Distribution of Bioelectrical Impedance Vector Analysis and Phase Angle in Korean Elderly and Sarcopenia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Anthropometric Measurements
2.3. Measurement of the Bioelectrical Impedance Parameters
2.4. Definition of Sarcopenia
2.5. Data Processing and Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations, Department of Economic and Social Affairs. World Population Prospects: The 2017 Revision Key Findings and Advance Tables; United Nations, Department of Economic and Social Affairs: New York, NY, USA, 2017. [Google Scholar]
- Statistics Korea. Population Trends and Projections of the World and Korea; Statistics Korea: Daejeon, Republic of Korea, 2015. [Google Scholar]
- Sadighi Akha, A.A. Aging and the immune system: An overview. J. Immunol. Methods 2018, 463, 21–26. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Landi, F.; Schneider, S.M.; Zúñiga, C.; Arai, H.; Boirie, Y.; Chen, L.K.; Fielding, R.A.; Martin, F.C.; Michel, J.P.; et al. Prevalence of and interventions for sarcopenia in ageing adults: A systematic review. Report of the International Sarcopenia Initiative (EWGSOP and IWGS). Age Ageing 2014, 43, 748–759. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Zepeda, M.U.; Gutiérrez-Robledo, L.M.; Arango-Lopera, V.E. Sarcopenia prevalence. Osteoporos Int. 2013, 24, 797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- von Haehling, S.; Morley, J.E.; Anker, S.D. An overview of sarcopenia: Facts and numbers on prevalence and clinical impact. J. Cachexia Sarcopenia Muscle 2010, 1, 129–133. [Google Scholar] [CrossRef]
- Janssen, I.; Shepard, D.S.; Katzmarzyk, P.T.; Roubenoff, R. The healthcare costs of sarcopenia in the United States. J. Am. Geriatr. Soc. 2004, 52, 80–85. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31, Erratum in Age Ageing 2019, 48, 601. [Google Scholar] [CrossRef] [Green Version]
- Amini, B.; Boyle, S.P.; Boutin, R.D.; Lenchik, L. Approaches to assessment of muscle mass and myosteatosis on computed tomography: A systematic review. J. Gerontol. A Biol. Sci. Med. Sci. 2019, 74, 1671–1678. [Google Scholar] [CrossRef]
- Loenneke, J.P.; Dankel, S.J.; Bell, Z.W.; Spitz, R.W.; Abe, T.; Yasuda, T. Ultrasound and MRI measured changes in muscle mass gives different estimates but similar conclusions: A Bayesian approach. Eur. J. Clin. Nutr. 2019, 73, 1203–1205. [Google Scholar] [CrossRef]
- Toombs, R.J.; Ducher, G.; Shepherd, J.A.; De Souza, M.J. The impact of recent technological advances on the trueness and precision of DXA to assess body composition. Obesity 2012, 20, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Jeon, K.C.; Kim, S.Y.; Jiang, F.L.; Chung, S.; Ambegaonkar, J.P.; Park, J.H.; Kim, Y.J.; Kim, C.H. Prediction equations of the multifrequency standing and supine bioimpedance for appendicular skeletal muscle mass in Korean older people. Int. J. Environ. Res. Public Health 2020, 17, 5847. [Google Scholar] [CrossRef]
- Gonzalez, M.C.; Barbosa-Silva, T.G.; Bielemann, R.M.; Gallagher, D.; Heymsfield, S.B. Phase angle and its determinants in healthy subjects: Influence of body composition. Am. J. Clin. Nutr. 2016, 103, 712–716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lukaski, H.C.; Kyle, U.G.; Kondrup, J. Assessment of adult malnutrition and prognosis with bioelectrical impedance analysis: Phase angle and impedance ratio. Curr. Opin. Clin. Nutr. Metab. Care 2017, 20, 330–339. [Google Scholar] [CrossRef] [PubMed]
- Barbosa-Silva, M.C.; Barros, A.J. Bioelectrical impedance analysis in clinical practice: A new perspective on its use beyond body composition equations. Curr. Opin. Clin. Nutr. Metab. Care 2005, 8, 311–317. [Google Scholar] [CrossRef]
- Organ, L.W.; Bradham, G.B.; Gore, D.T.; Lozier, S.L. Segmental bioelectrical impedance analysis: Theory and application of a new technique. J. Appl. Physiol. 1994, 77, 98–112. [Google Scholar] [CrossRef]
- Yanovski, S.Z.; Hubbard, V.S.; Lukaski, H.C.; Heymsfiedld, S.B. Bioelectrical impedance analysis in body composition measurement: National Institutes of Health Technology Assessment Conference Statement. Am. J. Clin. Nutr. 1996, 64 (Suppl. S3), 524S–532S. [Google Scholar] [CrossRef] [Green Version]
- Kyle, U.G.; Bosaeus, I.; De Lorenzo, A.D.; Deurenberg, P.; Elia, M.; Manuel Gómez, J.; Lilienthal Heitmann, B.; Kent-Smith, L.; Melchior, J.C.; Pirlich, M.; et al. Bioelectrical impedance analysis-part II: Utilization in clinical practice. Clin. Nutr. 2004, 23, 1430–1453. [Google Scholar] [CrossRef]
- Marra, M.; Sammarco, R.; De Lorenzo, A.; Iellamo, F.; Siervo, M.; Pietrobelli, A.; Donini, L.M.; Santarpia, L.; Cataldi, M.; Pasanisi, F.; et al. Assessment of body composition in health and disease using bioelectrical impedance analysis (bia) and dual energy x-ray absorptiometry (dxa): A critical overview. Contrast Media Mol. Imaging 2019, 2019, 3548284. [Google Scholar] [CrossRef]
- Sheean, P.; Gonzalez, M.C.; Prado, C.M.; McKeever, L.; Hall, A.M.; Braunschweig, C.A. American society for parenteral and enteral nutrition clinical guidelines: The validity of body composition assessment in clinical populations. J. Parenter. Enter. Nutr. 2020, 44, 12–43. [Google Scholar] [CrossRef] [Green Version]
- Roche, S.; Lara-Pompa, N.E.; Macdonald, S.; Fawbert, K.; Valente, J.; Williams, J.E.; Hill, S.; Wells, J.C.; Fewtrell, M.S. Bioelectric impedance vector analysis (BIVA) in hospitalised children; predictors and associations with clinical outcomes. Eur. J. Clin. Nutr. 2019, 73, 1431–1440. [Google Scholar] [CrossRef]
- Piccoli, A.; Nigrelli, S.; Caberlotto, A.; Bottazzo, S.; Rossi, B.; Pillon, L.; Maggiore, Q. Bivariate normal values of the bioelectrical impedance vector in adult and elderly populations. Am. J. Clin. Nutr. 1995, 61, 269–270. [Google Scholar] [CrossRef]
- Zhang, G.; Huo, X.; Wu, C.; Zhang, C.; Duan, Z. A bioelectrical impedance phase angle measuring system for assessment of nutritional status. Biomed. Mater. Eng. 2014, 24, 3657–3664. [Google Scholar] [CrossRef]
- Stobäus, N.; Pirlich, M.; Valentini, L.; Schulzke, J.D.; Norman, K. Determinants of bioelectrical phase angle in disease. Br. J. Nutr. 2012, 107, 1217–1220. [Google Scholar] [CrossRef] [Green Version]
- Norman, K.; Wirth, R.; Neubauer, M.; Eckardt, R.; Stobäus, N. The bioimpedance phase angle predicts low muscle strength, impaired quality of life, and increased mortality in old patients with cancer. J. Am. Med. Dir. Assoc. 2015, 16, 173.e17–173.e22. [Google Scholar] [CrossRef]
- Piccoli, A.; Rossi, B.; Pillon, L.; Bucciante, G. A new method for monitoring body fluid variation by bioimpedance analysis: The RXc graph. Kidney Int. 1994, 46, 534–539. [Google Scholar] [CrossRef] [Green Version]
- Norman, K.; Stobäus, N.; Pirlich, M.; Bosy-Westphal, A. Bioelectrical phase angle and impedance vector analysis--clinical relevance and applicability of impedance parameters. Clin. Nutr. 2012, 31, 854–861. [Google Scholar] [CrossRef]
- Jiang, F.; Tang, S.; Eom, J.J.; Song, K.H.; Kim, H.; Chung, S.; Kim, C.H. Accuracy of estimated bioimpedance parameters with octapolar segmental bioimpedance analysis. Sensors 2022, 22, 2681. [Google Scholar] [CrossRef]
- Chen, L.K.; Woo, J.; Assantachai, P.; Auyeung, T.W.; Chou, M.Y.; Iijima, K.; Jang, H.C.; Kang, L.; Kim, M.; Kim, S.; et al. Asian Working Group for Sarcopenia: 2019 consensus update on sarcopenia diagnosis and treatment. J. Am. Med. Dir. Assoc. 2020, 21, 300–307. [Google Scholar] [CrossRef] [PubMed]
- Cesari, M.; Kritchevsky, S.B.; Newman, A.B.; Simonsick, E.M.; Harris, T.B.; Penninx, B.W.; Brach, J.S.; Tylavsky, F.A.; Satter-field, S.; Bauer, D.C.; et al. Added value of physical performance measures in predicting adverse health-related events: Results from the Health, Aging And Body Composition Study. J. Am. Geriatr. Soc. 2009, 57, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Legrand, D.; Vaes, B.; Matheï, C.; Adriaensen, W.; Van Pottelbergh, G.; Degryse, J.M. Muscle strength and physical performance as predictors of mortality, hospitalization, and disability in the oldest old. J. Am. Geriatr. Soc. 2014, 62, 1030–1038. [Google Scholar] [CrossRef] [PubMed]
- Castillo-Martínez, L.; Colín-Ramírez, E.; Orea-Tejeda, A.; González Islas, D.G.; Rodríguez García, W.D.; Santillán Díaz, C.; Gutiérrez Rodríguez, A.E.; Vázquez Durán, M.; Keirns Davies, C. Cachexia assessed by bioimpedance vector analysis as a prognostic indicator in chronic stable heart failure patients. Nutrition 2012, 28, 886–891. [Google Scholar]
- Norman, K.; Pirlich, M.; Sorensen, J.; Christensen, P.; Kemps, M.; Schütz, T.; Lochs, H.; Kondrup, J. Bioimpedance vector analysis as a measure of muscle function. Clin. Nutr. 2009, 28, 78–82. [Google Scholar] [CrossRef] [PubMed]
- Basile, C.; Della-Morte, D.; Cacciatore, F.; Gargiulo, G.; Galizia, G.; Roselli, M.; Curcio, F.; Bonaduce, D.; Abete, P. Phase angle as bioelectrical marker to identify elderly patients at risk of sarcopenia. Exp. Gerontol. 2014, 58, 43–46. [Google Scholar] [CrossRef] [PubMed]
- Chertow, G.M.; Lowrie, E.G.; Wilmore, D.W.; Gonzalez, J.; Lew, N.L.; Ling, J.; Leboff, M.S.; Gottlieb, M.N.; Huang, W.; Zebrowski, B.; et al. Nutritional assessment with bioelectrical impedance analysis in maintenance hemodialysis patients. J. Am. Soc. Nephrol. 1995, 6, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Marini, E.; Buffa, R.; Saragat, B.; Coin, A.; Toffanello, E.D.; Berton, L.; Manzato, E.; Sergi, G. The potential of classic and specific bioelectrical impedance vector analysis for the assessment of sarcopenia and sarcopenic obesity. Clin. Interv. Aging 2012, 7, 585–591. [Google Scholar] [CrossRef] [Green Version]
- Brunani, A.; Perna, S.; Soranna, D.; Rondanelli, M.; Zambon, A.; Bertoli, S.; Vinci, C.; Capodaglio, P.; Lukaski, H.; Cancello, R. Body composition assessment using bioelectrical impedance analysis (BIA) in a wide cohort of patients affected with mild to severe obesity. Clin. Nutr. 2021, 40, 3973–3981. [Google Scholar] [CrossRef] [PubMed]
- Piccoli, A.; Brunani, A.; Savia, G.; Pillon, L.; Favaro, E.; Berselli, M.E.; Cavagnini, F. Discriminating between body fat and fluid changes in the obese adult using bioimpedance vector analysis. Int. J. Obes. Relat. Metab. Disord. 1998, 22, 97–104. [Google Scholar] [CrossRef] [Green Version]
- Yamada, Y.; Buehring, B.; Krueger, D.; Anderson, R.M.; Schoeller, D.A.; Binkley, N. Electrical properties assessed by bioelectrical impedance spectroscopy as biomarkers of age-related loss of skeletal muscle quantity and quality. J. Gerontol. A Biol. Sci. Med. Sci. 2017, 72, 1180–1186. [Google Scholar] [CrossRef] [Green Version]
- Tomeleri, C.M.; Cavalcante, E.F.; Antunes, M.; Nabuco, H.; de Souza, M.F.; Teixeira, D.C.; Gobbo, L.A.; Silva, A.M.; Cyrino, E.S. Phase angle is moderately associated with muscle quality and functional capacity, independent of age and body composition in older women. J. Geriatr. Phys. Ther. 2019, 42, 281–286. [Google Scholar] [CrossRef]
- Mullie, L.; Obrand, A.; Bendayan, M.; Trnkus, A.; Ouimet, M.C.; Moss, E.; Chen-Tournoux, A.; Rudski, L.G.; Afilalo, J. Phase angle as a biomarker for frailty and postoperative mortality: The BICS study. J. Am. Heart Assoc. 2018, 7, e008721. [Google Scholar] [CrossRef]
- Bosy-Westphal, A.; Danielzik, S.; Dörhöfer, R.P.; Later, W.; Wiese, S.; Müller, M.J. Phase angle from bioelectrical impedance analysis: Population reference values by age, sex, and body mass index. JPEN. J. Parenter. Enter. Nutr. 2006, 30, 309–316. [Google Scholar] [CrossRef]
- Akamatsu, Y.; Kusakabe, T.; Arai, H.; Yamamoto, Y.; Nakao, K.; Ikeue, K.; Ishihara, Y.; Tagami, T.; Yasoda, A.; Ishii, K.; et al. Phase angle from bioelectrical impedance analysis is a useful indicator of muscle quality. J. Cachexia Sarcopenia Muscle 2022, 13, 180–189. [Google Scholar] [CrossRef] [PubMed]
- Piccoli, A.; Codognotto, M.; Piasentin, P.; Naso, A. Combined evaluation of nutrition and hydration in dialysis patients with bioelectrical impedance vector analysis (BIVA). Clin. Nutr. 2014, 33, 673–677. [Google Scholar] [CrossRef] [PubMed]
- McGregor, R.A.; Cameron-Smith, D.; Poppitt, S.D. It is not just muscle mass: A review of muscle quality, composition and metabolism during ageing as determinants of muscle function and mobility in later life. Longev. Heal. 2014, 3, 9. [Google Scholar] [CrossRef] [Green Version]
Males (n = 75) | Females (n = 71) | p Value | |
---|---|---|---|
Age (years) | 76.6 ± 4.2 | 75.1 ± 4.4 | 0.034 |
Height (cm) | 166.5 ± 4.8 | 152.2 ± 5.1 | <0.001 |
Weight (kg) | 65.4 ± 7.2 | 53.2 ± 6.6 | <0.001 |
BMI (kg/m2) | 23.6 ± 2.3 | 22.9 ± 2.2 | 0.063 |
WB_R (Ω) | 454.0 ± 42.4 | 557.4 ± 73.9 | <0.001 |
WB_Xc (Ω) | 47.1 ± 5.9 | 49.6 ± 8.3 | 0.028 |
WB_PhA (°) | 5.9 ± 0.7 | 5.1 ± 0.6 | <0.001 |
R/H (Ω/m) | 272.9 ± 27.5 | 366.7 ± 51.1 | <0.001 |
Xc/H (Ω/m) | 28.3 ± 3.8 | 32.6 ± 5.3 | <0.001 |
ASM (kg) | 20.7 ± 2.3 | 14.0 ± 1.6 | <0.001 |
ASM/H2 (kg/m2) | 7.4 ± 0.7 | 6.0 ± 0.5 | <0.001 |
HGS (kg) | 31.6 ± 5.2 | 22.0 ± 3.0 | <0.001 |
Physical performance (m/s) | 1.0 ± 0.2 | 1.0 ± 0.2 | 0.421 |
Muscle quality (kg/kg) | 1.64 ± 0.18 | 1.55 ± 0.17 | 0.006 |
n | R | Xc | PhA | ||
---|---|---|---|---|---|
M | Non-sarcopenia | 65 | 444.9 ± 35.9 | 47.0 ± 5.4 | 6.0 ± 0.6 |
Sarcopenia | 10 | 513.7 ± 31.9 | 47.9 ± 8.9 | 5.2 ± 0.5 ** | |
F | Non-sarcopenia | 57 | 536.7 ± 44.7 | 48.5 ± 5.4 | 5.3 ± 0.8 |
Sarcopenia | 14 | 655.0 ± 93.4 | 54.7 ± 14.6 | 4.7 ± 0.8 * |
n | R/H | Xc/H | r | H | PhA | ||
---|---|---|---|---|---|---|---|
M | Non-sarcopenia | 65 | 266.9 ± 22.4 | 28.2 ± 3.4 | 0.63 | 1.67 ± 0.05 | 6.0 ± 0.6 |
Sarcopenia | 10 | 312.1 ± 25.8 | 29.1 ± 5.8 | 0.71 | 1.65 ± 0.04 | 5.2 ± 0.5 ** | |
F | Non-sarcopenia | 57 | 353.0 ± 34.2 | 31.9 ± 3.7 | 0.54 | 1.52 ± 0.05 | 5.3 ± 0.8 |
Sarcopenia | 14 | 429.9 ± 61.0 | 35.8 ± 9.0 | 0.75 | 1.52 ± 0.04 | 4.7 ± 0.8 * |
Gender | Variables | Pearson’s r | p Value |
---|---|---|---|
Male | Age | −0.275 * | 0.017 |
ASM | 0.229 * | 0.048 | |
ASM/H2 | 0.352 ** | 0.002 | |
HGS | 0.350 ** | 0.002 | |
Physical performance | 0.493 *** | <0.001 | |
Muscle quality | 0.272 * | 0.018 | |
Females | Age | −0.389 ** | 0.002 |
ASM | 0.271 * | 0.038 | |
ASM/H2 | 0.235 | 0.073 | |
HGS | 0.640 *** | <0.001 | |
Physical performance | 0.074 | 0.578 | |
Muscle quality | 0.524 *** | <0.001 |
Dependent Variable | R2 | β | p Value | 95% CI | Partial Correlation Coefficient | |
---|---|---|---|---|---|---|
Male | Muscle strength | 0.12 | 2.8 | <0.001 | 1.060–4.579 | 0.35 |
Muscle quality | 0.07 | 0.07 | 0.037 | 0.013–0.139 | 0.27 | |
Physical performance | 0.24 | 0.15 | <0.001 | 0.088–0.211 | 0.49 | |
Female | Muscle strength | 0.41 | 3.31 | <0.001 | 2.282–4.496 | 0.64 |
Muscle quality | 0.27 | 0.16 | <0.001 | 0.090–0.227 | 0.52 | |
Physical performance | 0.005 | 0.02 | 0.543 | −0.062–0.109 | 0.07 |
Model 1 | Model 2 | Model 3 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
95% CI | 95% CI | 95% CI | ||||||||||
Males | Lower | Upper | β | p Value | Lower | Upper | β | p Value | Lower | Upper | β | p Value |
Physical performance | 0.953 | 2.289 | 1.62 | <0.001 | 0.767 | 2.094 | 1.43 | <0.001 | 0.693 | 1.996 | 1.34 | <0.001 |
ASM/H2 | - | - | - | - | 0.050 | 0.455 | 0.25 | 0.015 | 0.053 | 0.448 | 0.25 | 0.01 |
Muscle quality | - | - | - | - | - | - | - | - | 0.069 | 1.452 | 0.76 | 0.03 |
Females | ||||||||||||
Muscle quality | 0.985 | 2.481 | 1.73 | <0.001 | 1.375 | 2.741 | 2.06 | <0.001 | - | - | - | - |
ASM | - | - | - | - | 0.078 | 0.231 | 0.16 | <0.001 | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, F.-L.; Tang, S.; Eom, S.-H.; Lee, J.-Y.; Chae, J.H.; Kim, C.-H. Distribution of Bioelectrical Impedance Vector Analysis and Phase Angle in Korean Elderly and Sarcopenia. Sensors 2023, 23, 7090. https://doi.org/10.3390/s23167090
Jiang F-L, Tang S, Eom S-H, Lee J-Y, Chae JH, Kim C-H. Distribution of Bioelectrical Impedance Vector Analysis and Phase Angle in Korean Elderly and Sarcopenia. Sensors. 2023; 23(16):7090. https://doi.org/10.3390/s23167090
Chicago/Turabian StyleJiang, Fang-Lin, Saizhao Tang, Seon-Ho Eom, Jae-Young Lee, Ji Heon Chae, and Chul-Hyun Kim. 2023. "Distribution of Bioelectrical Impedance Vector Analysis and Phase Angle in Korean Elderly and Sarcopenia" Sensors 23, no. 16: 7090. https://doi.org/10.3390/s23167090
APA StyleJiang, F. -L., Tang, S., Eom, S. -H., Lee, J. -Y., Chae, J. H., & Kim, C. -H. (2023). Distribution of Bioelectrical Impedance Vector Analysis and Phase Angle in Korean Elderly and Sarcopenia. Sensors, 23(16), 7090. https://doi.org/10.3390/s23167090