A Two-Turn Shielded-Loop Magnetic Near-Field PCB Probe for Frequencies up to 3 GHz
Abstract
:1. Introduction
- sensitivity,
- frequency range,
- electric field suppression ratio,
- spatial resolution.
2. Materials and Methods
2.1. Operating Principle
2.2. Benchmark Probe
2.3. Two-Turn Probe
3. FEM Simulations
4. Results and Discussion
4.1. Experimental Setup
4.2. Sensitivity Measurements
4.3. Edge Plating Influence on Electric Field Suppression
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bang, J.; Park, Y.; Jung, K.; Choi, J. A Compact Low-Cost Wideband Shielded-Loop Probe with Enhanced Performance for Magnetic Near-Field Measurements. IEEE Trans. Electromagn. Compat. 2020, 62, 1921–1928. [Google Scholar] [CrossRef]
- Martinez, P.A.; Navarro, E.A.; Victoria, J.; Suarez, A.; Torres, J.; Alcarria, A.; Perez, J.; Amaro, A.; Menendez, A.; Soret, J. Design and study of a wide-band printed circuit board near-field probe. Electronics 2021, 10, 2201. [Google Scholar] [CrossRef]
- Chou, Y.T.; Lu, H.C. Magnetic near-field probes with high-pass and notch filters for electric field suppression. IEEE Trans. Microw. Theory Tech. 2013, 61, 2460–2470. [Google Scholar] [CrossRef]
- Rezaei, M.; Baharian, M.; Mohammadpour-Aghdam, K. An Analysis of the Magnetic Field Antenna. IEEE Trans. Antennas Propag. 2021, 69, 3654–3663. [Google Scholar] [CrossRef]
- Carobbi, C.F.; Millanta, L.M. Analysis of the Common-Mode Rejection in the Measurement and Generation of Magnetic Fields Using Loop Probes. IEEE Trans. Instrum. Meas. 2004, 53, 514–523. [Google Scholar] [CrossRef]
- Filipašić, M.; Dadić, M. A Shielded PCB Probe Optimized for Magnetic Near Field Measurements below 3 GHz. In Proceedings of the 2023 4th International Conference on Smart Grid Metrology (SMAGRIMET), Cavtat, Croatia, 24–28 April 2023; pp. 1–4. [Google Scholar] [CrossRef]
- Yang, R.; Wei, X.C.; Shu, Y.F.; Yang, Y.B. A High-Frequency and High Spatial Resolution Probe Design for EMI Prediction. IEEE Trans. Instrum. Meas. 2019, 68, 3012–3019. [Google Scholar] [CrossRef]
- Chuang, H.H.; Li, G.H.; Song, E.; Park, H.H.; Jang, H.T.; Park, H.B.; Zhang, Y.J.; Pommerenke, D.; Wu, T.L.; Fan, J. A magnetic-field resonant probe with enhanced sensitivity for RF interference applications. IEEE Trans. Electromagn. Compat. 2013, 55, 991–998. [Google Scholar] [CrossRef]
- Lu, Y.; Wen, L.; Gu, C.; Wu, L.S.; Mao, J.F. A High-Sensitivity Magnetic-Field Resonant Probe Based on Embedded Stripline Structure. In Proceedings of the 2022 IEEE Topical Conference on Wireless Sensors and Sensor Networks (WiSNeT), Las Vegas, NV, USA, 16–19 January 2022; pp. 1–4. [Google Scholar] [CrossRef]
- Shinde, S.; Marathe, S.; Li, G.; Zoughi, R.; Pommerenke, D. A Frequency Tunable High Sensitivity H-Field Probe Using Varactor Diodes and Parasitic Inductance. IEEE Trans. Electromagn. Compat. 2016, 58, 331–334. [Google Scholar] [CrossRef]
- Tsutagaya, H.; Kazama, S. A High Sensitivity Electromagnetic Field Sensor Using Resonance. In Proceedings of the 2008 IEEE International Symposium on Electromagnetic Compatibility, Detroit, MI, USA, 18–22 August 2008; pp. 1–6. [Google Scholar] [CrossRef]
- Abdulhameed, A.A.; Kubík, Z. Switchable Broadband-to-Tunable Narrowband Magnetic Probe for Near-Field Measurements. Sensors 2022, 22, 7601. [Google Scholar] [CrossRef]
- Shao, W.; Li, J.; Huang, Q.; Shao, E.; Liu, J.; He, X.; Yi, Z.; Fang, W.; Zhou, C. A two-turn loop active magnetic field probe design for high sensitivity near-field measurement. Iet Sci. Meas. Technol. 2022, 16, 40–49. [Google Scholar] [CrossRef]
- Yan, Z.; Wang, J.; Zhang, W.; Wang, Y.; Fan, J. A Simple Miniature Ultrawideband Magnetic Field Probe Design for Magnetic Near-Field Measurements. IEEE Trans. Antennas Propag. 2016, 64, 5459–5465. [Google Scholar] [CrossRef]
- Whiteside, H.; King, R. The loop antenna as a probe. IEEE Trans. Antennas Propag. 1964, 12, 291–297. [Google Scholar] [CrossRef]
- Broydé, F.; Clavelier, E. Contribution to the Theory of Planar Wire Loop Antennas Used for Reception. IEEE Trans. Antennas Propag. 2020, 68, 1953–1961. [Google Scholar] [CrossRef]
- Boyer, A.; Nolhier, N.; Caignet, F.; Dhia, S.B. Closed-Form Expressions of Electric and Magnetic Near-Fields for the Calibration of Near-Field Probes. IEEE Trans. Instrum. Meas. 2021, 70, 1–15. [Google Scholar] [CrossRef]
- Zhao, Y.; Baharuddin, M.H.; Smartt, C.; Zhao, X.; Yan, L.; Liu, C.; Thomas, D.W.P. Measurement of Near-Field Electromagnetic Emissions and Characterization Based on Equivalent Dipole Model in Time-Domain. IEEE Trans. Electromagn. Compat. 2020, 62, 1237–1246. [Google Scholar] [CrossRef]
- Filipašić, M.; Dadić, M. Analysis and Design of a PCB Probe for Near Field Measurements. In Proceedings of the 2022 45th Jubilee International Convention on Information, Communication and Electronic Technology (MIPRO), Opatija, Croatia, 23–27 May 2022; pp. 500–505. [Google Scholar] [CrossRef]
- Shi, J.; Cracraft, M.; Slattery, K.; Yamaguchi, M.; DuBroff, R. Calibration and compensation of near-field scan measurements. IEEE Trans. Electromagn. Compat. 2005, 47, 642–650. [Google Scholar] [CrossRef]
- Riah, Z.; Baudry, D.; Kadi, M.; Louis, A.; Mazari, B. Post-processing of electric field measurements to calibrate a near-field dipole probe. IET Sci. Meas. Technol. 2011, 5, 29–36. [Google Scholar] [CrossRef]
- Weng, H.; Beetner, D.G.; DuBroff, R.E. Frequency-Domain Probe Characterization and Compensation Using Reciprocity. IEEE Trans. Electromagn. Compat. 2011, 53, 2–10. [Google Scholar] [CrossRef]
- Claeys, T.; Vandenbosch, G.A.E.; Pissoort, D. Analysis of Different Scalar Probe Compensation Methods for an Array of Near-Field EMI Probes. IEEE Trans. Electromagn. Compat. 2021, 63, 344–352. [Google Scholar] [CrossRef]
- Gao, Y.; Lauer, A.; Ren, Q.; Wolff, I. Calibration of electric coaxial near-field probes and applications. IEEE Trans. Microw. Theory Tech. 1998, 46, 1694–1703. [Google Scholar] [CrossRef]
- Zhang, J.; Kam, K.W.; Min, J.; Khilkevich, V.V.; Pommerenke, D.; Fan, J. An Effective Method of Probe Calibration in Phase-Resolved Near-Field Scanning for EMI Application. IEEE Trans. Instrum. Meas. 2013, 62, 648–658. [Google Scholar] [CrossRef]
- Baudry, D.; Arcambal, C.; Louis, A.; Mazari, B.; Eudeline, P. Applications of the Near-Field Techniques in EMC Investigations. IEEE Trans. Electromagn. Compat. 2007, 49, 485–493. [Google Scholar] [CrossRef]
- Carobbi, C.F.M.; Millanta, L.M.; Chiosi, L. High-Frequency Behavior of the Shield in the Magnetic-Field Probes; IEEE: Piscataway, NJ, USA, 2000; Volume 1, pp. 35–40. [Google Scholar] [CrossRef]
- Kim, J.M.; Kim, W.T.; Yook, J.G. Resonance-Suppressed Magnetic Field Probe for Em Field-Mapping System; IEEE: Piscataway, NJ, USA, 2005; Volume 53. [Google Scholar] [CrossRef]
- Chou, Y.T.; Lu, H.C. Electric field coupling suppression using via fences for magnetic near-field shielded-loop coil probes in low temperature co-fired ceramics. In Proceedings of the 2011 IEEE International Symposium on Electromagnetic Compatibility, Long Beach, CA, USA, 14–19 August 2011; pp. 6–10. [Google Scholar] [CrossRef]
- Cao, Y.S.; Wang, Y.; Wu, S.; Yang, Z.; Fan, J. PCB Edge Shielding Effectiveness Evaluation and Design Guidelines. In Proceedings of the 2018 IEEE Symposium on Electromagnetic Compatibility, Signal Integrity and Power Integrity (EMC, SI & PI), Long Beach, CA, USA, 30 July–3 August 2018; pp. 269–274. [Google Scholar] [CrossRef]
- Chiappe, J. A comparison of relative shielding provided by stitching vias and edge plating. In Proceedings of the 2015 IEEE Symposium on Electromagnetic Compatibility and Signal Integrity, Santa Clara, CA, USA, 15–21 March 2015; pp. 101–106. [Google Scholar] [CrossRef]
- Li, Z.; He, X.; Shu, Z. Design of coils on printed circuit board for inductive power transfer system. IET Power Electron. 2018, 11, 2515–2522. [Google Scholar] [CrossRef]
- Ansys HFSS. 2016. Available online: https://www.ansys.com/products/electronics/ansys-hfss (accessed on 1 June 2023).
Parameter | Dimension (mm) | Parameter | Dimension (mm) |
---|---|---|---|
15.2 | 0.3 | ||
70 | 1 | ||
3 | 0.3 | ||
3 | 63 | ||
2.1 | 0.5 | ||
2.1 | 0.5 |
Optimization Variable | Range (mm) | Results (mm) |
---|---|---|
14–16 | 15.2 | |
65–75 | 70 | |
0.2–0.5 | 0.3 | |
1.7–2.1 | 2.1 |
Parameter | Layer Name | Material | Thickness (mm) |
---|---|---|---|
Top Solder | Solder Resist | 0.01 | |
L1-Top Layer | Copper | 0.018 | |
Dielectric 1 | FR4 | 0.5 | |
L2-Mid Layer 1 | Copper | 0.018 | |
Dielectric 2 | FR4 | 0.5 | |
L3-Mid Layer 2 | Copper | 0.018 | |
Dielectric 3 | FR4 | 0.5 | |
L4-Bottom Layer 1 | Copper | 0.018 | |
Bottom Solder | Solder Resist | 0.01 |
Frequency | ||||
---|---|---|---|---|
Probe | 0.5 GHz | 1 GHz | 2 GHz | 3 GHz |
NFP1—simulation | −40.8 | −33.9 | −30.5 | −31.1 |
NFP1—measurement | −40.4 | −32.8 | −31.5 | −30.2 |
NFP2—simulation | −32.7 | −28.2 | −25.3 | −39.6 |
NFP2—measurement | −33.6 | −28.7 | −23.8 | −25.2 |
NFP3—simulation | −29.5 | −26.5 | −27.5 | −31.6 |
NFP3—measurement | −29.1 | −25.7 | −29.2 | −30.1 |
NFP4—simulation | −32.1 | −29.0 | −29.1 | −33.7 |
NFP4—measurement | −32.6 | −28.1 | −31.1 | −31.8 |
NFP5—simulation | −33.3 | −30.4 | −35.0 | −45.3 |
NFP5—measurement | −33.2 | −29.1 | −36.6 | −39.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Filipašić, M.; Dadić, M. A Two-Turn Shielded-Loop Magnetic Near-Field PCB Probe for Frequencies up to 3 GHz. Sensors 2023, 23, 7308. https://doi.org/10.3390/s23167308
Filipašić M, Dadić M. A Two-Turn Shielded-Loop Magnetic Near-Field PCB Probe for Frequencies up to 3 GHz. Sensors. 2023; 23(16):7308. https://doi.org/10.3390/s23167308
Chicago/Turabian StyleFilipašić, Mario, and Martin Dadić. 2023. "A Two-Turn Shielded-Loop Magnetic Near-Field PCB Probe for Frequencies up to 3 GHz" Sensors 23, no. 16: 7308. https://doi.org/10.3390/s23167308
APA StyleFilipašić, M., & Dadić, M. (2023). A Two-Turn Shielded-Loop Magnetic Near-Field PCB Probe for Frequencies up to 3 GHz. Sensors, 23(16), 7308. https://doi.org/10.3390/s23167308