A High-Performance Circularly Polarized and Harmonic Rejection Rectenna for Electromagnetic Energy Harvesting
Abstract
:1. Introduction
2. Rectenna Design
2.1. Antenna Geometry
2.2. Rectifier Design
3. Simulation Results
3.1. Antenna Reflection Coefficient and Input Impedance
3.2. Antenna Radiation Efficiency and Axia Ratio
3.3. Antenna Directivity and Effective Area
3.4. AC–DC Efficiency
3.5. Experimental Validation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brown, W.C. The History of Power Transmission by Radio Waves. IEEE Trans. Microw. Theory Tech. 1984, 32, 1230–1242. [Google Scholar] [CrossRef]
- Schlesak, J.J.; Alden, A.; Ohno, T. Microwave powered high altitude platform. IEEE MTT-S Int. Microw. Symp. Dig. 1988, 1, 283–286. [Google Scholar]
- Srinivasu, G.; Sharma, V.K.; Nella, A. A Survey on Conceptualization of RF Energy Harvesting. J. Appl. Anal. Comput. 2019, 6, 791–800. [Google Scholar]
- Valenta, C.R.; Durgin, G.D. Harvesting wireless power: Survey of energy-harvester conversion efficiency in far-field, wireless power transfer systems. IEEE Microw. Mag. 2014, 15, 108–120. [Google Scholar]
- Zhang, Z.; Pang, H.; Georgiadis, A.; Cecati, C. Wireless Power Transfer—An Overview. IEEE Trans. Ind. Inform. 2019, 66, 1044–1058. [Google Scholar] [CrossRef]
- Sun, H.; Geyi, W. A New Rectenna with All-Polarization-Receiving Capability for Wireless Power Transmission. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 814–817. [Google Scholar] [CrossRef]
- Wagih, M.; Weddell, A.S.; Beeby, S. Rectennas for radio-frequency energy harvesting and wireless power transfer: A review of antenna design [Antenna Applications Corner]. IEEE Antennas Propag. Mag. 2020, 62, 95–107. [Google Scholar] [CrossRef]
- Abdulhasan, R.A.; Mumin, A.O.; Jawhar, Y.A.; Ahmed, M.S.; Alias, R.; Ramli, K.N.; Homam, M.J.; Audah, L.H.M. Antenna Performance Improvement Techniques for Energy Harvesting: A Review Study. Artic. Int. J. Adv. Comput. Sci. Appl. 2017, 8, 97–102. [Google Scholar]
- Balanis, C.A. Antenna Theory: Analysis and Design, 4th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Kumar, M.; Kumar, S.; Sharma, A. Dual-purpose planar radial-array of rectenna sensors for orientation estimation and RF-energy harvesting at IoT nodes. IEEE Microw. Wirel. Compon. Lett. 2022, 32, 245–248. [Google Scholar] [CrossRef]
- Divakaran, S.K.; Das Krishna, D.; Nasimuddin. RF energy harvesting systems: An overview and design issues. Int. J. RF Microw. Comput.-Aided Eng. 2019, 29, e21633. [Google Scholar] [CrossRef]
- Suh, Y.H.; Chang, K. A high-efficiency dual-frequency rectenna for 2.45- and 5.8-GHz wireless power transmission. IEEE Trans. Microw. Theory Tech. 2002, 50, 1784–1789. [Google Scholar] [CrossRef]
- Lin, Y.L.; Zhang, X.Y.; Du, Z.X.; Lin, Q.W. High-efficiency microwave rectifier with extended operating bandwidth. IEEE Trans. Circuits Syst. II Express Briefs 2018, 65, 819–823. [Google Scholar] [CrossRef]
- Yo, T.C.; Lee, C.M.; Hsu, C.M.; Luo, C.H. Compact circularly polarized rectenna with unbalanced circular slots. IEEE Trans. Antennas Propag. 2008, 56, 882–886. [Google Scholar] [CrossRef]
- Bakkali, A.; Pelegri-Sebastia, J.; Sogorb, T.; Llario, V.; Bou-Escriva, A. A Dual-Band Antenna for RF Energy Harvesting Systems in Wireless Sensor Networks. J. Sens. 2016, 2016, 5725836. [Google Scholar] [CrossRef]
- Shrestha, S.; Noh, S.K.; Choi, D.Y. Comparative study of antenna designs for RF energy harvesting. Int. J. Antennas Propag. 2013, 2013, 385260. [Google Scholar] [CrossRef]
- Kraus, J.D.; Marhefka, R.J. Antennas for All Applications, 3rd ed.; McGraw-Hill: New York, NY, USA, 2002. [Google Scholar]
- Garg, A.I.R.; Bhartia, P.; Bahl, I.J. Microstrip Antenna Design Handbook; Artech House: Norwood, MA, USA, 2001. [Google Scholar]
- James, J.R.; Hall, P.S.; Wood, C. Microstrip Antenna Theory and Design; Peter Peregrinus Ltd.: London, UK, 1981. [Google Scholar]
- Chandrasekaran, K.T.; Nasimuddin, N.; Alphonse, A.; Karim, M.F. Compact circularly polarized beam-switching wireless power transfer system for ambient energy harvesting applications. Int. J. RF Microw. Comput. Eng. 2019, 29, e21642. [Google Scholar] [CrossRef]
- Hu, Y.Y.; Sun, S.; Xu, H. Compact Collinear Quasi-Yagi Antenna Array for Wireless Energy Harvesting. IEEE Access. 2020, 8, 35308–35317. [Google Scholar] [CrossRef]
- Collado, A.; Member, S.; Georgiadis, A. A Compact Dual-Band Rectenna Using Slot-Loaded. IEEE Antennas Wirel. Propag. Lett. 2013, 12, 1634–1637. [Google Scholar]
- Huang, F.J.; Yo, T.C.; Lee, C.M.; Luo, C.H. Design of circular polarization antenna with harmonic suppression for rectenna application. IEEE Antennas Wirel. Propag. Lett. 2012, 11, 592–595. [Google Scholar] [CrossRef]
- Song, C.; Huang, Y.; Zhou, J.; Zhang, J.; Yuan, S.; Carter, P. A high-efficiency broadband rectenna for ambient wireless energy harvesting. IEEE Trans. Antennas Propag. 2015, 63, 3486–3495. [Google Scholar] [CrossRef]
- Sun, H.; Guo, Y.X.; He, M.; Zhong, Z. Design of a high-efficiency 2.45-GHz rectenna for low-input-power energy harvesting. IEEE Antennas Wirel. Propag. Lett. 2012, 11, 929–932. [Google Scholar]
- Lin, W.; Ziolkowski, R.W. Electrically Small, Single-Substrate Huygens Dipole Rectenna for Ultra-Compact Wireless Power Transfer Applications. IEEE Trans. Antennas Propag. 2020, 69, 1130–1134. [Google Scholar] [CrossRef]
- Wang, M.S.; Zhu, X.Q.; Guo, Y.X.; Wu, W. Compact Circularly Polarized Patch Antenna with Wide Axial-Ratio Beamwidth. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 714–718. [Google Scholar] [CrossRef]
- Das, T.K.; Dwivedy, B.; Behera, D.; Behera, S.K.; Karmakar, N.C. Design and modelling of a compact circularly polarized antenna for RFID applications. AEU-Int. J. Electron. Commun. 2020, 123, 153313. [Google Scholar] [CrossRef]
- Chandrasekaran, K.T.; Agarwal, K.; Nasimuddin; Alphones, A.; Mittra, R.; Karim, M.F. Compact Dual-Band Metamaterial-Based High-Efficiency Rectenna: An Application for Ambient Electromagnetic Energy Harvesting. IEEE Antennas Propag. Mag. 2020, 62, 18–29. [Google Scholar] [CrossRef]
- Rosenblatt, G.; Orenstein, M. Perfect lensing with lossy metamaterials: Maintaining a singular focus by avoiding feedback. In Proceedings of the 2016 Progress in Electromagnetic Research Symposium (PIERS), Shanghai, China, 8–11 August 2016; p. 4946. [Google Scholar]
- Upender, P.; Kumar, A. THz Dielectric Metamaterial Sensor With High Q for Biosensing Applications. IEEE Sens. J. 2023, 23, 5737–5744. [Google Scholar] [CrossRef]
- Singh, H.; Mittal, N.; Gupta, A.; Kumar, Y.; Woźniak, M.; Waheed, A. Metamaterial integrated folded dipole antenna with low SAR for 4G, 5G and NB-IoT applications. Electronics 2021, 10, 2612. [Google Scholar] [CrossRef]
- Sun, Z.; Zhao, X.; Zhang, L.; Mei, Z.; Zhong, H.; You, R.; Lu, W.; You, Z.; Zhao, J. WiFi energy-harvesting antenna inspired by the resonant magnetic dipole metamaterial. Sensors 2022, 22, 6523. [Google Scholar] [CrossRef] [PubMed]
- Amer, A.A.G.; Othman, N.; Sapuan, S.Z.; Alphones, A.; Hassan, M.F.; Al-Gburi, A.J.A.; Zakaria, Z. Dual-Band, Wide-Angle, and High-Capture Efficiency Metasurface for Electromagnetic Energy Harvesting. Nanomaterials 2023, 13, 2015. [Google Scholar] [CrossRef]
- Amer, A.A.G.; Sapuan, S.Z.; Ashyap, A.Y. Efficient metasurface for electromagnetic energy harvesting with high capture efficiency and a wide range of incident angles. J. Electromagn. Waves Appl. 2023, 37, 245–256. [Google Scholar] [CrossRef]
- Packard, H. Technical Data, “Surface Mount Microwave Schottky Detector Diodes”. 1999. Available online: https://www.google.com.hk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwi3ueX52JCBAxWWilYBHXeQD6wQFnoECA4QAQ&url=http%3A%2F%2Fwww.hp.woodshot.com%2Fhprfhelp%2F4_downld%2Fproducts%2Fdiodes%2Fhsms2850.pdf&usg=AOvVaw3Q6hCE3Xm0w2WwkArNd2m_&opi=89978449 (accessed on 16 August 2023).
- Song, C.; Huang, Y.; Carter, P.; Zhou, J.; Yuan, S.; Xu, Q.; Kod, M. A novel six-band dual CP rectenna using improved impedance matching technique for ambient RF energy harvesting. IEEE Trans. Antennas Propag. 2016, 64, 3160–3171. [Google Scholar] [CrossRef]
- Geozandas.com. Time Domain Antenna Measurement Systems. [Online]. Available online: https://www.geozondas.com/main_page.php?pusl=12 (accessed on 20 July 2023).
Shorted Stub L1/W1 | Open-Circuited Stub L2/W2 | 3 |
---|---|---|
7.71/8.67 | 4/0.1 | 8.73/0.707/78° |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdulwali, Z.S.A.; Alqahtani, A.H.; Aladadi, Y.T.; Alkanhal, M.A.S.; Al-Moliki, Y.M.; Aljaloud, K.; Alresheedi, M.T. A High-Performance Circularly Polarized and Harmonic Rejection Rectenna for Electromagnetic Energy Harvesting. Sensors 2023, 23, 7725. https://doi.org/10.3390/s23187725
Abdulwali ZSA, Alqahtani AH, Aladadi YT, Alkanhal MAS, Al-Moliki YM, Aljaloud K, Alresheedi MT. A High-Performance Circularly Polarized and Harmonic Rejection Rectenna for Electromagnetic Energy Harvesting. Sensors. 2023; 23(18):7725. https://doi.org/10.3390/s23187725
Chicago/Turabian StyleAbdulwali, Zaed S. A., Ali H. Alqahtani, Yosef T. Aladadi, Majeed A. S. Alkanhal, Yahya M. Al-Moliki, Khaled Aljaloud, and Mohammed Thamer Alresheedi. 2023. "A High-Performance Circularly Polarized and Harmonic Rejection Rectenna for Electromagnetic Energy Harvesting" Sensors 23, no. 18: 7725. https://doi.org/10.3390/s23187725
APA StyleAbdulwali, Z. S. A., Alqahtani, A. H., Aladadi, Y. T., Alkanhal, M. A. S., Al-Moliki, Y. M., Aljaloud, K., & Alresheedi, M. T. (2023). A High-Performance Circularly Polarized and Harmonic Rejection Rectenna for Electromagnetic Energy Harvesting. Sensors, 23(18), 7725. https://doi.org/10.3390/s23187725