Contribution of Geometric Feature Analysis for Deep Learning Classification Algorithms of Urban LiDAR Data
Abstract
:1. Introduction
- Analysis and recognition of the relevant geometric features to be employed in Machine Learning (ML) classification algorithms specifically designed for urban areas.
- Assessment of two classification strategies that achieve highly accurate results.
- Testing and analysis of the developed classification ML algorithm using data obtained from both unmanned and manned airborne laser scanning.
- Analysis of the sensitivity of DL classification algorithms across different urban typologies.
2. Related Works
3. Input Data
4. Geometric Features (GFs)
- The sum of eigenvalues is calculated using
- Anisotropy
- Omnivariance
- Eigenentropy
- Planarity
- Sphericity
- Surface variation
- Linearity
- PCA1
- PCA2
- Verticality
5. Suggested Algorithm
5.1. Classification Network
5.2. Method
5.3. DLPA Workflow
6. Results and Accuracy
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tarsha Kurdi, F.; Gharineiat, Z.; Campbell, G.; Awrangjeb, M.; Dey, E.K. Automatic Filtering of Lidar Building Point Cloud in Case of Trees Associated to Building Roof. Remote Sens. 2022, 14, 430. [Google Scholar] [CrossRef]
- McTegg, S.J.; Tarsha Kurdi, F.; Simmons, S.; Gharineiat, Z. Comparative Approach of Unmanned Aerial Vehicle Restrictions in Controlled Airspaces. Remote Sens. 2022, 14, 822. [Google Scholar] [CrossRef]
- Lewandowicz, E.; Tarsha Kurdi, F.; Gharineiat, Z. 3D LoD2 and LoD3 Modeling of Buildings with Ornamental Towers and Turrets Based on LiDAR Data. Remote Sens. 2022, 14, 4687. [Google Scholar] [CrossRef]
- Tarsha Kurdi, F.; Awrangjeb, M. Comparison of LiDAR Building Point Cloud with Reference Model for Deep Comprehension of Cloud Structure. Can. J. Remote Sens. 2020, 46, 603–621. [Google Scholar] [CrossRef]
- Gharineiat, Z.; Tarsha Kurdi, F.; Campbell, G. Review of Automatic Processing of Topography and Surface Feature Identification LiDAR Data Using Machine Learning Techniques. Remote Sens. 2022, 14, 4685. [Google Scholar] [CrossRef]
- Tarsha Kurdi, F.; Amakhchan, W.; Gharineiat, Z. Random Forest Machine Learning Technique for Automatic Vegetation Detection and Modelling in LiDAR Data. Int. J. Environ. Sci. Nat. Resour. 2021, 28, 556234. [Google Scholar] [CrossRef]
- Murray, X.; Apan, A.; Deo, R.; Maraseni, T. Rapid assessment of mine rehabilitation areas with airborne LiDAR and deep learning: Bauxite strip mining in Queensland, Australia. Geocarto Int. 2022, 37, 11223–11252. [Google Scholar] [CrossRef]
- Amakhchan, W.; Tarsha Kurdi, F.; Gharineiat, Z.; Boulaassal, H.; El Kharki, O. Classification of Forest LiDAR Data Using Adapted Deep Learning Pipeline Algorithm and Geometric Feature Analysis. Int. J. Environ. Sci. Nat. Resour. 2023, 32, 556340. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, X.; Zheng, Z.; Liu, X. Unsupervised Domain Adaptive 3-D Detection with Data Adaption from LiDAR Point Cloud. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5705814. [Google Scholar] [CrossRef]
- Wang, M.; Gao, F.; Dong, J.; Li, H.-C.; Du, Q. Nearest Neighbor-Based Contrastive Learning for Hyperspectral and LiDAR Data Classification. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5501816. [Google Scholar] [CrossRef]
- Cortes, I.; Beltran, J.; De La Escalera, A.; Garcia, F. DALi: Domain Adaptation in LiDAR Point Clouds for 3D Obstacle Detection. In Proceedings of the 2022 IEEE 25th International Conference on Intelligent Transportation Systems (ITSC), Macau, China, 8–12 October 2022; pp. 3837–3842. [Google Scholar] [CrossRef]
- Zhai, R.; Song, J.; Hou, S.; Gao, F.; Li, X. Self-Supervised Learning for Point-Cloud Classification by a Multigrid Autoencoder. Sensors 2022, 22, 8115. [Google Scholar] [CrossRef]
- Lei, X.; Guan, H.; Ma, L.; Yu, Y.; Dong, Z.; Gao, K.; Delavar, M.R.; Li, J. WSPointNet: A multi-branch weakly supervised learning network for semantic segmentation of large-scale mobile laser scanning point clouds. Int. J. Appl. Earth Obs. Geoinf. 2022, 115, 103129. [Google Scholar] [CrossRef]
- Yin, C.; Yang, B.; Cheng, J.C.P.; Gan, V.J.L.; Wang, B.; Yang, J. Label-efficient semantic segmentation of large-scale industrial point clouds using weakly supervised learning. Autom. Constr. 2023, 148, 104757. [Google Scholar] [CrossRef]
- Li, J.; Ma, Y.; Song, R.; Xi, B.; Hong, D.; Du, Q. A Triplet Semisupervised Deep Network for Fusion Classification of Hyperspectral and LiDAR Data. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5540513. [Google Scholar] [CrossRef]
- Hassan, R.; Fraz, M.M.; Rajput, A.; Shahzad, M. Residual learning with annularly convolutional neural networks for classification and segmentation of 3D point clouds. Neurocomputing 2023, 526, 96–108. [Google Scholar] [CrossRef]
- Zhou, Y.; Ji, A.; Zhang, L.; Xue, X. Sampling-attention deep learning network with transfer learning for large-scale urban point cloud semantic segmentation. Eng. Appl. Artif. Intell. 2023, 117, 105554. [Google Scholar] [CrossRef]
- Xue, J.; Men, C.; Liu, Y.; Xiong, S. Adaptive neighbourhood recovery method for machine learning based 3D point cloud classification. Int. J. Remote Sens. 2023, 44, 311–340. [Google Scholar] [CrossRef]
- He, Q.; Wang, Z.; Zeng, H.; Zeng, Y.; Liu, Y.; Liu, S.; Zeng, B. Stereo RGB and Deeper LIDAR-Based Network for 3D Object Detection in Autonomous Driving. IEEE Trans. Intell. Transp. Syst. 2023, 24, 152–162. [Google Scholar] [CrossRef]
- Yang, M.; Chen, J.; Velipasalar, S. Cross-Modality Feature Fusion Network for Few-Shot 3D Point Cloud Classification. In Proceedings of the 2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Waikoloa, HI, USA, 2–7 January 2023; pp. 653–662. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, Y.; Ma, F.; Tan, Z. EB-LG Module for 3D Point Cloud Classification and Segmentation. IEEE Robot. Autom. Lett. 2023, 8, 160–167. [Google Scholar] [CrossRef]
- Küçükdemirci, M.; Landeschi, G.; Ohlsson, M.; Dell’Unto, N. Investigating ancient agricultural field systems in Sweden from airborne LIDAR data by using convolutional neural network. Archaeol. Prospect. 2022, 30, 209–219. [Google Scholar] [CrossRef]
- Miao, Z.; Song, S.; Tang, P.; Chen, J.; Hu, J.; Gong, Y. MFFRand: Semantic Segmentation of Point Clouds Based on Multi-Scale Feature Fusion and Multi-Loss Supervision. Electronics 2022, 11, 3626. [Google Scholar] [CrossRef]
- Hu, Q.; Yang, B.; Xie, L.; Rosa, S.; Guo, Y.; Wang, Z.; Trigoni, N.; Markham, A. RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 11105–11114. [Google Scholar] [CrossRef]
- Cao, S.; Zhao, H.; Liu, P. Semantic Segmentation for Point Clouds via Semantic-Based Local Aggregation and Multi-Scale Global Pyramid. Machines 2022, 11, 11. [Google Scholar] [CrossRef]
- Fan, Y.; Qian, Y.; Qin, Y.; Wan, Y.; Gong, W.; Chu, Z.; Liu, H. MSLAENet: Multiscale Learning and Attention Enhancement Network for Fusion Classification of Hyperspectral and LiDAR Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 10041–10054. [Google Scholar] [CrossRef]
- Kermarrec, G.; Yang, Z.; Czerwonka-Schröder, D. Classification of Terrestrial Laser Scanner Point Clouds: A Comparison of Methods for Landslide Monitoring from Mathematical Surface Approximation. Remote Sens. 2022, 14, 5099. [Google Scholar] [CrossRef]
- Qi, C.R.; Yi, L.; Su, H.; Guibas, L.J. PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space. In Advances in Neural Information Processing Systems; Curran Associates, Inc.: Red Hook, NY, USA, 2017; Available online: https://proceedings.neurips.cc/paper/2017/hash/d8bf84be3800d12f74d8b05e9b89836f-Abstract.html (accessed on 29 March 2023).
- Lei, Z.; Li, H.; Zhao, J.; Jing, L.; Tang, Y.; Wang, H. Individual Tree Species Classification Based on a Hierarchical Convolutional Neural Network and Multitemporal Google Earth Images. Remote Sens. 2022, 14, 5124. [Google Scholar] [CrossRef]
- Chen, C.; Fragonara, L.Z.; Tsourdos, A. GAPointNet: Graph attention based point neural network for exploiting local feature of point cloud. Neurocomputing 2021, 438, 122–132. [Google Scholar] [CrossRef]
- Li, B.; Lu, H.; Wang, H.; Qi, J.; Yang, G.; Pang, Y.; Dong, H.; Lian, Y. Terrain-Net: A Highly-Efficient, Parameter-Free, and Easy-to-Use Deep Neural Network for Ground Filtering of UAV LiDAR Data in Forested Environments. Remote Sens. 2022, 14, 5798. [Google Scholar] [CrossRef]
- Morsy, S.; Shaker, A. Evaluation of LiDAR-Derived Features Relevance and Training Data Minimization for 3D Point Cloud Classification. Remote Sens. 2022, 14, 5934. [Google Scholar] [CrossRef]
- Kuprowski, M.; Drozda, P. Feature Selection for Airbone LiDAR Point Cloud Classification. Remote Sens. 2023, 15, 561. [Google Scholar] [CrossRef]
- Wang, Y.; Geng, G.; Zhou, P.; Zhang, Q.; Li, Z.; Feng, R. GC-MLP: Graph Convolution MLP for Point Cloud Analysis. Sensors 2022, 22, 9488. [Google Scholar] [CrossRef]
- Deng, C.; Peng, Z.; Chen, Z.; Chen, R. Point Cloud Deep Learning Network Based on Balanced Sampling and Hybrid Pooling. Sensors 2023, 23, 981. [Google Scholar] [CrossRef]
- Nahhas, F.H.; Shafri, H.Z.M.; Sameen, M.I.; Pradhan, B.; Mansor, S. Deep Learning Approach for Building Detection Using LiDAR–Orthophoto Fusion. J. Sens. 2018, 2018, 7212307. [Google Scholar] [CrossRef]
- Rottensteiner, F.; Briese, C. A new method for building extraction in urban areas from high-resolution lidar data. In International Archives of Photogrammetry Remote Sensing and Spatial Information Sciences; Natural Resources Canada: Ottawa, ON, Canada, 2002. [Google Scholar]
- Elvis—Elevation and Depth—Foundation Spatial Data. Available online: https://elevation.fsdf.org.au/ (accessed on 9 February 2023).
- Christchurch, Canterbury, New Zealand 2020–2021. OpenTopography. 2022. Available online: https://portal.opentopography.org/datasets (accessed on 20 August 2023).
- Dey, E.K.; Tarsha Kurdi, F.; Awrangjeb, M.; Stantic, B. Effective Selection of Variable Point Neighbourhood for Feature Point Extraction from Aerial Building Point Cloud Data. Remote Sens. 2021, 13, 1520. [Google Scholar] [CrossRef]
- Thomas, H.; Deschaud, J.-E.; Marcotegui, B.; Goulette, F.; Gall, Y.L. Semantic Classification of 3D Point Clouds with Multiscale Spherical Neighborhoods. arXiv 2018, arXiv:1808.00495. Available online: http://arxiv.org/abs/1808.00495 (accessed on 23 October 2022).
- Skansi, S. Introduction to Deep Learning: From Logical Calculus to Artificial Intelligence. In Undergraduate Topics in Computer Science; Springer International Publishing: Cham, Switzerland, 2018. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2021, 12, 2825–2830. [Google Scholar]
- Amakhchan, W.; Tarsha Kurdi, F.; Gharineiat, Z.; Boulaassal, H.; El Kharki, O. Automatic Filtering of LiDAR Building Point Cloud Using Multilayer Perceptron Neuron Network. In Proceedings of the 3rd International Conference on Big Data and Machine Learning (BML22’), Istanbul, Turkey, 23–24 May 2022; Available online: https://bml.maasi.org/ (accessed on 1 August 2023).
- González-Camacho, J.M.; Ornella, L.; Pérez-Rodríguez, P.; Gianola, D.; Dreisigacker, S.; Crossa, J. Applications of Machine Learning Methods to Genomic Selection in Breeding Wheat for Rust Resistance. Plant Genome 2018, 11, 170104. [Google Scholar] [CrossRef]
- Aggarwal, C.C. Neural Networks and Deep Learning: A Textbook; Springer International Publishing: Cham, Switzerland, 2018. [Google Scholar] [CrossRef]
- 3.3. Metrics and Scoring: Quantifying the Quality of Predictions. Scikit-Learn. Available online: https://scikit-learn/stable/modules/model_evaluation.html (accessed on 16 January 2023).
- Demir, N. Automated detection of 3D roof planes from Lidar data. J. Indian Soc. Remote Sens. 2018, 46, 1265–1272. [Google Scholar] [CrossRef]
- Tarsha Kurdi, F.; Landes, T.; Grussenmeyer, P. Hough-transform and extended RANSAC algorithms for automatic detection of 3d building roof planes from Lidar data. In Proceedings of the ISPRS Workshop on Laser Scanning 2007 and SilviLaser 2007, Espoo, Finland, 12–14 September 2007; ISPRS International Archives of Photogrammetry, Remote Sensing and Spatial Information Systems Volume XXXVI, Part 3/W52; 2007. pp. 407–412. [Google Scholar]
- Shao, J.; Zhang, W.; Shen, A.; Mellado, N.; Cai, S.; Luo, L.; Wang, N.; Yan, G.; Zhou, G. Seed point set-based building roof extraction from airborne LiDAR point clouds using a top-down strategy. Autom. Constr. 2021, 126, 103660. [Google Scholar] [CrossRef]
- Rottensteiner, F.; Sohn, S.; Gerke, M.; Wegner, J.D.; Breitkopf, W.; Jung, J. Results of the ISPRS benchmark on urban object detection and 3D building reconstruction. ISPRS J. Photogramm. Remote Sens. 2014, 93, 256–271. [Google Scholar] [CrossRef]
- Wei, Y.; Yao, W.; Wu, J.; Schmitt, M.; Stilla, U. Adaboost-based feature relevance assessment in fusing LiDAR and image data for classification of trees and vehicles in urban scenes. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2012, I-7, 323–328. [Google Scholar] [CrossRef]
- Rottensteiner, F.; Trinder, J.; Clode, S.; Kubik, K. Building detection by fusion of airborne laserscanner data and multi-spectral images: Performance evaluation and sensitivity analysis. ISPRS J. Photogramm. Remote Sens. 2007, 62, 135–149. [Google Scholar] [CrossRef]
- Dorninger, P.; Pfeifer, N. A comprehensive automated 3D approach for building extraction, reconstruction, and regularization from airborne laser scanning point clouds. Sensors 2008, 8, 7323–7343. [Google Scholar] [CrossRef] [PubMed]
- Cramer, M. The DGPF-Test on Digital Airborne Camera Evaluation Overview and Test Design. Photogramm.-Fernerkund.-Geoinf. 2010, 2010, 73–82. [Google Scholar] [CrossRef] [PubMed]
Brisbane 1 | Brisbane 2 | Brisbane 3 | Vaihingen | Christchurch [39] | |
---|---|---|---|---|---|
Area (ha) | 100 | 7 | 98.7403 | 3 | 60 |
Number of points | 12,217,017 | 35,000,000 | 10,683,855 | 230,303 | 12,029,508 |
Flight height (m) | 2000 | 55 | 2060 | 500 | - |
Mean density (point/m2) | 12.2 | 500 | - | 7.5 | 19 |
Theoretical density (point/m2) | 2 | 250 | 2 | 4–6.7 | - |
Point accuracy (cm) | 30–80 | 5–10 | 30–80 | 10–30 | - |
Feature | VC | TC | BC | Acceptance |
---|---|---|---|---|
Sum of eigenvalues | 0.1–0.52 | 0.02–0.12 | 0.4–0.73 | No |
Omnivariance | 0.01–0.13 | 0.0025–0.016 | 0.03–0.1 | No |
Eigenentropy | 0.3–0.75 | 0.1–0.3 | 0.7–0.8 | Yes |
Planarity | 0.05–0.85 | 0–0.8 | 0.2–0.96 | No |
Sphericity | 0–0.3 | 0–0.1 | 0–0.04 | Yes |
Surface variation | 0–0.15 | 0–0.07 | 0–0.02 | Yes |
Verticality | 0–1 | 0–0.05 | 0–0.1 | Yes |
Anisotropy | 0.75–1 | 0.9–1 | 0.96–1 | Yes |
Linearity | 0.1–0.95 | 0.2–1 | 0.04–0.8 | No |
PCA1 | 0.48–0.92 | 0.52–0.96 | 0.5–0.82 | No |
PCA2 | 0.06–0.46 | 0.02–0.46 | 0.18–0.49 | No |
Point Cloud | Vegetation (%) | Buildings (%) | Terrain (%) | Sum (%) |
---|---|---|---|---|
Brisbane 1 | 21.78 | 10.1 | 63.29 | 95.17 |
Brisbane 2 | 26.34 | 31.34 | 32.24 | 89.92 |
Christchurch | 8.36 | 35.2 | 41.9 | 85.46 |
Vaihingen | 12.16 | 25.5 | 50.4 | 88.06 |
Approach | Accuracy (%) |
---|---|
Wei et al. [52] | 83.9 to 92.9 |
Rottensteiner et al. [53] | 85.0 to 93.6 |
Dorninger et al. [54] | 84.6 to 98.4 |
Strategy 2 | 98 |
Strategy | Buildings Class Accuracy (%) | Vegetation Class Accuracy (%) | Terrain Class Accuracy (%) |
---|---|---|---|
1 | 96.9 | 96.9 | 96.9 |
2 | 99 | 97 | 98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tarsha Kurdi, F.; Amakhchan, W.; Gharineiat, Z.; Boulaassal, H.; El Kharki, O. Contribution of Geometric Feature Analysis for Deep Learning Classification Algorithms of Urban LiDAR Data. Sensors 2023, 23, 7360. https://doi.org/10.3390/s23177360
Tarsha Kurdi F, Amakhchan W, Gharineiat Z, Boulaassal H, El Kharki O. Contribution of Geometric Feature Analysis for Deep Learning Classification Algorithms of Urban LiDAR Data. Sensors. 2023; 23(17):7360. https://doi.org/10.3390/s23177360
Chicago/Turabian StyleTarsha Kurdi, Fayez, Wijdan Amakhchan, Zahra Gharineiat, Hakim Boulaassal, and Omar El Kharki. 2023. "Contribution of Geometric Feature Analysis for Deep Learning Classification Algorithms of Urban LiDAR Data" Sensors 23, no. 17: 7360. https://doi.org/10.3390/s23177360
APA StyleTarsha Kurdi, F., Amakhchan, W., Gharineiat, Z., Boulaassal, H., & El Kharki, O. (2023). Contribution of Geometric Feature Analysis for Deep Learning Classification Algorithms of Urban LiDAR Data. Sensors, 23(17), 7360. https://doi.org/10.3390/s23177360