
- Van Zoonen, K.; Buntrock, C.; Ebert, D.D.; Smit, F.; Reynolds, C.F., III; Beekman, A.T.; Cuijpers, P. Preventing the Onset of Major Depressive Disorder: A Meta-Analytic Review of Psychological Interventions. Int. J. Epidemiol. 2014, 43, 318–329. [Google Scholar] [CrossRef] [Green Version]
- Beck, A.T.; Steer, R.A.; Brown, G.K. Beck Depression Inventory-II. San. Antonio. 1996, 78, 490–498. [Google Scholar]
- Chiappelli, J.; Nugent, K.L.; Thangavelu, K.; Searcy, K.; Hong, L.E. Assessment of Trait and State Aspects of Depression in Schizophrenia. Schizophr. Bull. 2013, 40, 132–142. [Google Scholar] [CrossRef] [Green Version]
- Radloff, L.S. The CES-D Scale: A Self-Report Depression Scale for Research in the General Population. Appl. Psychol. Meas. 1977, 1, 385–401. [Google Scholar] [CrossRef]
- Curran, S.L.; Andrykowski, M.A.; Studts, J.L. Short Form of the Profile of Mood States (POMS-SF): Psychometric Information. Psychol. Assess. 1995, 7, 80. [Google Scholar] [CrossRef]
- Jahedi, S.; Méndez, F. On the Advantages and Disadvantages of Subjective Measures. J. Econ. Behav. Organ. 2014, 98, 97–114. [Google Scholar] [CrossRef]
- Mak, W.W.; Poon, C.Y.; Pun, L.Y.; Cheung, S.F. Meta-Analysis of Stigma and Mental Health. Soc. Sci. Med. 2007, 65, 245–261. [Google Scholar] [CrossRef] [PubMed]
- Toker, S.; Shirom, A.; Shapira, I.; Berliner, S.; Melamed, S. The Association Between Burnout, Depression, Anxiety, and Inflammation Biomarkers: C-Reactive Protein and Fibrinogen in Men and Women. J. Occup. Health Psychol. 2005, 10, 344–362. [Google Scholar] [CrossRef]
- Chojnowska, S.; Ptaszyńska-Sarosiek, I.; Kępka, A.; Knaś, M.; Waszkiewicz, N. Salivary Biomarkers of Stress, Anxiety and Depression. J. Clin. Med. 2021, 10, 517. [Google Scholar] [CrossRef]
- Lu, H.; Shao, W.; Ngai, E.; Hu, X.; Hu, B. A New Skeletal Representation Based on Gait for Depression Detection. In Proceedings of the 2020 IEEE International Conference on E-health Networking, Application & Services (HEALTHCOM), Shenzhen, China, 1 March 2021; IEEE: Shenzhen, China; pp. 1–6. [Google Scholar]
- Zhao, N.; Zhang, Z.; Wang, Y.; Wang, J.; Li, B.; Zhu, T.; Xiang, Y. See Your Mental State from Your Walk: Recognizing Anxiety and Depression through Kinect-Recorded Gait Data. PLoS ONE 2019, 14, e0216591. [Google Scholar] [CrossRef] [Green Version]
- Fang, J.; Wang, T.; Li, C.; Hu, X.; Ngai, E.; Seet, B.-C.; Cheng, J.; Guo, Y.; Jiang, X. Depression Prevalence in Postgraduate Students and Its Association With Gait Abnormality. IEEE Access 2019, 7, 174425–174437. [Google Scholar] [CrossRef]
- Yang, J.; Lu, H.; Li, C.; Hu, X.; Hu, B. Data Augmentation for Depression Detection Using Skeleton-Based Gait Information. Med. Biol. Eng. Comput. 2022, 60, 2665–2679. [Google Scholar] [CrossRef] [PubMed]
- Belvederi Murri, M.; Triolo, F.; Coni, A.; Tacconi, C.; Nerozzi, E.; Escelsior, A.; Respino, M.; Neviani, F.; Bertolotti, M.; Bertakis, K.; et al. Instrumental Assessment of Balance and Gait in Depression: A Systematic Review. Psychiatry Res. 2020, 284, 112687. [Google Scholar] [CrossRef] [PubMed]
- Pfost, G.R.; Chen, A.; Farley, F.; Ran, Y.; Sanchez, V. MCTSIB: Modified Clinical Test of Sensory Integration for Balance. CRP 2018, 30, 109–112. [Google Scholar] [CrossRef]
- Goldney, R.D.; Fisher, L.J.; Dal Grande, E.; Taylor, A.W. Subsyndromal Depression: Prevalence, Use of Health Services and Quality of Life in an Australian Population. Soc. Psychiatry Psychiatr. Epidemiol. 2004, 39, 293–298. [Google Scholar] [CrossRef]
- Birnbaum, H.G.; Kessler, R.C.; Kelley, D.; Ben-Hamadi, R.; Joish, V.N.; Greenberg, P.E. Employer Burden of Mild, Moderate, and Severe Major Depressive Disorder: Mental Health Services Utilization and Costs, and Work Performance. Depress. Anxiety 2010, 27, 78–89. [Google Scholar] [CrossRef]
- Hysenbegasi, A.; Hass, S.L.; Rowland, C.R. The Impact of Depression on the Academic Productivity of University Students. J. Ment. Health Policy Econ. 2005, 8, 145–151. [Google Scholar]
- Cuijpers, P.; Vogelzangs, N.; Twisk, J.; Kleiboer, A.; Li, J.; Penninx, B.W. Differential Mortality Rates in Major and Subthreshold Depression: Meta-Analysis of Studies That Measured Both. Br. J. Psychiatry 2013, 202, 22–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halfin, A. Depression: The Benefits of Early and Appropriate Treatment. Am. J. Manag. Care 2007, 13, S92–S97. [Google Scholar]
- Study Quality Assessment Tools|NHLBI, NIH. Available online: https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools (accessed on 9 March 2023).
- Maridakis, V.; Herring, M.P.; O’Connor, P.J. Sensitivity to Change in Cognitive Performance and Mood Measures of Energy and Fatigue in Response to Differing Doses of Caffeine or Breakfast. Int. J. Neurosci. 2009, 119, 975–994. [Google Scholar] [CrossRef] [PubMed]
- Maridakis, V.; O’Connor, P.J.; Tomporowski, P.D. Sensitivity to Change in Cognitive Performance and Mood Measures of Energy and Fatigue in Response to Morning Caffeine Alone or in Combination with Carbohydrate. Int. J. Neurosci. 2009, 119, 1239–1258. [Google Scholar] [CrossRef] [PubMed]
- Boolani, A.; Lindheimer, J.B.; Loy, B.D.; Crozier, S.; O’Connor, P.J. Acute Effects of Brewed Cocoa Consumption on Attention, Motivation to Perform Cognitive Work and Feelings of Anxiety, Energy and Fatigue: A Randomized, Placebo-Controlled Crossover Experiment. BMC Nutr. 2017, 3, 8. [Google Scholar] [CrossRef] [Green Version]
- Boolani, A.; Fuller, D.T.; Mondal, S.; Wilkinson, T.; Darie, C.C.; Gumpricht, E. Caffeine-Containing, Adaptogenic-Rich Drink Modulates the Effects of Caffeine on Mental Performance and Cognitive Parameters: A Double-Blinded, Placebo-Controlled, Randomized Trial. Nutrients 2020, 12, 1922. [Google Scholar] [CrossRef] [PubMed]
- Chang, Z.-S.; Boolani, A.; Conroy, D.A.; Dunietz, T.; Jansen, E.C. Skipping Breakfast and Mood: The Role of Sleep. Nutr. Health 2021, 27, 373–379. [Google Scholar] [CrossRef]
- Freeman, D.L.; Gera, G.; Horak, F.B.; Blackinton, M.T.; Besch, M.; King, L. The Instrumented Test of Sensory Integration for Balance: A Validation Study. J. Geriatr. Phys. Ther. 2018, 41, 77–84. [Google Scholar] [CrossRef]
- Washabaugh, E.P.; Kalyanaraman, T.; Adamczyk, P.G.; Claflin, E.S.; Krishnan, C. Validity and Repeatability of Inertial Measurement Units for Measuring Gait Parameters. Gait Posture 2017, 55, 87–93. [Google Scholar] [CrossRef] [Green Version]
- Mancini, M.; Chiari, L.; Holmstrom, L.; Salarian, A.; Horak, F.B. Validity and Reliability of an IMU-Based Method to Detect APAs Prior to Gait Initiation. Gait Posture 2016, 43, 125–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kadry, A.M.; Torad, A.; Elwan, M.A.; Kakar, R.S.; Bradley, D.; Chaudhry, S.; Boolani, A. Using Machine Learning to Identify Feelings of Energy and Fatigue in Single-Task Walking Gait: An Exploratory Study. Appl. Sci. 2022, 12, 3083. [Google Scholar] [CrossRef]
- Stark, M.; Huang, H.; Yu, L.-F.; Martin, R.; McCarthy, R.; Locke, E.; Yager, C.; Torad, A.A.; Kadry, A.M.; Elwan, M.A. Identifying Individuals Who Currently Report Feelings of Anxiety Using Walking Gait and Quiet Balance: An Exploratory Study Using Machine Learning. Sensors 2022, 22, 3163. [Google Scholar] [CrossRef] [PubMed]
- White, I.R.; Royston, P.; Wood, A.M. Multiple Imputation Using Chained Equations: Issues and Guidance for Practice. Stat. Med. 2011, 30, 377–399. [Google Scholar] [CrossRef] [PubMed]
- Vallat, R. Pingouin: Statistics in Python. J. Open Source Softw. 2018, 3, 1026. [Google Scholar] [CrossRef]
- Zhao, X.; Yu, B.; Liu, Y.; Chen, Z.; Li, Q.; Wang, C.; Wu, J. Estimation of Poverty Using Random Forest Regression with Multi-Source Data: A Case Study in Bangladesh. Remote Sens. 2019, 11, 375. [Google Scholar] [CrossRef] [Green Version]
- Wong, T.-T. Performance Evaluation of Classification Algorithms by K-Fold and Leave-One-out Cross Validation. Pattern Recognit. 2015, 48, 2839–2846. [Google Scholar] [CrossRef]
- Wardhani, N.W.S.; Rochayani, M.Y.; Iriany, A.; Sulistyono, A.D.; Lestantyo, P. Cross-Validation Metrics for Evaluating Classification Performance on Imbalanced Data. In Proceedings of the 2019 International Conference on Computer, Control, Informatics and Its Applications (IC3INA), Tangerang, Indonesia, 3–24 October 2019; IEEE: Shenzhen, China, 2019; pp. 14–18. [Google Scholar]
- Lemke, M.R.; Wendorff, T.; Mieth, B.; Buhl, K.; Linnemann, M. Spatiotemporal Gait Patterns during over Ground Locomotion in Major Depression Compared with Healthy Controls. J. Psychiatr. Res. 2000, 34, 277–283. [Google Scholar] [CrossRef]
- Radovanović, S.; Jovičić, M.; Marić, N.P.; Kostić, V. Gait Characteristics in Patients with Major Depression Performing Cognitive and Motor Tasks While Walking. Psychiatry Res. 2014, 217, 39–46. [Google Scholar] [CrossRef]
- Lozier, L.M.; Vanmeter, J.W.; Marsh, A.A. Impairments in Facial Affect Recognition Associated with Autism Spectrum Disorders: A Meta-Analysis. Dev. Psychopathol. 2014, 26, 933–945. [Google Scholar] [CrossRef] [Green Version]
- Read, J.R.; Sharpe, L.; Modini, M.; Dear, B.F. Multimorbidity and Depression: A Systematic Review and Meta-Analysis. J. Affect. Disord. 2017, 221, 36–46. [Google Scholar] [CrossRef] [PubMed]
- Sükei, E.; Norbury, A.; Perez-Rodriguez, M.M.; Olmos, P.M.; Artés, A. Predicting Emotional States Using Behavioral Markers Derived From Passively Sensed Data: Data-Driven Machine Learning Approach. JMIR Mhealth Uhealth 2021, 9, e24465. [Google Scholar] [CrossRef]
- Soubelet, A.; Salthouse, T.A. Influence of Social Desirability on Age Differences in Self-reports of Mood and Personality. J. Personal. 2011, 79, 741–762. [Google Scholar] [CrossRef] [PubMed]
- Benson, L.C.; Räisänen, A.M.; Clermont, C.A.; Ferber, R. Is This the Real Life, or Is This Just Laboratory? A Scoping Review of IMU-Based Running Gait Analysis. Sensors 2022, 22, 1722. [Google Scholar] [CrossRef] [PubMed]
- Beijers, L.; Wardenaar, K.J.; van Loo, H.M.; Schoevers, R.A. Data-Driven Biological Subtypes of Depression: Systematic Review of Biological Approaches to Depression Subtyping. Mol. Psychiatry 2019, 24, 888–900. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Not Depressed | Mild Depression | Moderate–High Depression | p-Value |
---|---|---|---|---|
Sex (M:F) | 32:52 | 10:17 | 8:14 | 0.557 |
Age (years) | 26.15 ± 8.47 | 25.37 ± 6.78 | 24.95 ± 7.50 | 0.783 |
Height (cm) | 172.82 ± 8.69 | 173.85 ± 7.47 | 172.95 ± 10.48 | 0.873 |
Weight (kg) | 74.49 ± 14.92 | 74.56 ± 13.96 | 73.44 ± 18.78 | 0.957 |
BMI (kg/m2) | 24.85 ± 4.67 | 24.50 ± 3.56 | 24.43 ± 5.58 | 0.897 |
Prior night’s sleep (hours) | 7.49 ± 1.70 | 7.54 ± 1.34 | 7.82 ± 1.72 | 0.704 |
Variable | Not Depressed vs. Mild Depression | Not Depressed vs. Moderate–High Depression | Mild Depression vs. Moderate–High Depression | ||||||
---|---|---|---|---|---|---|---|---|---|
Model Name | Mean Accuracy | F-1 Scores | Model Name | Mean Accuracy | F-1 Scores | Model Name | Mean Accuracy | F-1 Scores | |
Gait | |||||||||
All Variables | SVC | 75.00% | 0.75 | Random Forest/SVC | 79.25% | 0.79 | QDC | 72.00% | 0.72 |
Top Variables | Random Forest | 77.68% | 0.77 | Gaussian NB/LDA | 81.13% | 0.81 | Gaussian NB | 70.00% | 0.70 |
All Components | SVC/QDA | 75.00% | 0.75 | KNeighbor | 80.19% | 0.80 | Random Forest | 58.00% | 0.46 |
Top Components | Random Forest | 77.68% | 0.76 | KNeighbor | 80.19% | 0.80 | KNeighbor | 64.00% | 0.64 |
Balance—Eyes Open, Feet on Ground | |||||||||
All Variables | SVC/QDA | 75.00% | 0.75 | GaussianNB | 80.19% | 0.80 | LDA | 64.00% | 0.64 |
Top Variables | KNeighbor | 75.89% | 0.76 | Random Forest | 81.13% | 0.80 | Gradient Boosting | 60.00% | 0.60 |
All Components | KNeighbor | 75.89% | 0.76 | SVC/LDA | 79.25% | 0.79 | Gaussian NB | 60.00% | 0.60 |
Top Components | KNeighbor | 75.89% | 0.76 | Random Forest | 81.13% | 0.79 | Gaussian NB | 60.00% | 0.60 |
Balance—Eyes Closed, Feet on Ground | |||||||||
All Variables | SVC/QDA | 75.00% | 0.75 | SVC/QDA | 79.25% | 0.79 | Gradient Boosting | 68.00 | 0.66 |
Top Variables | SVC | 75.00% | 0.75 | KNeighbor | 80.19% | 0.80 | Decision Tree | 76.00% | 0.72 |
All Components | SVC/LDA | 75.00% | 0.75 | Random Forest | 80.19% | 0.78 | QDA | 60.00% | 0.60 |
Top Components | SVC/LDA | 75.00% | 0.75 | KNeighbor/SVC | 79.25% | 0.79 | QDA | 60.00% | 0.60 |
Balance—Eyes Open, Feet on Foam Surface | |||||||||
All Variables | SVC/QDA | 75.00% | 0.75 | SVC/QDA | 79.25% | 0.79 | KNeighbor | 58.00% | 0.58 |
Top Variables | SVC/LDA | 75.00% | 0.75 | SVC | 79.25% | 0.79 | Gaussian NB | 62.00% | 0.62 |
All Components | SVC | 75.00% | 0.75 | SVC/GaussianNB | 79.25% | 0.79 | QDA | 76.00% | 0.76 |
Top Components | SVC | 75.00% | 0.75 | SVC | 79.25% | 0.79 | QDA | 66.00% | 0.66 |
Balance—Eyes Closed, Feet on Foam Surface | |||||||||
All Variables | SVC/QDA | 75.00% | 0.75 | SVC/QDA | 79.25% | 0.79 | QDA | 64.00% | 0.64 |
Top Variables | KNeighbor | 75.89% | 0.76 | SVC | 79.25% | 0.79 | SVC | 64.00% | 0.64 |
All Components | SVC | 75.00% | 0.75 | SVC | 79.25% | 0.79 | Decision Tree | 72.00% | 0.68 |
Top Components | SVC | 75.00 | 0.75 | SVC/Gaussian NB | 79.25% | 0.79 | Decision Tree | 74.00% | 0.64 |
All Balance Conditions | |||||||||
All Variables | SVC | 75.00% | 0.75 | Random Forest | 79.25% | 0.80 | Gradient Boosting | 66.00% | 0.62 |
Top Variables | KNeighbor/SVC | 75.00% | 0.75 | Random Forest/Gradient Boosting | 79.25% | 0.80 | AdaBoost | 68.00% | 0.68 |
All Components | SVC | 75.00% | 0.75 | KNeighbor/SVC | 79.25% | 0.79 | QDA | 60.00% | 0.60 |
Top Components | SVC/Gradient Boost | 75.00% | 0.75 | Random Forest/KNeighbor/SVC | 79.25% | 0.79 | KNeighbor | 72.00% | 0.72 |
All Balance Conditions and Gait | |||||||||
All Variables | SVC | 75.00% | 0.75 | Random Forest | 79.25% | 0.80 | AdaBoost | 60.00% | 0.60 |
Top Variables | AdaBoost | 77.68% | 0.78 | Gradient Boosting | 84.91% | 0.84 | SVC | 72.00% | 0.72 |
All Components | Random Forest/SVC/QDA | 75.00% | 0.75 | Random Forest/SVC/QDA | 79.25% | 0.79 | Decision Tree | 70.00% | 0.78 |
Top Components | Random Forest | 77.68% | 0.78 | LDA | 83.02% | 0.83 | Random Forest | 80.00% | 0.82 |
Measure | No Depression | Mild Depression | Moderate–High Depression | Post Hoc |
---|---|---|---|---|
Gait Features | ||||
Anticipatory Postural Adjustment Forward Peak (m/s2) | 0.33 (0.17) | 0.25 (0.17) | 0.36 (0.21) | Moderate–High > Mild |
Anticipatory Postural Adjustment Lateral Peak (m/s2) | 0.37 (0.21) | 0.28 (0.18) | 0.42 (0.19) | No, Moderate–High > Mild |
Mid-swing Leg Elevation Variance within Leg | 0.38 (0.11) | 0.44 (0.15) | 0.44 (0.16) | No < Mild, Moderate–High |
Variance Between Legs Mid-swing Elevation | 19.54 (15.65) | 16.76 (15.59) | 10.80 (9.71) | No > Moderate–High |
Eyes Closed Feet on Foam Surface | ||||
Acceleration 95% Ellipse Y-Axis Radius (m/s2) | 0.26 (0.10) | 0.21 (0.06) | 0.25 (0.06) | No > Mild |
Acceleration Path Length in Sagittal Plane (m/s2) | 8.91 (3.26) | 7.08 (2.08) | 8.62 (3.19) | Mild < No, Moderate–High |
Acceleration Root Mean Square Sway (m/s2) | 0.12 (0.04) | 0.10 (0.03) | 0.12 (0.03) | Mild < No, Moderate–High |
Acceleration Root Mean Square Sway in Sagittal Plane (m/s2) | 0.10 (0.04) | 0.09 (0.03) | 0.10 (0.03) | Mild < No, Moderate–High |
Sway Angle 95% Ellipse Y-Axis Radius (°) | 1.54 (0.57) | 1.25 (0.36) | 1.46 (0.36) | Mild < No, Moderate–High |
Root Mean Square Sway Angle (°) | 0.71 (0.25) | 0.59 (0.16) | 0.69 (0.16) | Mild < No, Moderate–High |
Root Mean Square Sway Angle in Sagittal Plane (°) | 0.62 (0.24) | 0.51 (0.15) | 0.59 (0.15) | Mild < No, Moderate–High |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boolani, A.; Gruber, A.H.; Torad, A.A.; Stamatis, A. Identifying Current Feelings of Mild and Moderate to High Depression in Young, Healthy Individuals Using Gait and Balance: An Exploratory Study. Sensors 2023, 23, 6624. https://doi.org/10.3390/s23146624
Boolani A, Gruber AH, Torad AA, Stamatis A. Identifying Current Feelings of Mild and Moderate to High Depression in Young, Healthy Individuals Using Gait and Balance: An Exploratory Study. Sensors. 2023; 23(14):6624. https://doi.org/10.3390/s23146624
Chicago/Turabian StyleBoolani, Ali, Allison H. Gruber, Ahmed Ali Torad, and Andreas Stamatis. 2023. "Identifying Current Feelings of Mild and Moderate to High Depression in Young, Healthy Individuals Using Gait and Balance: An Exploratory Study" Sensors 23, no. 14: 6624. https://doi.org/10.3390/s23146624
APA StyleBoolani, A., Gruber, A. H., Torad, A. A., & Stamatis, A. (2023). Identifying Current Feelings of Mild and Moderate to High Depression in Young, Healthy Individuals Using Gait and Balance: An Exploratory Study. Sensors, 23(14), 6624. https://doi.org/10.3390/s23146624