Real-Time Underwater Wireless Optical Communication System Based on LEDs and Estimation of Maximum Communication Distance
Abstract
:1. Introduction
2. Module Design and Verification
2.1. Transmitter Design
2.2. Receiver Design
2.3. Performance Verification of Transceiver Module
2.4. Lenses for LEDs and APD
2.5. Transmitter and Receiver Design Summary
3. Underwater Experimental Setup and Results
3.1. Measurement of Underwater Attenuation Coefficient
3.2. Underwater Wireless Optical Communication Experiments and Results
4. Estimation of Maximum Communication Distance
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kaushal, H.; Kaddoum, G. Underwater Optical Wireless Communication. IEEE Access 2016, 4, 1518–1547. [Google Scholar] [CrossRef]
- Zeng, Z.; Fu, S.; Zhang, H.; Dong, Y.; Cheng, J. A Survey of Underwater Optical Wireless Communications. IEEE Commun. Surv. Tutor. 2017, 19, 204–238. [Google Scholar] [CrossRef]
- Doniec, M.; Rus, D. BiDirectional optical communication with AquaOptical II. In Proceedings of the IEEE International Conference on Communication Systems, Singapore, 17–19 November 2010; pp. 390–394. [Google Scholar]
- Cossu, G.; Corsini, R.; Khalid, A.M.; Balestrino, S.; Coppelli, A.; Caiti, A.; Ciaramella, E. Experimental demonstration of high speed underwater visible light communications. In Proceedings of the International Workshop on Optical Wireless Communications (IWOW), Newcastle Upon Tyne, UK, 21 October 2013; pp. 11–15. [Google Scholar]
- Wang, P.; Li, C.; Xu, Z. A Cost-Efficient Real-Time 25 Mb/s System for LED-UOWC: Design, Channel Coding, FPGA Implementation, and Characterization. J. Light. Technol. 2018, 36, 2627–2637. [Google Scholar] [CrossRef]
- Lu, C.; Li, C.; Xu, Z. Experimental Investigation of Underwater Weak Optical Communication Using a Photomultiplier Tube Receiver. In Proceedings of the Asia Communications and Photonics Conference (ACP), Hangzhou, China, 26–29 October 2018; pp. 1–3. [Google Scholar]
- Zhang, Z.; Lai, Y.; Lv, J.; Liu, P.; Teng, D.; Wang, G.; Liu, L. Over 700 MHz–3 dB Bandwidth UOWC System Based on Blue HV-LED with T-Bridge Pre-Equalizer. IEEE Photonics J. 2019, 11, 1–12. [Google Scholar] [CrossRef]
- Li, J.; Yang, B.; Ye, D.; Wang, L.; Fu, K.; Piao, J.; Wang, Y. A Real-Time, Full-Duplex System for Underwater Wireless Optical Communication: Hardware Structure and Optical Link Model. IEEE Access 2020, 8, 109372–109387. [Google Scholar] [CrossRef]
- Khalighi, M.A.; Akhouayri, H.; Hranilovic, S. Silicon-Photomultiplier-Based Underwater Wireless Optical Communication Using Pulse-Amplitude Modulation. IEEE J. Ocean. Eng. 2020, 45, 1611–1621.29. [Google Scholar] [CrossRef]
- Kong, M.; Guo, Y.; Alkhazragi, O.; Sait, M.; Kang, C.H.; Ng, T.K.; Ooi, B.S. Real-Time Optical-Wireless Video Surveillance System for High Visual-Fidelity Underwater Monitoring. IEEE Photonics J. 2022, 14, 1–9. [Google Scholar] [CrossRef]
- Yao, Y.; Yin, H.; Ji, X.; Jing, L.; Liang, Y.; Wang, J. Design of mQAM-OFDM Underwater Wireless Optical Communication System Based on LED Array. In Proceedings of the Information Communication Technologies Conference (ICTC), Nanjing, China, 6–8 May 2022; pp. 45–50. [Google Scholar]
- Li, X.; Gui, L.; Xia, Y.; Lang, L. Demonstration of a Real-time UWOC System Using a Bandwidth Limited LED Based on Hardware and Software Equalization. J. Light. Technol. 2023, 41, 4979–4988. [Google Scholar] [CrossRef]
- Li, X.; Cheng, C.; Wei, Z.; Fu, H.Y.; Yang, Y.; Hu, W. Net 5.75 Gbps/2 m single-pixel blue mini-LED based underwater wireless communication system enabled by partial pre-emphasis and nonlinear pre-distortion. J. Light. Technol. 2022, 40, 6116–6122. [Google Scholar] [CrossRef]
- Niu, W.; Chen, H.; Hu, F.; Shi, J.; Ha, Y.; Li, G.; He, Z.; Yu, S.; Chi, N. Neural-Network-Based Nonlinear Tomlinson-Harashima Precoding for Bandwidth-Limited Underwater Visible Light Communication. J. Light. Technol. 2022, 40, 2296–2306. [Google Scholar] [CrossRef]
- Zou, P.; Zhao, Y.; Hu, F.; Chi, N. Underwater visible light communication at 3.24 Gb/s using novel two-dimensional bit allocation. Opt. Express 2020, 28, 11319–11338. [Google Scholar] [CrossRef]
- Cossu, G.; Sturniolo, A.; Messa, A.; Scaradozzi, D.; Ciaramella, E. Full-Fledged 10Base-T Ethernet Underwater Optical Wireless Communication System. IEEE J. Sel. Areas Commun. 2018, 36, 194–202. [Google Scholar] [CrossRef]
- Cossu, G.; Sturniolo, A.; Messa, A.; Grechi, S.; Costa, D.; Bartolini, A.; Scaradozzi, D.; Caiti, A.; Ciaramella, E. Sea-Trial of Optical Ethernet Modems for Underwater Wireless Communications. J. Light. Technol. 2018, 36, 5371–5380. [Google Scholar] [CrossRef]
- Zhang, M. An Experiment Demonstration of a LED Driver Based on a 2nd Order Pre-emphasis Circuit for Visible Light Communications. In Proceedings of the Wireless & Optical Communication Conference, Newark, NJ, USA, 9–10 May 2014; pp. 1–3. [Google Scholar]
- Zhou, H.; Zhang, M.; Wang, X.; Ren, X. Design and Implementation of More Than 50 m Real-Time Underwater Wireless Optical Communication System. J. Light. Technol. 2022, 40, 3654–3668. [Google Scholar] [CrossRef]
- Godse, A.P.; Bakshi, U.A. Electronic Circuits-I: Theory, Analysis and Design; Technical Publications: Shaniwar Peth, MS, India, 2020. [Google Scholar]
- LTC6268-10/LTC6269-10—4GHz Ultra-Low Bias Current FET Input Op Amp. Available online: https://www.analog.com/media/en/technical-documentation/data-sheets/626810f.pdf (accessed on 7 August 2023).
- Barry, J.R. Wireless Infrared Communications; Springer: Greer, SC, USA, 1997; pp. 265–298. [Google Scholar]
- Sun, X.; Kang, C.H.; Kong, M.; Alkhazragi, O.; Guo, Y.; Ouhssain, M.; Weng, Y.; Jones, B.H.; Ng, T.K.; Ooi, B.S. A Review on Practical Considerations and Solutions in Underwater Wireless Optical Communication. J. Light. Technol. 2020, 38, 421–431. [Google Scholar] [CrossRef]
- Norimatsu, S.; Maruoka, M. Accurate Q-factor estimation of optically amplified systems in the presence of waveform distortions. J. Light. Technol. 2002, 20, 19–27. [Google Scholar] [CrossRef]
- Anderson, C.J.; Lyle, J.A. Technique for evaluating system performance using Q in numerical simulations exhibiting intersymbol interference. Electron. Lett. 1994, 30, 71–72. [Google Scholar] [CrossRef]
- Laedke, E.W.; Goder, N.; Schaefer, T.; Spatschek, K.H.; Turitsyn, S. Improvement of optical fiber systems performance by optimisation of receiver filter bandwidth and use of numerical methods to evaluate Q-factor. Electron. Lett. 2002, 35, 2131–2133. [Google Scholar] [CrossRef]
- Rasztovits-Wiech, M.; Studer, K.; Leeb, R.W. Bit error probability estimation algorithm for signal supervision in all-optical networks. Electron. Lett. 1999, 35, 1754. [Google Scholar] [CrossRef]
Distance | Data Rate | BER | Power | Source | Wavelength | Detector | Channel Type | Note | Year/Ref |
---|---|---|---|---|---|---|---|---|---|
50 m | 2.28 Mbps | 10 WO | Blue LED | 470 nm | APD | Olympic size pool | Real time | 2010/[3] | |
2.5 m | 58 Mbps | 0 | 10.5 WE | Blue LED | 470 nm | APD | very-pure water | Offline | 2013/[4] |
10 m | 25 Mbps | 1.0 × 10−4 | Blue LED | 448 nm | APD | tap water | Real time | 2018/[5] | |
10 m | 2 Mbps | 3.8 × 10−3 | Blue LED | 440 nm | PMT | simulated harbor water | Offline | 2018/[6] | |
1.2 m | 3 Gbps | 3.8 × 10−3 | 120 mWO | Blue LED | 446.4 nm | PIN | tap water | Offline | 2019/[7] |
10 m | 1 Mbps | 2.9 × 10−3 | 10.07 mWO | Blue LED | 445 nm | APD | tap water | Real time | 2020/[8] |
28 m | 20 Mbps | 10−4 | 600 mWO | Blue LED | 470 nm | SiPM | clear water | Real time | 2020/[9] |
10 m | 50 Mbps | ||||||||
46 m | 2.5 Mbps | 3 WO | Blue LED | 458 nm | APD | air | Real time | 2021/[10] | |
5 m | outdoor diving pool | ||||||||
5 m | 50 Mbps | 3.359 × 10−3 | 3 WE × 7 | Green LED | APD | Real time | 2022/[11] | ||
1 m | 50 Mbps | 8.0 × 10−5 | Green LED | APD | tap water | Real time | 2023/[12] | ||
10 m | 80 Mbps | 0 | 1.9 WO | Blue LED | 451 nm | APD | water for the lawn | Real time | This work |
100 Mbps | 0 | ||||||||
120 Mbps | 1.0 × 10−7 | ||||||||
135 Mbps | 5.9 × 10−3 | ||||||||
140 Mbps | 8.0 × 10−3 |
Transmitter | LED | GD CS8PM1.14 |
Peak wavelength | 451 nm | |
LED lens | F12985 | |
Beam angle (measured) | 4.96° | |
Receiver | APD | S8664-30K |
OP AMP | LTC6268-10 | |
Transimpedance gain | 4500 Ω | |
Receiver aperture | 120 mm | |
Standard deviation of output voltage noise (measured in a dark environment) | 1.335 mV | |
Standard deviation of output voltage noise (measured in the work environment) | 3.2 mV | |
System | Overall bandwidth (measured) | 40.3 MHz |
Data Rate | BER | Eye Height |
---|---|---|
80 Mbps | 0 | 308 mV |
100 Mbps | 0 | 190 mV |
120 Mbps | 1.0 × 10−7 | 68 mV |
135 Mbps | 5.9 × 10−3 | 52 mV |
140 Mbps | 8.0 × 10−3 | 30 mV |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Zhou, H. Real-Time Underwater Wireless Optical Communication System Based on LEDs and Estimation of Maximum Communication Distance. Sensors 2023, 23, 7649. https://doi.org/10.3390/s23177649
Zhang M, Zhou H. Real-Time Underwater Wireless Optical Communication System Based on LEDs and Estimation of Maximum Communication Distance. Sensors. 2023; 23(17):7649. https://doi.org/10.3390/s23177649
Chicago/Turabian StyleZhang, Minglun, and Hongyu Zhou. 2023. "Real-Time Underwater Wireless Optical Communication System Based on LEDs and Estimation of Maximum Communication Distance" Sensors 23, no. 17: 7649. https://doi.org/10.3390/s23177649
APA StyleZhang, M., & Zhou, H. (2023). Real-Time Underwater Wireless Optical Communication System Based on LEDs and Estimation of Maximum Communication Distance. Sensors, 23(17), 7649. https://doi.org/10.3390/s23177649