Enhancing the Functionality of a Grid-Connected Photovoltaic System in a Distant Egyptian Region Using an Optimized Dynamic Voltage Restorer: Application of Artificial Rabbits Optimization
Abstract
:1. Introduction
1.1. Motivations
1.2. Related Work
1.3. Contributions
1.4. Paper Organization
2. Description and Modeling of the Investigated System
2.1. System Description
2.2. PV System Modeling
3. DVR Control System and Applications
3.1. DVR Operation and Control
3.2. Investigated DVR Control Scheme
4. Applied Optimization Methods and Stability Analysis
4.1. GWO Technique
4.2. ARO Technique
- (a).
- Alternate between exploration and exploitation
- (b). Exploration
- (c). Exploitation
4.3. Optimal Controller Design using Different Optimization Methods
4.4. Analysis of the Investigated System’s Stability
5. Simulation Results and Discussions
6. Conclusions
- Developing a DVR controller with ARO for use in µGs to mitigate PQ problems.
- Comparing the addition of FC with a battery and renewable systems at the DC side of the DVR to clarify the best structure and the merits and demerits of these structures.
- Making use of brand-new hybrid optimization methods, where algorithms constructed using artificial intelligence may be crucial in dealing with the codependency of the control objectives and auto-tuning of the weighting variables.
- The developed DVR can be utilized to realize the fault ride-through capability of PV and wind systems.
- Making a comparison among new and old algorithms based on a statistical test such as the Wilcoxon signed-rank test to prove the role of the proposed one.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DVR: Dynamic voltage resistor | THD: Total harmonic distortion |
UP: Urban population | PV: Solar photovoltaic |
Load voltage | Voltage sag |
SCs: Sustainable cities | FCs: Fuel cells |
GDP: Gross domestic product | PCC: Point of common coupling |
L-SHADE: Linear population size reduction | PQ: Power quality |
pu: Per unit | DVSI: Dual voltage source inverter |
µGs: Microgrids | STC: Static transfer switch |
ARO: Artificial Rabbits Optimization | DF: Detour foraging |
WOM: Whale optimization method | PLL: Phase-locked loop |
CB: Circuit breaker | ISE: Integral square error |
CMAES: Covariance matrix adaptation evolution strategy | FFs: Fossil fuels |
References
- Pereira, G.V.; De Azambuja, L.S. Smart Sustainable City Roadmap as a Tool for Addressing Sustainability Challenges and Building Governance Capacity. Sustainability 2022, 14, 239. [Google Scholar] [CrossRef]
- Firouzi, M.; Mobayen, S.; Kartijkolaie, H.S.; Nasiri, M.; Chen, C.C. Protection of sensitive loads in distribution systems using a bsfcl-dvr system. Sensors 2021, 21, 1615. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.T.I.; Anwar, S.; Sarkodie, S.A.; Yaseen, M.R.; Nadeem, A.M. Do natural disasters affect economic growth? The role of human capital, foreign direct investment, and infrastructure dynamics. Heliyon 2023, 9, e12911. [Google Scholar] [CrossRef]
- Bibri, S.E.; Krogstie, J. Generating a vision for smart sustainable cities of the future: A scholarly backcasting approach. Eur. J. Futur. Res. 2019, 7, 5. [Google Scholar] [CrossRef] [Green Version]
- Boudjemai, H.; Ardjoun, S.A.; Chafouk, H.; Denai, M.; Elbarbary, Z.S.; Omar, A.I.; Mahmoud, M.M. Application of a Novel Synergetic Control for Optimal Power Extraction of a Small-Scale Wind Generation System with Variable Loads and Wind Speeds. Symmetry 2023, 15, 369. [Google Scholar] [CrossRef]
- Rawa, M.; Mohamed, H.N.; Al-Turki, Y.; Sedraoui, K.; Ibrahim, A.M. Dynamic voltage restorer under different grid operating conditions for power quality enhancement with the deployment of a PI controller using gorilla troops algorithm. Ain Shams Eng. J. 2023, 14, 102172. [Google Scholar] [CrossRef]
- Elmetwaly, A.H.; Younis, R.A.; Abdelsalam, A.A.; Omar, A.I.; Mahmoud, M.M.; Alsaif, F.; El-Shahat, A.; Saad, M.A. Modeling, Simulation, and Experimental Validation of a Novel MPPT for Hybrid Renewable Sources Integrated with UPQC: An Application of Jellyfish Search Optimizer. Sustainability 2023, 15, 5209. [Google Scholar] [CrossRef]
- Soomro, A.H.; Larik, A.S.; Mahar, M.A.; Sahito, A.A. Simulation-Based Comparison of PID with Sliding Mode Controller for Matrix-Converter-Based Dynamic Voltage Restorer under Variation of System Parameters to Alleviate the Voltage Sag in Distribution System. Sustainability 2022, 14, 14661. [Google Scholar] [CrossRef]
- Mohsen, S.E.A.; Ibrahim, A.M.; Elbarbary, Z.M.S.; Omar, A.I. Unified Power Quality Conditioner Using Recent Optimization Technique: A Case Study in Cairo Airport, Egypt. Sustainability 2023, 15, 3710. [Google Scholar] [CrossRef]
- Mahmoud, M.M. Improved current control loops in wind side converter with the support of wild horse optimizer for enhancing the dynamic performance of PMSG-based wind generation system. Int. J. Model. Simul. 2022. [Google Scholar] [CrossRef]
- Bharatee, A.; Ray, P.K.; Subudhi, B.; Ghosh, A. Power Management Strategies in a Hybrid Energy Storage System Integrated AC/DC Microgrid: A Review. Energies 2022, 15, 7176. [Google Scholar] [CrossRef]
- Kumar, C.; Lakshmanan, M.; Jaisiva, S.; Prabaakaran, K.; Barua, S.; Fayek, H.H. Reactive power control in renewable rich power grids: A literature review. IET Renew. Power Gener. 2023, 17, 1303–1327. [Google Scholar] [CrossRef]
- Mahmoud, M.M.; Atia, B.S.; Esmail, Y.M.; Bajaj, M.; Mbadjoun Wapet, D.E.; Ratib, M.K.; Hossain, B.; AboRas, K.M.; Abdel-Rahim, A.M. Evaluation and Comparison of Different Methods for Improving Fault Ride-Through Capability in Grid-Tied Permanent Magnet Synchronous Wind Generators. Int. Trans. Electr. Energy Syst. 2023, 2023, 7717070. [Google Scholar] [CrossRef]
- Benedetti, D.; Agnelli, J.; Gagliardi, A.; Dini, P.; Saponara, S. Design of an Off-Grid Photovoltaic Carport for a Full Electric Vehicle Recharging. In Proceedings of the 2020 IEEE International Conference on Environment and Electrical Engineering and 2020 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Madrid, Spain, 9–12 June 2020. [Google Scholar] [CrossRef]
- Mishra, S.K.; Bhuyan, S.K.; Rathod, P.V. Performance analysis of a hybrid renewable generation system connected to grid in the presence of DVR. Ain Shams Eng. J. 2022, 13, 101700. [Google Scholar] [CrossRef]
- Ardjoun, S.A.E.M.; Denaï, M.; Chafouk, H. A Robust Control Approach for Frequency Support Capability of Grid-Tie Photovoltaic Systems. J. Sol. Energy Eng. 2023, 145, 021009. [Google Scholar] [CrossRef]
- Mahmoud, M.M.; Esmail, Y.M.; Atia, B.S.; Kamel, O.M.; AboRas, K.M.; Bajaj, M.; Hussain Bukhari, S.S.; Mbadjoun Wapet, D.E. Voltage Quality Enhancement of Low-Voltage Smart Distribution System Using Robust and Optimized DVR Controllers: Application of the Harris Hawks Algorithm. Int. Trans. Electr. Energy Syst. 2022, 2022, 4242996. [Google Scholar] [CrossRef]
- Ewais, A.M.; Elnoby, A.M.; Mohamed, T.H.; Mahmoud, M.M.; Qudaih, Y.; Hassan, A.M. Adaptive frequency control in smart microgrid using controlled loads supported by real-time implementation. PLoS ONE 2023, 18, e0283561. [Google Scholar] [CrossRef] [PubMed]
- Prasad, D.; Dhanamjayulu, C. Solar PV integrated dynamic voltage restorer for enhancing the power quality under distorted grid conditions. Electr. Power Syst. Res. 2022, 213, 108746. [Google Scholar] [CrossRef]
- Kamel, O.M.; Diab, A.A.Z.; Mahmoud, M.M.; Al-Sumaiti, A.S.; Sultan, H.M. Performance Enhancement of an Islanded Microgrid with the Support of Electrical Vehicle and STATCOM Systems. Energies 2023, 16, 1577. [Google Scholar] [CrossRef]
- Setty, S.N.; Shashikala, M.S.D.; Veeramanju, K.T. Hybrid control mechanism-based DVR for mitigation of voltage sag and swell in solar PV-based IEEE 33 bus system. Int. J. Power Electron. Drive Syst. 2023, 14, 209–221. [Google Scholar] [CrossRef]
- Sarker, K.; Chatterjee, D.; Goswami, S.K. Grid integration of photovoltaic and wind based hybrid distributed generation system with low harmonic injection and power quality improvement using biogeography-based optimization. Renew. Energy Focus 2017, 22–23, 38–56. [Google Scholar] [CrossRef]
- Arya, S.R.; Mistry, K.D.; Kumar, P. Least Mean Mixed Norm Square/Fourth Adaptive Algorithm with Optimized FOPID Gains for Voltage Power Quality Mitigation. IEEE J. Emerg. Sel. Top. Power Electron. 2023, 11, 2632–2640. [Google Scholar] [CrossRef]
- Reddy, S.G.; Ganapathy, S.; Manikandan, M. Power quality improvement in distribution system based on dynamic voltage restorer using PI tuned fuzzy logic controller. Electr. Eng. Electromechanics 2022, 2022, 44–50. [Google Scholar] [CrossRef]
- Mortazavi, S.M.; Beiranvand, R. A Direct AC-AC Switched-Capacitor Converter with Input-Series Output-Parallel and In-Phase/Out-of-Phase Capabilities. IEEE Trans. Power Electron. 2023. early access. [Google Scholar] [CrossRef]
- Salem, W.A.A.; Ibrahim, W.G.; Abdelsadek, A.M.; Nafeh, A.A. Grid connected photovoltaic system impression on power quality of low voltage distribution system. Cogent Eng. 2022, 9, 2044576. [Google Scholar] [CrossRef]
- Geleta, D.K.; Manshahia, M.S. A Hybrid of Grey Wolf Optimization and Genetic Algorithm for Optimization of Hybrid Wind and Solar Renewable Energy System. J. Oper. Res. Soc. China 2022, 10, 749–762. [Google Scholar] [CrossRef]
- Gupta, A. Power quality evaluation of photovoltaic grid interfaced cascaded H-bridge nine-level multilevel inverter systems using D-STATCOM and UPQC. Energy 2022, 238, 121707. [Google Scholar] [CrossRef]
- Bouhouta, A.; Moulahoum, S.; Kabache, N. A novel combined Fuzzy-M5P model tree control applied to grid-tied PV system with power quality consideration. Energy Sources Part A Recover. Util. Environ. Eff. 2022, 44, 3125–3147. [Google Scholar] [CrossRef]
- Rajesh, P.; Shajin, F.H.; Rajani, B.; Sharma, D. An optimal hybrid control scheme to achieve power quality enhancement in micro grid connected system. Int. J. Numer. Model. Electron. Netw. Devices Fields 2022, 35, e3019. [Google Scholar] [CrossRef]
- Lenka, S.; Sinha, P.; Jena, C. A Review on Power Quality İmprovement of Grid Connected PV with Lithium-Ion and Super Capacitor Based Hybrid Energy Storage System Using a New Control Strategy. In Renewable Energy Optimization, Planning and Control; Springer: Singapore, 2022; pp. 1–10. [Google Scholar] [CrossRef]
- Jasim, A.; Mahmood, D.; Ahmed, O. Power Quality Examination for (250KW) PV Grid-tied Connected at Various Irradiance Levels. Eng. Technol. J. 2022, 40, 110–119. [Google Scholar] [CrossRef]
- Yarlagadda, V.; Lakshminarayana, G.; Ambati, G.; Karthika, G.A. FFT Analysis and Power Quality Improvement in Grid Connected Solar Power Plant with MPPT Algorithm. In Innovations in Electrical and Electronic Engineering; Lecture Notes in Electrical Engineering; Springer: Singapore, 2022; Volume 893 LNEE, pp. 30–43. [Google Scholar] [CrossRef]
- Mahmoud, M.M.; Atia, B.S.; Abdelaziz, A.Y.; Aldin, N.A.N. Dynamic Performance Assessment of PMSG and DFIG-Based WECS with the Support of Manta Ray Foraging Optimizer Considering MPPT, Pitch Control, and FRT Capability Issues. Processe 2022, 12, 2723. [Google Scholar] [CrossRef]
- Mahmoud, M.M.; Atia, B.S.; Esmail, Y.M.; Ardjoun, S.A.E.M.; Anwer, N.; Omar, A.I.; Alsaif, F.; Alsulamy, S.; Mohamed, S.A. Application of Whale Optimization Algorithm Based FOPI Controllers for STATCOM and UPQC to Mitigate Harmonics and Voltage Instability in Modern Distribution Power Grids. Axioms 2023, 12, 420. [Google Scholar] [CrossRef]
- Selvaraj, M.; Kannan, E. Enhancing power in a grid-connected system using unified power quality conditioner with black widow optimization-based floating photovoltaic system. Int. J. Energy Res. 2022, 46, 3095–3114. [Google Scholar] [CrossRef]
- Mahmoud, M.M.; Salama, H.S.; Bajaj, M.; Aly, M.M.; Vokony, I.; Bukhari, S.S.; Wapet, D.E.; Abdel-Rahim, A.M. Integration of Wind Systems with SVC and STATCOM during Various Events to Achieve FRT Capability and Voltage Stability: Towards the Reliability of Modern Power Systems. Int. J. Energy Res. 2023, 2023, 8738460. [Google Scholar] [CrossRef]
- Badoni, M.; Singh, A.; Singh, A.K.; Saxena, H.; Kumar, R. Grid tied solar PV system with power quality enhancement using adaptive generalized maximum Versoria criterion. CSEE J. Power Energy Syst. 2021, 9, 722–732. [Google Scholar] [CrossRef]
- Riad, A.J.; Hasanien, H.M.; Turky, R.A.; Yakout, A.H. Identifying the PEM Fuel Cell Parameters Using Artificial Rabbits Optimization Algorithm. Sustainability 2023, 15, 4625. [Google Scholar] [CrossRef]
- Molla, E.M.; Kuo, C.C. Voltage Sag Enhancement of Grid Connected Hybrid PV-Wind Power System Using Battery and SMES Based Dynamic Voltage Restorer. IEEE Access 2020, 8, 130003–130013. [Google Scholar] [CrossRef]
- Trabelsi, M.; Komurcugil, H.; Bayhan, S.; Abu-Rub, H. An Effective Transformerless PUC7-Based Dynamic Voltage Restorer Using Model Predictive Control. Sustainability 2023, 15, 3041. [Google Scholar] [CrossRef]
- Tu, C.; Guo, Q.; Jiang, F.; Wang, H.; Shuai, Z. A Comprehensive Study to Mitigate Voltage Sags and Phase Jumps Using a Dynamic Voltage Restorer. IEEE J. Emerg. Sel. Top. Power Electron. 2020, 8, 1490–1502. [Google Scholar] [CrossRef]
- Yáñez-Campos, S.C.; Cerda-Villafaña, G.; Lozano-García, J.M. A two-grid interline dynamic voltage restorer based on two three-phase input matrix converters. Appl. Sci. 2021, 11, 561. [Google Scholar] [CrossRef]
- Zheng, Z.; Xiao, X.; Huang, C.; Li, C. Enhancing transient voltage quality in a distribution power system with SMES-Based DVR and SFCL. IEEE Trans. Appl. Supercond. 2019, 29, 5400405. [Google Scholar] [CrossRef]
- Jiang, F.; Tu, C.; Guo, Q.; Shuai, Z.; He, X.; He, J. Dual-functional dynamic voltage restorer to limit fault current. IEEE Trans. Ind. Electron. 2019, 66, 5300–5309. [Google Scholar] [CrossRef]
- Moreno, F.B.; Palacios, J.E.; Posada, J.; Lopez, J.A. Implementation and evaluation of a new DVR topology with AC link for series compensation. Electr. Power Syst. Res. 2020, 181, 106184. [Google Scholar] [CrossRef]
- Mosaad, M.I.; El-Raouf, M.O.A.; Al-Ahmar, M.A.; Bendary, F.M. Optimal PI controller of DVR to enhance the performance of hybrid power system feeding a remote area in Egypt. Sustain. Cities Soc. 2019, 47, 101469. [Google Scholar] [CrossRef]
- Wang, L.; Cao, Q.; Zhang, Z.; Mirjalili, S.; Zhao, W. Artificial rabbits optimization: A new bio-inspired meta-heuristic algorithm for solving engineering optimization problems. Eng. Appl. Artif. Intell. 2022, 114, 105082. [Google Scholar] [CrossRef]
- Rao, C.R.; Balamurugan, R.; Alla, R.K.R. Artificial Rabbits Optimization Based Optimal Allocation of Solar Photovoltaic Systems and Passive Power Filters in Radial Distribution Network for Power Quality Improvement. Int. J. Intell. Eng. Syst. 2023, 16, 100–109. [Google Scholar] [CrossRef]
- Xiao, D. Frequency conversion control of photovoltaic grid-connected inverter based on LCL filtering. Int. J. Low-Carbon Technol. 2021, 16, 1341–1347. [Google Scholar] [CrossRef]
- Venkateswari, R.; Rajasekar, N. Review on parameter estimation techniques of solar photovoltaic systems. Int. Trans. Electr. Energy Syst. 2021, 31, e13113. [Google Scholar] [CrossRef]
- Saxena, N.K.; Gupta, A.R.; Mekhilef, S.; Gao, W.D.; Kumar, A.; Gupta, V.; Netto, R.S.; Kanungo, A. Firefly Algorithm based LCL filtered grid-tied STATCOM design for reactive power compensation in SCIG based Micro-grid. Energy Rep. 2022, 8, 723–740. [Google Scholar] [CrossRef]
- Nam, N.N.; Nguyen, N.D.; Yoon, C.; Choi, M.; Lee, Y.I. Voltage Sensorless Model Predictive Control for a Grid-Connected Inverter with LCL Filter. IEEE Trans. Ind. Electron. 2022, 69, 740–751. [Google Scholar] [CrossRef]
- Mohamadian, S.; Pazoki, M.; Hamidi, R.J. LCL Filter Design for Single-Phase Grid-Connected PV Inverters with Double-frequency Unipolar PWM Switching. In Proceedings of the IEEE Power and Energy Society General Meeting, Washington, DC, USA, 26–29 July 2021; Volume 2021. [Google Scholar] [CrossRef]
- Ibrahim, N.F.; Dessouky, S.S.; Attia, H.E.M.; Alaboudy, A.H.K. Protection of Wind Turbine Generators Using Microcontroller-Based Applications; Green Energy and Technology; Springer: Cham, Switzerland, 2022; pp. 1–117. [Google Scholar]
- Negi, G.; Kumar, A.; Pant, S.; Ram, M. GWO: A review and applications. Int. J. Syst. Assur. Eng. Manag. 2021, 12, 1–8. [Google Scholar] [CrossRef]
- DaneshvarDehnavi, S.; Negri, C.; Bayne, S.; Giesselmann, M. Dynamic Voltage Restorer (DVR) with a novel robust control strategy. ISA Trans. 2022, 121, 316–326. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Hu, X.; Zhu, Z.; Ma, J. What is the most suitable Lyapunov function? Chaos Solitons Fractals 2021, 150, 111154. [Google Scholar] [CrossRef]
- Fernandez-Comesana, P.; Freijedo, F.D.; Doval-Gandoy, J.; Lopez, O.; Yepes, A.G.; Malvar, J. Mitigation of voltage sags, imbalances and harmonics in sensitive industrial loads by means of a series power line conditioner. Electr. Power Syst. Res. 2012, 84, 20–30. [Google Scholar] [CrossRef]
- Deshpande, V.S.; Phadke, S.B. Control of uncertain nonlinear systems using an uncertainty and disturbance estimator. J. Dyn. Syst. Meas. Control. Trans. ASME 2012, 134, 024501. [Google Scholar] [CrossRef]
- Wang, Y.; Ren, B.; Zhong, Q.C. Robust Power Flow Control of Grid-Connected Inverters. IEEE Trans. Ind. Electron. 2016, 63, 6887–6897. [Google Scholar] [CrossRef]
Refs. | Publisher | Year | Applied Controller | System Simplicity | THD Analysis | Stability Analysis (SA) | Studied Events | Program | Remarks |
---|---|---|---|---|---|---|---|---|---|
[40] | IEEE | 2020 | PI | ✗ | ✗ | ✗ | Stable and unstable | PSCAD/EMTDC |
|
[41] | MDPI | 2023 | FCS-MPC | ✗ | ✓ | ✗ | Voltage dips and swells | Matlab/Simulink and dSpace 1103 controller board |
|
[42] | IEEE | 2020 | PI | ✗ | ✗ | ✗ | and phase jumps (PJs) | MATLAB/Simulink and HIL |
|
[43] | MDPI | 2021 | PI | ✗ | ✗ | ✗ | MATLAB/Simulink |
| |
[44] | IEEE | 2019 | Hysteresis | ✗ | ✗ | ✗ | Wide range of | MATLAB/Simulink |
|
[45] | IEEE | 2019 | PI | ✓ | ✓ | ✗ | Balanced and unbalanced | PSCAD/EMTDC |
|
[46] | Elsevier | 2020 | Fuzzy type 1, 2, and PI | ✗ | ✗ | ✗ | and | MATLAB/Simulink and HIL |
|
[47] | Elsevier | 2019 | PI | ✓ | ✗ | ✗ | , and unbalanced V | Homer software |
|
Current study | ARO-PI | ✓ | ✓ | ✓ | %THD performance analysis, relay response during 3-phase faults, 25% voltage sag, and 3-phase fault. | MATLAB/Simulink |
|
Parameters | Value and Unit |
---|---|
PV array’s peak power level voltage | 273.5 V |
Open circuit voltage of one PV module | 64.2 V |
Networking voltage | 11 kV |
Networking-based frequency | 314 rad\s |
Inverter carrier frequency | 2 kHz |
Sample period | 1 µs |
The boost’s inductor | 5 µH |
DC-link reference voltage | 250 V |
DC-link measured voltage | 250 V |
DC-connection capacitor | 24 mF |
Algorithms | d-Axis | q-Axis | ||
---|---|---|---|---|
GWO | 8.5420 | 199.0017 | 77.3220 | 190.6024 |
L-SHADE | 1.6952 | 0.2057 | 9.0366 | 3.2531 |
CMAES | 1.7304 | 0.2062 | 9.0374 | 3.4842 |
WOA | 1.6675 | 0.2056 | 9.0374 | 3.1668 |
PSO | 1.7248 | 0.2053 | 9.0454 | 3.3255 |
ARO (proposed) | 1.8751 | 2.9975 | 2.9791 | 0.7297 |
Parameters | Ref. Values | Operating Conditions under the Investigated Fault | ||||||
---|---|---|---|---|---|---|---|---|
Without DVR | DVR-Based PI-GWO | DVR-Based PI-L-SHADE | DVR-Based PI-CMAES | DVR-Based PI-WOA | DVR-Based PI-PSO | DVR with PI-ARO (Proposed) | ||
PV voltage | 275 V | 210.2 V | 273.3 V | 273.8 V | 272.5 V | 273.9 V | 273.5 V | 274.2 V |
PV current | 362 A | 385 A | 366 A | 364.2 A | 364.8 A | 365.07 A | 365 A | 365.12 A |
PV power | 100 kW | 83.4 kW | 99.87 kW | 99.87 kW | 99.83 kW | 99.89 kW | 99.83 kW | 99.92 kW |
Load voltage | 380 V | Zero V | 375.12 V | 375.82 V | 375.92 V | 375.32 V | 375.47 V | 376.4 V |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ibrahim, N.F.; Alkuhayli, A.; Beroual, A.; Khaled, U.; Mahmoud, M.M. Enhancing the Functionality of a Grid-Connected Photovoltaic System in a Distant Egyptian Region Using an Optimized Dynamic Voltage Restorer: Application of Artificial Rabbits Optimization. Sensors 2023, 23, 7146. https://doi.org/10.3390/s23167146
Ibrahim NF, Alkuhayli A, Beroual A, Khaled U, Mahmoud MM. Enhancing the Functionality of a Grid-Connected Photovoltaic System in a Distant Egyptian Region Using an Optimized Dynamic Voltage Restorer: Application of Artificial Rabbits Optimization. Sensors. 2023; 23(16):7146. https://doi.org/10.3390/s23167146
Chicago/Turabian StyleIbrahim, Nagwa F., Abdulaziz Alkuhayli, Abderrahmane Beroual, Usama Khaled, and Mohamed Metwally Mahmoud. 2023. "Enhancing the Functionality of a Grid-Connected Photovoltaic System in a Distant Egyptian Region Using an Optimized Dynamic Voltage Restorer: Application of Artificial Rabbits Optimization" Sensors 23, no. 16: 7146. https://doi.org/10.3390/s23167146
APA StyleIbrahim, N. F., Alkuhayli, A., Beroual, A., Khaled, U., & Mahmoud, M. M. (2023). Enhancing the Functionality of a Grid-Connected Photovoltaic System in a Distant Egyptian Region Using an Optimized Dynamic Voltage Restorer: Application of Artificial Rabbits Optimization. Sensors, 23(16), 7146. https://doi.org/10.3390/s23167146