Robotic Surgery in Urology: History from PROBOT® to HUGOTM
Abstract
:1. Introduction
2. Materials and Methods
3. Discussion
3.1. Historical Background
3.2. The daVinci® Era
3.3. The New Robots
3.3.1. Senhance®
3.3.2. Revo-I®
3.3.3. Versius®
3.3.4. Avatera®
3.3.5. Hinotori®
3.3.6. HugoTM RAS
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hockstein, N.G.; Gourin, C.G.; Faust, R.A.; Terris, D.J. A History of Robots: From Science Fiction to Surgical Robotics. J. Robot. Surg. 2007, 1, 113–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leal Ghezzi, T.; Campos Corleta, O. 30 Years of Robotic Surgery. World J. Surg. 2016, 40, 2550–2557. [Google Scholar] [CrossRef] [PubMed]
- Goertz, R.C. Remote-Control Manipulator. US Patent 2632574; US Patent Office: Washington, DC, USA, 24 March 1953. [Google Scholar]
- Goertz, R.C. Fundamentals of General Purpose Remote Manipulators. Nucleonics 1952, 1001, 36–42. [Google Scholar]
- Kwoh, Y.S.; Hou, J.; Jonckheere, E.A.; Hayati, S. A Robot with Improved Absolute Positioning Accuracy for CT Guided Stereotactic Brain Surgery. IEEE Trans. Biomed. Eng. 1988, 35, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Davies, B.L.; Hibberd, R.D.; Ng, W.S.; Timoney, A.G.; Wickham, J.E.A. The Development of a Surgeon Robot for Prostatectomies. Proc. Inst. Mech. Eng. H 1991, 205, 35–38. [Google Scholar] [CrossRef]
- Stefano, G.B. Robotic Surgery: Fast Forward to Telemedicine. Med. Sci. Monit. 2017, 23, 1856. [Google Scholar] [CrossRef] [Green Version]
- Harris, S.J.; Arambula-Cosio, F.; Mei, Q.; Hibberd, R.D.; Davies, B.L.; Wickham, J.E.A.; Nathan, M.S.; Kundu, B. The Probot—An Active Robot for Prostate Resection. Proc. Inst. Mech. Eng. H 1997, 211, 317–325. [Google Scholar] [CrossRef]
- Paul, H.A.; Bargar, W.L.; Mittlestadt, B.; Musits, B.; Taylor, R.H.; Kazanzides, P.; Zuhars, J.; Williamson, B.; Hanson, W. Development of a Surgical Robot for Cementless Total Hip Arthroplasty. Clin. Orthop. Relat. Res. 1992, 285, 57–66. [Google Scholar] [CrossRef]
- Sackier, J.M.; Wang, Y. Robotically Assisted Laparoscopic Surgery. From Concept to Development. Surg. Endosc. 1994, 8, 63–66. [Google Scholar] [CrossRef]
- Ewing, D.R.; Pigazzi, A.; Wang, Y.; Ballantyne, G.H. Robots in the Operating Room—The History. Semin. Laparosc. Surg. 2004, 11, 63–71. [Google Scholar] [CrossRef]
- Unger, S.W.; Unger, H.M.; Bass, R.T. AESOP Robotic Arm. Surg. Endosc. 1994, 8, 1131. [Google Scholar] [CrossRef] [PubMed]
- Parekattil, S.J.; Moran, M.E. Robotic Instrumentation: Evolution and Microsurgical Applications. Indian. J. Urol. 2010, 26, 395–403. [Google Scholar] [CrossRef] [PubMed]
- Green, P.S.; Hill, J.W.; Jensen, J.F.; Shah, A. Telepresence Surgery. IEEE Eng. Med. Biol. 1995, 14, 324–329. [Google Scholar] [CrossRef]
- Zajtchuk, R.G.C. Part IV. Surgical Combat Casualty Care: Anesthesia and Perioperative Care of the Combat Casualty, Vol. 1. Textbook of Military Medicine; Office of The Surgeon General at TMM Publications: Washington, DC, USA, 1995. [Google Scholar]
- George, E.I.; Brand, T.C.; LaPorta, A.; Marescaux, J.; Satava, R.M. Origins of Robotic Surgery: From Skepticism to Standard of Care. JSLS 2018, 22, e2018.00039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Satava, R.M. Robotic Surgery: From Past to Future—A Personal Journey. Surg. Clin. N. Am. 2003, 83, 1491–1500. [Google Scholar] [CrossRef] [PubMed]
- Kavoussi, L.R.; Moore, R.G.; Adams, J.B.; Partin, A.W. Comparison of Robotic versus Human Laparoscopic Camera Control. J. Urol. 1995, 154, 2134–2136. [Google Scholar] [CrossRef]
- Bacá, I.; Schultz, C.; Grzybowski, L.; Göetzen, V. Voice-Controlled Robotic Arm in Laparoscopic Surgery. Croat. Med. J. 1999, 40, 409–412. [Google Scholar]
- Reichenspurner, H.; Damiano, R.J.; Mack, M.; Boehm, D.H.; Gulbins, H.; Detter, C.; Meiser, B.; Ellgass, R.; Reichart, B. Use of the Voice-Controlled and Computer-Assisted Surgical System ZEUS for Endoscopic Coronary Artery Bypass Grafting. J. Thorac. Cardiovasc. Surg. 1999, 118, 11–16. [Google Scholar] [CrossRef] [Green Version]
- Morrell, A.L.G.; Morrell-Junior, A.C.; Morrell, A.G.; Mendes, J.M.F.; Tustumi, F.; De-Oliveira-e-silva, L.G.; Morrell, A. The History of Robotic Surgery and Its Evolution: When Illusion Becomes Reality. Rev. Col. Bras. Cir. 2021, 48, e20202798. [Google Scholar] [CrossRef]
- Marescaux, J.; Rubino, F. The ZEUS Robotic System: Experimental and Clinical Applications. Surg. Clin. N. Am. 2003, 83, 1305–1315. [Google Scholar] [CrossRef]
- Falcone, T.; Goldberg, J.; Garcia-Ruiz, A.; Margossian, H.; Stevens, L. Full Robotic Assistance for Laparoscopic Tubal Anastomosis: A Case Report. J. Laparoendosc. Adv. Surg. Tech. A 1999, 9, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Hashizume, M.; Konishi, K.; Tsutsumi, N.; Yamaguchi, S.; Shimabukuro, R. A New Era of Robotic Surgery Assisted by a Computer-Enhanced Surgical System. Surgery 2002, 131, S330–S333. [Google Scholar] [CrossRef] [PubMed]
- Hanly, E.J.; Talamini, M.A. Robotic Abdominal Surgery. Am. J. Surg. 2004, 188, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Hagen, M.E.; Stein, H.; Curet, M.J. Introduction to the Robotic System. In Robotics in General Surgery; Kim, C.H., Ed.; Springer: New York, NY, USA, 2014; pp. 9–16. [Google Scholar]
- Marescaux, J.; Leroy, J.; Gagner, M.; Rubino, F.; Mutter, D.; Vix, M.; Butner, S.E.; Smith, M.K. Transatlantic Robot-Assisted Telesurgery. Nature 2001, 413, 379–380. [Google Scholar] [CrossRef]
- Tewari, A.; Menon, M. Vattikuti Institute Prostatectomy: Surgical Technique and Current Results. Curr. Urol. Rep. 2003, 4, 119–123. [Google Scholar] [CrossRef]
- Luciani, L.G.; Chiodini, S.; Mattevi, D.; Cai, T.; Puglisi, M.; Mantovani, W.; Malossini, G. Robotic-Assisted Partial Nephrectomy Provides Better Operative Outcomes as Compared to the Laparoscopic and Open Approaches: Results from a Prospective Cohort Study. J. Robot. Surg. 2017, 11, 333–339. [Google Scholar] [CrossRef] [PubMed]
- Hyams, E.S.; Mufarrij, P.W.; Stifelman, M.D. Robotic Renal and Upper Tract Reconstruction. Curr. Opin. Urol. 2008, 18, 557–563. [Google Scholar] [CrossRef] [PubMed]
- Cohen, A.J.; Pariser, J.J.; Anderson, B.B.; Pearce, S.M.; Gundeti, M.S. The Robotic Appendicovesicostomy and Bladder Augmentation: The next Frontier in Robotics, Are We There? Urol. Clin. N. Am. 2015, 42, 121–130. [Google Scholar] [CrossRef]
- Robot Wars: $60B Intuitive Surgical Dominated Its Market for 20 Years. Now Rivals like Alphabet Are Moving in. Available online: https://www.forbes.com/sites/michelatindera/2019/02/14/intuitive-surgical-stock-robot-surgery-da-vinci-alphabet-jnj-ceo-gary-guthart/#565d4979a37b (accessed on 24 June 2023).
- US Food and Drug Administration (2000) 510 (k) Clearances. Available online: http://www.accessdata.fda.gov/scripts/cdrh/cfpmn/pmn.cfm?ID=K990144 (accessed on 30 October 2015).
- Hellan, M.; Spinoglio, G.; Pigazzi, A.; Lagares-Garcia, J.A. The Influence of Fluorescence Imaging on the Location of Bowel Transection during Robotic Left-Sided Colorectal Surgery. Surg. Endosc. 2014, 28, 1695–1702. [Google Scholar] [CrossRef]
- Freschi, C.; Ferrari, V.; Melfi, F.; Ferrari, M.; Mosca, F.; Cuschieri, A. Technical Review of the Da Vinci Surgical Telemanipulator. Int. J. Med. Robot. 2013, 9, 396–406. [Google Scholar] [CrossRef]
- Oleynikov, D. Robotic Surgery. Surg. Clin. N. Am. 2008, 88, 1121–1130. [Google Scholar] [CrossRef] [PubMed]
- Gosrisirikul, C.; Don Chang, K.; Raheem, A.A.; Rha, K.H. New Era of Robotic Surgical Systems. Asian J. Endosc. Surg. 2018, 11, 291–299. [Google Scholar] [CrossRef] [PubMed]
- Brassetti, A.; Ragusa, A.; Bove, A.M.; Anceschi, U.; Ferriero, M.; Guaglianone, S.; Mastroianni, R.; Misuraca, L.; Tuderti, G.; Gallucci, M.; et al. Robot-Assisted Transperitoneal Repair of a Recto-Vesical Fistula, a Case Report. Urol. Video J. 2023, 19, 100233. [Google Scholar] [CrossRef]
- LaMattina, J.C.; Alvarez-Casas, J.; Lu, I.; Powell, J.M.; Sultan, S.; Phelan, M.W.; Barth, R.N. Robotic-Assisted Single-Port Donor Nephrectomy Using the Da Vinci Single-Site Platform. J. Surg. Res. 2018, 222, 34–38. [Google Scholar] [CrossRef]
- Gaboardi, F.; Pini, G.; Suardi, N.; Montorsi, F.; Passaretti, G.; Smelzo, S. Robotic Laparoendoscopic Single-Site Radical Prostatectomy (R-LESS-RP) with DaVinci Single-Site® Platform. Concept and Evolution of the Technique Following an IDEAL Phase 1. J. Robot. Surg. 2019, 13, 215–226. [Google Scholar] [CrossRef] [PubMed]
- Dobbs, R.W.; Halgrimson, W.R.; Talamini, S.; Vigneswaran, H.T.; Wilson, J.O.; Crivellaro, S. Single-Port Robotic Surgery: The next Generation of Minimally Invasive Urology. World J. Urol. 2020, 38, 897–905. [Google Scholar] [CrossRef]
- Covas Moschovas, M.; Bhat, S.; Rogers, T.; Onol, F.; Roof, S.; Mazzone, E.; Mottrie, A.; Patel, V. Technical Modifications Necessary to Implement the Da Vinci Single-Port Robotic System. Eur. Urol. 2020, 78, 415–423. [Google Scholar] [CrossRef]
- Agarwal, D.K.; Sharma, V.; Toussi, A.; Viers, B.R.; Tollefson, M.K.; Gettman, M.T.; Frank, I. Initial Experience with Da Vinci Single-Port Robot-Assisted Radical Prostatectomies. Eur. Urol. 2020, 77, 373–379. [Google Scholar] [CrossRef]
- Kaouk, J.; Garisto, J.; Eltemamy, M.; Bertolo, R. Step-by-Step Technique for Single-Port Robot-Assisted Radical Cystectomy and Pelvic Lymph Nodes Dissection Using the Da Vinci® SPTM Surgical System. BJU Int. 2019, 124, 707–712. [Google Scholar] [CrossRef]
- Zhang, M.; Thomas, D.; Salama, G.; Ahmed, M. Single Port Robotic Radical Cystectomy with Intracorporeal Urinary Diversion: A Case Series and Review. Transl. Androl. Urol. 2020, 9, 925–930. [Google Scholar] [CrossRef]
- Fanfani, F.; Restaino, S.; Rossitto, C.; Gueli Alletti, S.; Costantini, B.; Monterossi, G.; Cappuccio, S.; Perrone, E.; Scambia, G. Total Laparoscopic (S-LPS) versus TELELAP ALF-X Robotic-Assisted Hysterectomy: A Case-Control Study. J. Minim. Invasive Gynecol. 2016, 23, 933–938. [Google Scholar] [CrossRef] [PubMed]
- Spinelli, A.; David, G.; Gidaro, S.; Carvello, M.; Sacchi, M.; Montorsi, M.; Montroni, I. First Experience in Colorectal Surgery with a New Robotic Platform with Haptic Feedback. Color. Dis. 2017, 20, 228–235. [Google Scholar] [CrossRef] [PubMed]
- Rao, P.P. Robotic Surgery: New Robots and Finally Some Real Competition! World J. Urol. 2018, 36, 537–541. [Google Scholar] [CrossRef]
- Bozzini, G.; Gidaro, S.; Taverna, G. Robot-Assisted Laparoscopic Partial Nephrectomy with the ALF-X Robot on Pig Models. Eur. Urol. 2016, 69, 376–377. [Google Scholar] [CrossRef] [PubMed]
- Kaštelan, Ž.; Knežević, N.; Hudolin, T.; Kuliš, T.; Penezić, L.; Goluža, E.; Gidaro, S.; Ćorušić, A. Extraperitoneal Radical Prostatectomy with the Senhance Surgical System Robotic Platform. Croat. Med. J. 2019, 60, 556–557. [Google Scholar] [CrossRef] [Green Version]
- Samalavicius, N.E.; Janusonis, V.; Siaulys, R.; Jasėnas, M.; Deduchovas, O.; Venckus, R.; Ezerskiene, V.; Paskeviciute, R.; Klimaviciute, G. Robotic Surgery Using Senhance® Robotic Platform: Single Center Experience with First 100 Cases. J. Robot. Surg. 2020, 14, 371–376. [Google Scholar] [CrossRef]
- Lim, J.H.; Lee, W.J.; Park, D.W.; Yea, H.J.; Kim, S.H.; Kang, C.M. Robotic Cholecystectomy Using Revo-i Model MSR-5000, the Newly Developed Korean Robotic Surgical System: A Preclinical Study. Surg. Endosc. 2017, 31, 3391–3397. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.K.; Park, D.W.; Rha, K.H. Robot-Assisted Partial Nephrectomy with the REVO-I Robot Platform in Porcine Models. Eur. Urol. 2016, 69, 541–542. [Google Scholar] [CrossRef] [PubMed]
- Chang, K.D.; Abdel Raheem, A.; Choi, Y.D.; Chung, B.H.; Rha, K.H. Retzius-Sparing Robot-Assisted Radical Prostatectomy Using the Revo-i Robotic Surgical System: Surgical Technique and Results of the First Human Trial. BJU Int. 2018, 122, 441–448. [Google Scholar] [CrossRef]
- Thomas, B.C.; Slack, M.; Hussain, M.; Barber, N.; Pradhan, A.; Dinneen, E.; Stewart, G.D. Preclinical Evaluation of the Versius Surgical System, a New Robot-Assisted Surgical Device for Use in Minimal Access Renal and Prostate Surgery. Eur. Urol. Focus. 2021, 7, 444–452. [Google Scholar] [CrossRef] [Green Version]
- Morton, J.; Hardwick, R.H.; Tilney, H.S.; Gudgeon, A.M.; Jah, A.; Stevens, L.; Marecik, S.; Slack, M. Preclinical Evaluation of the Versius Surgical System, a New Robot-Assisted Surgical Device for Use in Minimal Access General and Colorectal Procedures. Surg. Endosc. 2021, 35, 2169–2177. [Google Scholar] [CrossRef]
- Peters, B.S.; Armijo, P.R.; Krause, C.; Choudhury, S.A.; Oleynikov, D. Review of Emerging Surgical Robotic Technology. Surg. Endosc. 2018, 32, 1636–1655. [Google Scholar] [CrossRef]
- Puntambekar, S.P.; Goel, A.; Chandak, S.; Chitale, M.; Hivre, M.; Chahal, H.; Rajesh, K.N.; Manerikar, K. Feasibility of Robotic Radical Hysterectomy (RRH) with a New Robotic System. Experience at Galaxy Care Laparoscopy Institute. J. Robot. Surg. 2021, 15, 451–456. [Google Scholar] [CrossRef] [PubMed]
- Medicaroid’s Hinotori Surgical Robot System Approved in Japan. Available online: http://surgrob.blogspot.com/2020/08/medicaroids-hinotori-surgical-robot.html (accessed on 26 June 2023).
- News-Detail—Avateramedical. Available online: https://www.avatera.eu/en/company/news/detail?tx_news_pi1%5Bnews%5D=19&cHash=0b499a1adf30ef40b4d441aa562e0a7b (accessed on 26 June 2023).
- Available online: https://www.Medicaroid.Com/En/Product/Hinotori/ (accessed on 13 August 2020).
- Available online: http://Surgrob.Blogspot.Com/2020/08/Medicaroids-Hinotori-Surgical-Robot.Html (accessed on 17 October 2020).
- Ragavan, N.; Bharathkumar, S.; Chirravur, P.; Sankaran, S.; Mottrie, A. Evaluation of Hugo RAS System in Major Urologic Surgery: Our Initial Experience. J. Endourol. 2022, 36, 1029–1035. [Google Scholar] [CrossRef]
- Ragavan, N.; Bharathkumar, S.; Chirravur, P.; Sankaran, S. Robot-Assisted Laparoscopic Radical Prostatectomy Utilizing Hugo RAS Platform: Initial Experience. J. Endourol. 2023, 37, 147–150. [Google Scholar] [CrossRef]
- Gallioli, A.; Uleri, A.; Gaya, J.M.; Territo, A.; Aumatell, J.; Verri, P.; Basile, G.; Fontanet, S.; Tedde, A.; Diana, P.; et al. Initial Experience of Robot-Assisted Partial Nephrectomy with HugoTM RAS System: Implications for Surgical Setting. World J. Urol. 2023, 41, 1085–1091. [Google Scholar] [CrossRef] [PubMed]
- Prata, F.; Ragusa, A.; Anceschi, U.; Civitella, A.; Tuzzolo, P.; Tedesco, F.; Cacciatore, L.; Iannuzzi, A.; Callè, P.; Raso, G.; et al. Hugo RAS Robot-Assisted Partial Nephrectomy for High-Nephrometry Score Complex Renal Mass: Case Report and Surgical Technique. Videourology 2023, 37. [Google Scholar] [CrossRef]
- Esperto, F.; Cacciatore, L.; Tedesco, F.; Testa, A.; Callè, P.; Ragusa, A.; Deanesi, N.; Minore, A.; Prata, F.; Brassetti, A.; et al. Impact of Robotic Technologies on Prostate Cancer Patients’ Choice for Radical Treatment. J. Pers. Med. 2023, 13, 794. [Google Scholar] [CrossRef] [PubMed]
Robotic Platform | Number of Robotic Arm Carts | 3D Vision | Haptic Feedback | Special Features |
---|---|---|---|---|
Da Vinci Xi® | 1 | Yes (HD separate screens for each surgeon eye integrated in the console) | No |
|
Da Vinci Sp® | 1 | Yes (HD separate screens for each surgeon eye integrated in the console) | No |
|
Senhance® | Up to 4, independent | Yes (3DHD screen ad polarized goggles) | Yes |
|
Revo-I® | 1 | Yes | No |
|
Versius® | Up to 4, independent | Yes (3D HD view using polarized glasses) | Yes |
|
Avatera® | 1 | Yes | No |
|
Hinotori® | 1 | Yes | No |
|
HugoTM RAS | Up to 4, independent | Yes (specific 3D glasses for head tracking technology) | No |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brassetti, A.; Ragusa, A.; Tedesco, F.; Prata, F.; Cacciatore, L.; Iannuzzi, A.; Bove, A.M.; Anceschi, U.; Proietti, F.; D’Annunzio, S.; et al. Robotic Surgery in Urology: History from PROBOT® to HUGOTM. Sensors 2023, 23, 7104. https://doi.org/10.3390/s23167104
Brassetti A, Ragusa A, Tedesco F, Prata F, Cacciatore L, Iannuzzi A, Bove AM, Anceschi U, Proietti F, D’Annunzio S, et al. Robotic Surgery in Urology: History from PROBOT® to HUGOTM. Sensors. 2023; 23(16):7104. https://doi.org/10.3390/s23167104
Chicago/Turabian StyleBrassetti, Aldo, Alberto Ragusa, Francesco Tedesco, Francesco Prata, Loris Cacciatore, Andrea Iannuzzi, Alfredo Maria Bove, Umberto Anceschi, Flavia Proietti, Simone D’Annunzio, and et al. 2023. "Robotic Surgery in Urology: History from PROBOT® to HUGOTM" Sensors 23, no. 16: 7104. https://doi.org/10.3390/s23167104
APA StyleBrassetti, A., Ragusa, A., Tedesco, F., Prata, F., Cacciatore, L., Iannuzzi, A., Bove, A. M., Anceschi, U., Proietti, F., D’Annunzio, S., Flammia, R. S., Chiacchio, G., Ferriero, M., Guaglianone, S., Mastroianni, R., Misuraca, L., Tuderti, G., & Simone, G. (2023). Robotic Surgery in Urology: History from PROBOT® to HUGOTM. Sensors, 23(16), 7104. https://doi.org/10.3390/s23167104