Fourier Ptychographic Microscopic Reconstruction Method Based on Residual Hybrid Attention Network
Abstract
:1. Introduction
2. Proposed Methods
2.1. Network Architecture
2.2. Hybrid Attention Group
2.3. Residual Hybrid Attention Block
2.4. Spatial Attention
2.5. Channel Attention
3. Experimental Results
3.1. Data Setting
3.2. Optimization Algorithm Comparison Experiment
3.3. Ablation Experiment
3.4. Comparison of Reconstruction Performance under Noise Conditions
3.5. Reconstruction Time Comparison on the Real Data Experiment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zheng, G.; Horstmeyer, R.; Yang, C. Wide-field, high-resolution Fourier ptychographic microscopy. Nat. Photonics 2013, 7, 739–745. [Google Scholar] [CrossRef]
- Sun, J. Research on Wide-Field on High-Resolution Quantitative Phase Microscopy Methods based on Fourier Ptychography; Nanjing University of Science & Technology: Nanjing, China, 2019. [Google Scholar]
- Ou, X.; Horstmeyer, R.; Yang, C.; Zheng, G. Quantitative phase imaging via Fourier ptychographic microscopy. Opt. Lett. 2013, 38, 4845–4848. [Google Scholar] [CrossRef] [PubMed]
- Shu, Y.; Sun, J.; Lyu, J. Adaptive optical quantitative phase imaging based on annular illumination Fourier ptychographic microscopy. PhotoniX 2022, 3, 24. [Google Scholar] [CrossRef]
- Kong, X.; Xiao, K.; Wang, K.; Li, W.; Sun, J.; Wang, Z. Phase microscopy using band-limited image and its Fourier transform constraints. Opt. Lett. 2023, 48, 3251–3254. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Sun, J.; Shu, Y.; Zhang, Z.; Zheng, G.; Chen, W.; Zhang, J.; Gui, K.; Wang, K.; Chen, Q. Efficient synthetic aperture for phaseless Fourier ptychographic microscopy with hybrid coherent and incoherent illumination. Laser Photonics Rev. 2023, 17, 2200201. [Google Scholar] [CrossRef]
- Zhang, J.; Li, J.; Sun, H.; Jiang, S.; Zhang, Y.; Chen, Y.; Zhang, J.; Xu, T. Edge-Enabled Anti-Noise Telepathology Imaging Reconstruction Technology in Harsh Environments. IEEEN 2022, 36, 92–99. [Google Scholar] [CrossRef]
- Gao, Y.; Chen, J.; Wang, A.; Pan, A.; Ma, C.; Yao, B. High-throughput fast full-color digital pathology based on Fourier ptychographic microscopy via color transfer. Sci. China Phys. Mech. Astron. 2021, 64, 114211. [Google Scholar] [CrossRef]
- Tian, L.; Li, X.; Ramchandran, K.; Waller, L. Multiplexed coded illumination for Fourier Ptychography with an LED array microscope. Biomed. Opt. Express 2014, 5, 2376–2389. [Google Scholar] [CrossRef]
- Ziqiang, L.; Xiao, M.; Jinxin, L.; Jiaqi, Y.; Shiping, L.; Jingang, Z. Fourier ptychographic microscopy based on rotating arc-shaped array of LEDs. Laser Optoelectron. Prog 2018, 55, 071102. [Google Scholar] [CrossRef]
- Tong, L.; Jufeng, Z.; Haifeng, M.; Guangmang, C.; Jinxing, H. An efficient Fourier ptychographic microscopy imaging method based on angle illumination optimization. Laser Optoelectron. Prog 2020, 57, 081106. [Google Scholar] [CrossRef]
- Jiang, S.; Guo, K.; Liao, J.; Zheng, G. Solving Fourier ptychographic imaging problems via neural network modeling and TensorFlow. Biomed. Opt. Express 2018, 9, 3306–3319. [Google Scholar] [CrossRef]
- Wang, F.; Bian, Y.; Wang, H.; Lyu, M.; Pedrini, G.; Osten, W.; Barbastathis, G.; Situ, G. Phase imaging with an untrained neural network. Light: Sci. Appl. 2020, 9, 77. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Chen, Q.; Zhang, Y.; Zuo, C. Efficient positional misalignment correction method for Fourier ptychographic microscopy. Biomed. Opt. Express 2016, 7, 1336–1350. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, T.; Zhang, Y.; Chen, Y.; Wang, S.; Wang, X. Multiplex Fourier ptychographic reconstruction with model-based neural network for Internet of Things. Ad Hoc Networks 2021, 111, 102350. [Google Scholar] [CrossRef]
- Lim, B.; Son, S.; Kim, H.; Nah, S.; Mu Lee, K. Enhanced deep residual networks for single image super-resolution. In Proceedings of the 2017 IEEE conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Li, J.; Fang, F.; Mei, K.; Zhang, G. Multi-scale residual network for image super-resolution. In Proceedings of the European conference on computer vision (ECCV), Munich, Germany, 8–14 September 2018. [Google Scholar]
- WANG, X.; WANG, C.-r.; WANG, C.; YUAN, Y. Dual-channel Multi-perception Convolutional Network for Image Super-Resolution. J. Northeast. Univ. Nat. Sci. 2020, 41, 1564. [Google Scholar]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the 2018 IEEE conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018. [Google Scholar]
- Zhang, Y.; Li, K.; Li, K.; Wang, L.; Zhong, B.; Fu, Y. Image super-resolution using very deep residual channel attention networks. In Proceedings of the European conference on computer vision (ECCV), Munich, Germany, 8–14 September 2018. [Google Scholar]
- Zhang, Y.; Li, K.; Li, K.; Zhong, B.; Fu, Y. Residual non-local attention networks for image restoration. arXiv 2019, arXiv:1903.10082. [Google Scholar]
- Dai, T.; Cai, J.; Zhang, Y.; Xia, S.-T.; Zhang, L. Second-order attention network for single image super-resolution. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019. [Google Scholar]
- Thanh, N.; Xue, Y.; Li, Y.; Tian, L.; Nehmetallah, G. Deep learning approach to Fourier ptychographic microscopy. Opt. Express 2018, 26, 26470–26484. [Google Scholar]
- Chen, Y.; Wu, X.; Luo, Z. Fourier Ptychographic microscopy Based on Deep Learning. Laser Optoelectron. Prog. 2020, 57, 221106. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, T.; Zhang, J.; Chen, Y.; Li, J. Cross-level channel attention network for Fourier ptychographic microscopy reconstruction. IEEE Photonics J. 2021, 14, 1–8. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, T.; Shen, Z.; Qiao, Y.; Zhang, Y. Fourier ptychographic microscopy reconstruction with multiscale deep residual network. Opt. Express 2019, 27, 8612–8625. [Google Scholar] [CrossRef]
- Sun, M.; Shao, L.; Zhu, Y.; Zhang, Y.; Wang, S.; Wang, Y.; Diao, Z.; Li, D.; Mu, Q.; Xuan, L. Double-flow convolutional neural network for rapid large field of view Fourier ptychographic reconstruction. J. Biophotonics 2021, 14, e202000444. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Xu, T.; Li, J.; Zhang, Y.; Jiang, S.; Chen, Y.; Zhang, J. Physics-based learning with channel attention for Fourier ptychographic microscopy. J. Biophotonics 2022, 15, e202100296. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Piao, Y.; Yu, J.; Li, J.; Sun, H.; Jin, Y.; Liu, L.; Xu, T. Deep Multi-Feature Transfer Network for Fourier Ptychographic Microscopy Imaging Reconstruction. Sensors 2022, 22, 1237. [Google Scholar] [CrossRef]
- Kim, J.; Lee, J.K.; Lee, K.M. Accurate Image Super-Resolution Using Very Deep Convolutional Networks. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Muqeet, A.M.; Iqbal, M.T.B.; Bae, S.-H. Hybrid residual attention network for single image super resolution. arXiv 2019, arXiv:1907.05514. [Google Scholar] [CrossRef]
- Zuo, C.; Sun, J.; Chen, Q. Adaptive step-size strategy for noise-robust Fourier ptychographic microscopy. Opt. Express 2016, 24, 20724–20744. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Y.; Jiang, S.; Dixit, K.; Song, P.; Zhang, X.; Ji, X.; Li, X. Neural network model assisted Fourier ptychography with Zernike aberration recovery and total variation constraint. J. Biomed. Opt. 2021, 26, 036502. [Google Scholar] [CrossRef]
RHAN | Adagrad PSNR (dB)/SSIM | AdamW PSNR (dB)/SSIM |
---|---|---|
Intensity | 35.68/0.9371 | 36.87/0.9471 |
Phase | 20.97/0.9265 | 25.18/0.9682 |
RCN PSNR (dB)/SSIM | RSN PSNR (dB)/SSIM | RHAN PSNR (dB)/SSIM | |
---|---|---|---|
Intensity | 36.07/0.9416 | 36.16/0.9398 | 36.87/0.9471 |
Phase | 17.14/0.9285 | 23.97/0.9429 | 25.18/0.9682 |
AS PSNR (dB) /SSIM | GS PSNR (dB) /SSIM | Jiang PSNR (dB) /SSIM | INNM PSNR (dB) /SSIM | DMFTN PSNR (dB) /SSIM | RHAN PSNR (dB) /SSIM | ||
---|---|---|---|---|---|---|---|
One | Intensity | 24.77 /0.5192 | 25.19 /0.5235 | 16.36 /0.5881 | 15.30 /0.6200 | 21.36 /0.8641 | 36.87 /0.9471 |
Phase | 18.27 /0.4579 | 18.46 /0.4415 | 23.62 /0.7381 | 24.67 /0.7165 | 28.07 /0.9578 | 25.18 /0.9682 | |
Two | Intensity | 20.46 /0.6267 | 17.85 /0.6291 | 20.19 /0.8460 | 11.67 /0.5354 | 29.75 /0.9467 | 39.80 /0.9689 |
Phase | 11.36 /0.4993 | 13.29 /0.5363 | 23.62 /0.8744 | 23.91 /0.8684 | 22.87 /0.9522 | 28.92 /0.9316 | |
Three | Intensity | 21.23 /0.8298 | 22.40 /0.8418 | 19.99 /0.8735 | 18.28 /0.7993 | 31.31 /0.9316 | 35.04 /0.9592 |
Phase | 13.84 /0.6251 | 13.84 /0.6358 | 14.09 /0.8076 | 15.01 /0.8237 | 24.49 /0.8984 | 27.35 /0.9441 |
AS PSNR (dB) /SSIM | GS PSNR (dB) /SSIM | Jiang PSNR (dB) /SSIM | INNM PSNR (dB) /SSIM | DMFTN PSNR (dB) /SSIM | RHAN PSNR (dB) /SSIM | ||
---|---|---|---|---|---|---|---|
1 × 10−4 | Intensity | 25.91 /0.6816 | 28.98 /0.6952 | 23.10 /0.7464 | 17.18 /0.7190 | 24.56 /0.9047 | 39.66 /0.9694 |
Phase | 21.72 /0.5360 | 20.35 /0.5346 | 23.49 /0.7797 | 26.17 /0.7667 | 27.35 /0.9692 | 23.97 /0.9709 | |
3 × 10−4 | Intensity | 24.77 /0.5192 | 25.19 /0.5235 | 16.36 /0.5881 | 15.30 /0.6200 | 21.36 /0.8641 | 36.87 /0.9471 |
Phase | 18.27 /0.4579 | 18.46 /0.4415 | 23.62 /0.7381 | 24.67 /0.7165 | 28.07 /0.9578 | 25.18 /0.9682 |
Reconstruction Methods | Number of Iterations | Reconstruction Time |
---|---|---|
AS | 50 | 4.655 s |
GS | 50 | 4.132 s |
Jiang | 50 | 50 s |
INNM | 50 | 500 s |
DMFTN | 0 | 0.092 s |
RHAN | 0 | 0.075 s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Hao, J.; Wang, X.; Wang, Y.; Wang, Y.; Wang, H.; Wang, X. Fourier Ptychographic Microscopic Reconstruction Method Based on Residual Hybrid Attention Network. Sensors 2023, 23, 7301. https://doi.org/10.3390/s23167301
Li J, Hao J, Wang X, Wang Y, Wang Y, Wang H, Wang X. Fourier Ptychographic Microscopic Reconstruction Method Based on Residual Hybrid Attention Network. Sensors. 2023; 23(16):7301. https://doi.org/10.3390/s23167301
Chicago/Turabian StyleLi, Jie, Jingzi Hao, Xiaoli Wang, Yongshan Wang, Yan Wang, Hao Wang, and Xinbo Wang. 2023. "Fourier Ptychographic Microscopic Reconstruction Method Based on Residual Hybrid Attention Network" Sensors 23, no. 16: 7301. https://doi.org/10.3390/s23167301
APA StyleLi, J., Hao, J., Wang, X., Wang, Y., Wang, Y., Wang, H., & Wang, X. (2023). Fourier Ptychographic Microscopic Reconstruction Method Based on Residual Hybrid Attention Network. Sensors, 23(16), 7301. https://doi.org/10.3390/s23167301