Surface Acoustic Wave Immunosensor for Detection of Botulinum Neurotoxin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Instrumentation
3. Results and Discussion
3.1. Functionalization of SAW Devices
3.2. BoNT-A LC Detection
- -
- Sensor rinsing with PBS (running buffer) at 40 μL/min (baseline stabilization);
- -
- Sample dosing (solution of a specific protein in PBS) at 40 μL/min;
- -
- Sensor rinsing with PBS at 40 μL/min;
- -
- Regeneration of the sensor with the Gly-HCl buffer at 100 μL/min flow rate;
- -
- Sensor rinsing with PBS at 40 µL/min (baseline stabilization).
3.3. Selectivity of Sensor
3.4. Reusability of Sensor
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lacy, D.B.; Tepp, W.; Cohen, A.C.; DasGupta, B.R.; Stevens, R.C. Crystal structure of botulinum neurotoxin type A and implications for toxicity. Nat. Struct. Biol. 1998, 5, 898–902. [Google Scholar] [CrossRef]
- Arnon, S.S.; Schechter, R.; Inglesby, T.V.; Henderson, D.A.; Bartlett, J.G.; Ascher, M.S.; Eitzen, E.; Fine, A.D.; Hauer, J.; Layton, M.; et al. Botulinum Toxin as a Biological Weapon: Medical and Public Health Management. JAMA 2001, 285, 1059. [Google Scholar] [CrossRef]
- Gupta, R. Handbook of Toxicology of Chemical Warfare Agents; Elsevier: Amsterdam, The Netherlands, 2020; ISBN 978-0-12-819090-6. [Google Scholar]
- CDC|Bioterrorism Agents/Diseases (by Category). Available online: https://emergency.cdc.gov/agent/agentlist-category.asp (accessed on 8 August 2023).
- Horowitz, B.Z. Botulinum Toxin. Crit. Care Clin. 2005, 21, 825–839. [Google Scholar] [CrossRef] [PubMed]
- Tatu, L.; Feugeas, J.-P. Botulinum Toxin in WW2 German and Allied Armies: Failures and Myths of Weaponization. Eur. Neurol. 2021, 84, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Lebeda, F.J.; Adler, M.; Dembek, Z.F. Yesterday and Today: The Impact of Research Conducted at Camp Detrick on Botulinum Toxin. Mil. Med. 2018, 183, 85–95. [Google Scholar] [CrossRef] [PubMed]
- Powell, J.W. Japan’s germ warfare: The U.S. cover-up of a war crime. Bull. Concerned Asian Sch. 1980, 12, 2–17. [Google Scholar] [CrossRef]
- Rimmington, A. Stalin’s Secret Weapon. In The Origins of Soviet Biological Warfare; Oxford University Press: Oxford, UK, 2018; ISBN 978-0-19-092885-8. [Google Scholar]
- Kwaśny, M.; Bombalska, A.; Kaliszewski, M.; Włodarski, M.; Kopczyński, K. Fluorescence Methods for the Detection of Bioaerosols in Their Civil and Military Applications. Sensors 2023, 23, 3339. [Google Scholar] [CrossRef]
- Chiao, D.-J.; Wey, J.-J.; Shyu, R.-H.; Tang, S.-S. Monoclonal Antibody-Based Lateral Flow Assay for Detection of Botulinum Neurotoxin Type A. Hybridoma 2008, 27, 31–35. [Google Scholar] [CrossRef]
- Ching, K.H.; Lin, A.; McGarvey, J.A.; Stanker, L.H.; Hnasko, R. Rapid and selective detection of botulinum neurotoxin serotype-A and -B with a single immunochromatographic test strip. J. Immunol. Methods 2012, 380, 23–29. [Google Scholar] [CrossRef]
- Dezfulian, M.; Bartlett, J.G. Detection of Clostridium botulinum type A toxin by enzyme-linked immunosorbent assay with antibodies produced in immunologically tolerant animals. J. Clin. Microbiol. 1984, 19, 645–648. [Google Scholar] [CrossRef]
- Scotcher, M.C.; Cheng, L.W.; Ching, K.; McGarvey, J.; Hnasko, R.; Stanker, L. Development and Characterization of Six Monoclonal Antibodies to Hemagglutinin-70 of Clostridium botulinum and Their Application in a Sandwich ELISA. Monoclon. Antibodies Immunodiagn. Immunother. 2013, 32, 6–15. [Google Scholar] [CrossRef]
- Grenda, T.; Kukier, E.; Kwiatek, K. Methods and difficulties in detection of Clostridium botulinum and its toxins. Pol. J. Vet. Sci. 2014, 17, 195–205. [Google Scholar] [CrossRef] [PubMed]
- Chao, H.-Y.; Wang, Y.-C.; Tang, S.-S.; Liu, H.-W. A highly sensitive immuno-polymerase chain reaction assay for Clostridium botulinum neurotoxin type A. Toxicon 2004, 43, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Lim, C.Y.; Granger, J.H.; Porter, M.D. SERS detection of Clostridium botulinum neurotoxin serotypes A and B in buffer and serum: Towards the development of a biodefense test platform. Anal. Chim. Acta X 2019, 1, 100002. [Google Scholar] [CrossRef] [PubMed]
- Reviakine, I.; Johannsmann, D.; Richter, R.P. Hearing What You Cannot See and Visualizing What You Hear: Interpreting Quartz Crystal Microbalance Data from Solvated Interfaces. Anal. Chem. 2011, 83, 8838–8848. [Google Scholar] [CrossRef] [PubMed]
- Branch, D.W.; Brozik, S.M. Low-level detection of a Bacillus anthracis simulant using Love-wave biosensors on 36°YX LiTaO3. Biosens. Bioelectron. 2004, 19, 849–859. [Google Scholar] [CrossRef] [PubMed]
- Bisoffi, M.; Hjelle, B.; Brown, D.C.; Branch, D.W.; Edwards, T.L.; Brozik, S.M.; Bondu-Hawkins, V.S.; Larson, R.S. Detection of viral bioagents using a shear horizontal surface acoustic wave biosensor. Biosens. Bioelectron. 2008, 23, 1397–1403. [Google Scholar] [CrossRef]
- Salmain, M.; Ghasemi, M.; Boujday, S.; Pradier, C.-M. Elaboration of a reusable immunosensor for the detection of staphylococcal enterotoxin A (SEA) in milk with a quartz crystal microbalance. Sens. Actuators B Chem. 2012, 173, 148–156. [Google Scholar] [CrossRef]
- Briand, E.; Salmain, M.; Herry, J.-M.; Perrot, H.; Compère, C.; Pradier, C.-M. Building of an Immunosensor: How Can the Composition and Structure of the Thiol Attachment Layer Affect the Immunosensor Efficiency? Biosens. Bioelectron. 2006, 22, 440–448. [Google Scholar] [CrossRef]
- Rocha-Gaso, M.-I.; García, J.-V.; García, P.; March-Iborra, C.; Jiménez, Y.; Francis, L.-A.; Montoya, Á.; Arnau, A. Love Wave Immunosensor for the Detection of Carbaryl Pesticide. Sensors 2014, 14, 16434–16453. [Google Scholar] [CrossRef]
- Ferreira, J.L.; Eliasberg, S.J.; Edmonds, P.; Harrison, M.A. Comparison of the Mouse Bioassay and Enzyme-Linked Immunosorbent Assay Procedures for the Detection of Type A Botulinal Toxin in Food. J. Food Prot. 2004, 67, 203–206. [Google Scholar] [CrossRef]
- Swain, M.D.; Anderson, G.P.; Zabetakis, D.; Bernstein, R.D.; Liu, J.L.; Sherwood, L.J.; Hayhurst, A.; Goldman, E.R. Llama-derived single-domain antibodies for the detection of botulinum A neurotoxin. Anal. Bioanal. Chem. 2010, 398, 339–348. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.K.; Eblen, B.S.; Bull, R.L.; Burr, D.H.; Whiting, R.C. Evaluation of Lateral-Flow Clostridium botulinum Neurotoxin Detection Kits for Food Analysis. Appl. Environ. Microbiol. 2005, 71, 3935–3941. [Google Scholar] [CrossRef] [PubMed]
- Ozanich, R.M.; Bruckner-Lea, C.J.; Warner, M.G.; Miller, K.; Antolick, K.C.; Marks, J.D.; Lou, J.; Grate, J.W. Rapid Multiplexed Flow Cytometric Assay for Botulinum Neurotoxin Detection Using an Automated Fluidic Microbead-Trapping Flow Cell for Enhanced Sensitivity. Anal. Chem. 2009, 81, 5783–5793. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yang, Y.; Zhou, L.; Wang, J.; Jiang, Y.; Hu, K.; Sun, X.; Hou, Y.; Zhu, Z.; Guo, Z.; et al. Simultaneous detection of five biothreat agents in powder samples by a multiplexed suspension array. Immunopharmacol. Immunotoxicol. 2009, 31, 417–427. [Google Scholar] [CrossRef]
- Hobbs, R.J.; Thomas, C.A.; Halliwell, J.; Gwenin, C.D. Rapid Detection of Botulinum Neurotoxins—A Review. Toxins 2019, 11, 418. [Google Scholar] [CrossRef]
- Čapek, P.; Dickerson, T. Sensing the Deadliest Toxin: Technologies for Botulinum Neurotoxin Detection. Toxins 2010, 2, 24–53. [Google Scholar] [CrossRef]
- Wang, C.; Wang, C.; Jin, D.; Yu, Y.; Yang, F.; Zhang, Y.; Yao, Q.; Zhang, G.-J. AuNP-Amplified Surface Acoustic Wave Sensor for the Quantification of Exosomes. ACS Sens. 2020, 5, 362–369. [Google Scholar] [CrossRef]
- Van Noort, D.; Rani, R.; Mandenius, C.-F. Improving the Sensitivity of a Quartz Crystal Microbalance for Biosensing by Using Porous Gold. Microchim. Acta 2001, 136, 49–53. [Google Scholar] [CrossRef]
- Wilson, A.M.; Kaur, K.; Jones, R.M.; Kelly, K.E. Feasibility of a High-Volume Filter Sampler for Detecting SARS-CoV-2 RNA in COVID-19 Patient Rooms. Ann. Work Expo. Health 2022, 66, 276–280. [Google Scholar] [CrossRef]
- Saito, M.; Uchida, N.; Furutani, S.; Murahashi, M.; Espulgar, W.; Nagatani, N.; Nagai, H.; Inoue, Y.; Ikeuchi, T.; Kondo, S.; et al. Field-deployable rapid multiple biosensing system for detection of chemical and biological warfare agents. Microsyst. Nanoeng. 2018, 4, 17083. [Google Scholar] [CrossRef]
BoNT-A LC Concentration [μg/mL] | Phase Shift after 10 min [°] | Phase Shift in Steady State [°] | Number of Sensors Tested |
---|---|---|---|
0.5 | 0.29 ± 0.04 | 0.51 ± 0.07 | 3 |
1 | 0.32 ± 0.06 | 0.51 ± 0.06 | 3 |
Analytical Technique | Limit of Detection—LOD | Time of Analysis | Reference |
---|---|---|---|
ELISA (enzyme-linked immunosorbent assay) | 5 pg/mL–2 ng/mL | 5–6 h | [24,25] |
LFA (lateral flow assay) | 5–50 ng/mL | 15 min | [11,12,26] |
Flow cytometry | 50 pg/mL–20 ng/mL | 4 h | [27,28,29,30] |
Love-type acoustic wave sensor | 500 ng/mL 1 | 19 min | this work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grabka, M.; Jasek, K.; Witkiewicz, Z. Surface Acoustic Wave Immunosensor for Detection of Botulinum Neurotoxin. Sensors 2023, 23, 7688. https://doi.org/10.3390/s23187688
Grabka M, Jasek K, Witkiewicz Z. Surface Acoustic Wave Immunosensor for Detection of Botulinum Neurotoxin. Sensors. 2023; 23(18):7688. https://doi.org/10.3390/s23187688
Chicago/Turabian StyleGrabka, Michał, Krzysztof Jasek, and Zygfryd Witkiewicz. 2023. "Surface Acoustic Wave Immunosensor for Detection of Botulinum Neurotoxin" Sensors 23, no. 18: 7688. https://doi.org/10.3390/s23187688
APA StyleGrabka, M., Jasek, K., & Witkiewicz, Z. (2023). Surface Acoustic Wave Immunosensor for Detection of Botulinum Neurotoxin. Sensors, 23(18), 7688. https://doi.org/10.3390/s23187688