SGAN-IDS: Self-Attention-Based Generative Adversarial Network against Intrusion Detection Systems
Abstract
:1. Introduction
- We propose a novel framework called SGAN-IDS that uses adversarial training to make ML-based IDSs more resilient to attack detection.
- We introduce the idea of a self-attention mechanism to GANs to build adversarial traffic flows that will evade IDS detection.
- We evaluate the model using the CICIDS2017 dataset, which achieves highly accurate results.
Motivation
- Synthetic data vulnerabilities: Current IDSs can be bypassed by adversarial synthetic network flows. Our proposal directly confronts this vulnerability, aiming to enhance detection capabilities.
- Harnessing deep learning: The capabilities of GANs in understanding complex data distributions present an opportunity to revolutionize cybersecurity. Our framework leverages this potential for improved intrusion detection.
- Proactive approach: Our strategy emphasizes not just reacting to threats but proactively simulating potential attacks, ensuring IDSs are better prepared for real-world threats.
- AI in cybersecurity: As AI becomes integral to security solutions, it is crucial to address its potential vulnerabilities. Our framework seeks to turn AI’s challenges into strengths, enhancing overall security.
2. Background
2.1. Generative Adversarial Networks
2.2. Attention Mechanism
2.2.1. General Attention
- A is the attention output.
- q is the query.
- K is the set of all keys.
- V is the set of all values.
- represents the dot product between the query q and a specific key . This dot product measures the compatibility of the query with that key.
- The term is the exponential of the dot product, which amplifies the compatibility score.
- The denominator is a normalization term. It sums the exponential scores for all keys, ensuring that the weights sum up to 1. This makes the mechanism probabilistic, as it essentially computes a weighted average of values.
- is the value associated with the key .
2.2.2. Self-Attention
- Q represents the matrix of queries.
- K represents the matrix of keys.
- V represents the matrix of values.
2.3. Self-Attention for GANs
3. Related Work
4. Method
4.1. Problem Description
4.2. Generative Adversarial Networks (GANs)
4.2.1. Design of the Generator
4.2.2. Design of the Discriminator
4.3. Attention Model
4.4. BlackBox IDS
5. Implementation of SGAN-IDS
Algorithm 1 SGAN-IDS |
Input: Normal and malicious features ; Output: G outputs the network traffic
|
6. Results
6.1. Dataset
6.1.1. CICIDS2017 Dataset
6.1.2. NSL-KDD Dataset
6.2. Data Preprocessing
6.3. Experimental Setup
6.4. Implementation of SGAN-IDS
6.5. Evaluation Metrics
6.6. Evaluation Results
6.7. Comparisons with State-of-the-Art Adversarial Techniques
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Samrin, R.; Vasumathi, D. Review on anomaly based network intrusion detection system. In Proceedings of the International Conference on Electrical, Electronics, Communication Computer Technologies and Optimization Techniques, ICEECCOT 2017, Mysuru, India, 15–16 December 2017; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2018; pp. 141–147. [Google Scholar] [CrossRef]
- Ahmim, A.; Maglaras, L.; Ferrag, M.A.; Derdour, M.; Janicke, H. A novel hierarchical intrusion detection system based on decision tree and rules-based models. In Proceedings of the 15th Annual International Conference on Distributed Computing in Sensor Systems, DCOSS 2019, Santorini, Greece, 29–31 May 2019; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2019; pp. 228–233. [Google Scholar] [CrossRef]
- Atefinia, R.; Ahmadi, M. Network intrusion detection using multi-architectural modular deep neural network. J. Supercomput. 2021, 77, 3571–3593. [Google Scholar] [CrossRef]
- Gauthama Raman, M.R.; Somu, N.; Jagarapu, S.; Manghnani, T.; Selvam, T.; Krithivasan, K.; Shankar Sriram, V.S. An efficient intrusion detection technique based on support vector machine and improved binary gravitational search algorithm. Artif. Intell. Rev. 2020, 53, 3255–3286. [Google Scholar] [CrossRef]
- Aldhaheri, S.; Alghazzawi, D.; Cheng, L.; Alzahrani, B.; Al-Barakati, A. DeepDCA: Novel network-based detection of iot attacks using artificial immune system. Appl. Sci. 2020, 10, 1909. [Google Scholar] [CrossRef]
- Gu, Z.; Ahn, C.K.; Yue, D.; Xie, X. Event-Triggered H∞Filtering for T-S Fuzzy-Model-Based Nonlinear Networked Systems with Multisensors Against DoS Attacks. IEEE Trans. Cybern. 2022, 52, 5311–5321. [Google Scholar] [CrossRef]
- Yin, H.; Xue, M.; Xiao, Y.; Xia, K.; Yu, G. Intrusion Detection Classification Model on an Improved k-Dependence Bayesian Network. IEEE Access 2019, 7, 157555–157563. [Google Scholar] [CrossRef]
- Le Jeune, L.; Goedeme, T.; Mentens, N. Machine Learning for Misuse-Based Network Intrusion Detection: Overview, Unified Evaluation and Feature Choice Comparison Framework. IEEE Access 2021, 9, 63995–64015. [Google Scholar] [CrossRef]
- Zhou, D.; Yan, Z.; Fu, Y.; Yao, Z. A survey on network data collection. J. Netw. Comput. Appl. 2018, 116, 9–23. [Google Scholar] [CrossRef]
- Guillen, E.; Sánchez, J.; Paez, R. Inefficiency of IDS static anomaly detectors in real-world networks. Future Internet 2015, 7, 94–109. [Google Scholar] [CrossRef]
- Cao, Y.J.; Jia, L.L.; Chen, Y.X.; Lin, N.; Yang, C.; Zhang, B.; Liu, Z.; Li, X.X.; Dai, H.H. Recent Advances of Generative Adversarial Networks in Computer Vision. IEEE Access 2019, 7, 14985–15006. [Google Scholar] [CrossRef]
- Usama, M.; Asim, M.; Latif, S.; Qadir, J.; Ala-Al-Fuqaha. Generative adversarial networks for launching and thwarting adversarial attacks on network intrusion detection systems. In Proceedings of the 2019 15th International Wireless Communications and Mobile Computing Conference, IWCMC 2019, Tangier, Morocco, 24–28 June 2019; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2019; pp. 78–83. [Google Scholar] [CrossRef]
- Reiter, J.P. Using CART to generate partially synthetic, public use microdata. J. Off. Stat. 2003, 21, 441–462. [Google Scholar]
- Nowok, B.; Raab, G.M.; Dibben, C. Synthpop: Bespoke creation of synthetic data in R. J. Stat. Softw. 2016, 74, 1–26. [Google Scholar] [CrossRef]
- Zhang, J.; Cormode, G.; Procopiuc, C.M.; Srivastava, D.; Xiao, X. Priv bayes: Private data release via Bayesian networks. ACM Trans. Database Syst. 2017, 42, 1–41. [Google Scholar] [CrossRef]
- Dong, Q.; Elliott, M.R.; Raghunathan, T.E. A nonparametric method to generate synthetic populations to adjust for complex sampling design features. Surv. Methodol. 2014, 40, 29–46. [Google Scholar] [PubMed]
- Frid-Adar, M.; Klang, E.; Amitai, M.; Goldberger, J.; Greenspan, H. Synthetic data augmentation using GAN for improved liver lesion classification. In Proceedings of the International Symposium on Biomedical Imaging, Washington, DC, USA, 4–7 April 2018; IEEE Computer Society: Piscataway, NJ, USA, 2018; pp. 289–293. [Google Scholar] [CrossRef]
- Liu, S.; Li, S.; Cheng, H. Towards an End-to-End Visual-to-Raw-Audio Generation with GAN. IEEE Trans. Circuits Syst. Video Technol. 2022, 32, 1299–1312. [Google Scholar] [CrossRef]
- Andreini, P.; Bonechi, S.; Bianchini, M.; Mecocci, A.; Scarselli, F. Image generation by GAN and style transfer for agar plate image segmentation. Comput. Methods Programs Biomed. 2020, 184, 105268. [Google Scholar] [CrossRef]
- Alamayreh, O.; Barni, M. Detection of GAN-synthesized street videos. In Proceedings of the European Signal Processing Conference, EUSIPCO, Dublin, Ireland, 23–27 August 2021; pp. 811–815. [Google Scholar] [CrossRef]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial networks. Commun. ACM 2014, 63, 139–144. [Google Scholar] [CrossRef]
- Mnih, V.; Heess, N.; Graves, A.; Kavukcuoglu, K. Recurrent models of visual attention. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 8–13 December 2014; Volume 3, pp. 2204–2212. [Google Scholar]
- Bahdanau, D.; Cho, K.H.; Bengio, Y. Neural machine translation by jointly learning to align and translate. In Proceedings of the 3rd International Conference on Learning Representations, ICLR 2015—Conference Track Proceedings, International Conference on Learning Representations, San Diego, CA, USA, 7–9 May 2015. [Google Scholar] [CrossRef]
- Ashish, V.; Noam, S.; Niki, P.; Jakob, U.; Llion, J.; N, G.A.; Ukasz, K.; Illia, P. Attention is All you Need. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 5998–6008. [Google Scholar]
- Luong, M.T.; Pham, H.; Manning, C.D. Effective approaches to attention-based neural machine translation. In Proceedings of the EMNLP 2015: Conference on Empirical Methods in Natural Language Processing, Lisbon, Portugal, 17–21 September 2015; Association for Computational Linguistics (ACL): Stroudsburg, PA, USA, 2015; pp. 1412–1421. [Google Scholar] [CrossRef]
- Cheng, J.; Dong, L.; Lapata, M. Long short-term memory-networks for machine reading. In Proceedings of the EMNLP 2016—Conference on Empirical Methods in Natural Language Processing, Austin, TX, USA, 1–5 November 2016; Association for Computational Linguistics (ACL): Stroudsburg, PA, USA, 2016; pp. 551–561. [Google Scholar] [CrossRef]
- Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the NAACL HLT 2019—2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Minneapolis, MN, USA, 2–7 June 2019; Association for Computational Linguistics (ACL): Stroudsburg, PA, USA, 2019; Volume 1, pp. 4171–4186. [Google Scholar] [CrossRef]
- Parikh, A.P.; Täckström, O.; Das, D.; Uszkoreit, J. A decomposable attention model for natural language inference. In Proceedings of the EMNLP 2016—Conference on Empirical Methods in Natural Language Processing, Austin, TX, USA, 1–5 November 2016; pp. 2249–2255. [Google Scholar] [CrossRef]
- Wang, X.; Girshick, R.; Gupta, A.; He, K. Non-local Neural Networks. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 7794–7803. [Google Scholar] [CrossRef]
- Zhang, H.; Goodfellow, I.; Metaxas, D.; Odena, A. Self-attention generative adversarial networks. In Proceedings of the 36th International Conference on Machine Learning, ICML 2019, Long Beach, CA, USA, 9–15 June 2019; pp. 12744–12753. [Google Scholar] [CrossRef]
- Hu, W.; Tan, Y. Generating Adversarial Malware Examples for Black-Box Attacks Based on GAN. arXiv 2017, arXiv:1702.05983. [Google Scholar] [CrossRef]
- Kawai, M.; Ota, K.; Dong, M. Improved MalGAN: Avoiding Malware Detector by Leaning Cleanware Features. In Proceedings of the 1st International Conference on Artificial Intelligence in Information and Communication, ICAIIC 2019, Okinawa, Japan, 11–13 February 2019; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2019; pp. 40–45. [Google Scholar] [CrossRef]
- Anderson, H.S.; Woodbridge, J.; Filar, B. DeepDGA: Adversarially-tuned domain generation and detection. In Proceedings of the AISec 2016—2016 ACM Workshop on Artificial Intelligence and Security, co-Located with CCS 2016, Vienna, Austria, 28 October 2016; Association for Computing Machinery, Inc.: New York, NY, USA, 2016; pp. 13–21. [Google Scholar] [CrossRef]
- Lin, Z.; Shi, Y.; Xue, Z. IDSGAN: Generative Adversarial Networks for Attack Generation Against Intrusion Detection. In Proceedings of the Pacific-Asia Conference on Knowledge Discovery and Data Mining, Chengdu, China, 16–19 May 2022; pp. 79–91. [Google Scholar] [CrossRef]
- Arjovsky, M.; Chintala, S.; Bottou, L. Wasserstein generative adversarial networks. In Proceedings of the 34th International Conference on Machine Learning, ICML 2017, Sydney, Australia, 6–11 August 2017; Volume 1, pp. 298–321. [Google Scholar]
- Tavallaee, M.; Bagheri, E.; Lu, W.; Ghorbani, A.A. A detailed analysis of the KDD CUP 99 data set. In Proceedings of the IEEE Symposium on Computational Intelligence for Security and Defense Applications, CISDA 2009, Ottawa, ON, Canada, 8–10 July 2009; pp. 1–6. [Google Scholar] [CrossRef]
- Aiken, J.; Scott-Hayward, S. Investigating Adversarial Attacks against Network Intrusion Detection Systems in SDNs. In Proceedings of the IEEE Conference on Network Function Virtualization and Software Defined Networks, NFV-SDN 2019, Dallas, TX, USA, 12–14 November 2019; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2019. [Google Scholar] [CrossRef]
- Charlier, J.; Singh, A.; Ormazabal, G.; State, R.; Schulzrinne, H. SynGAN: Towards Generating Synthetic Network Attacks using GANs. arXiv 2019, arXiv:1908.09899. [Google Scholar] [CrossRef]
- Sharafaldin, I.; Habibi Lashkari, A.; Ghorbani, A.A. Toward Generating a New Intrusion Detection Dataset and Intrusion Traffic Characterization. ICISSp 2018, 1, 108–116. [Google Scholar] [CrossRef]
- Duy, P.T.; Tien, L.K.; Khoa, N.H.; Hien, D.T.T.; Nguyen, A.G.T.; Pham, V.H. DIGFuPas follows: Deceive IDS with GAN and function-preserving on adversarial samples in SDN-enabled networks. Comput. Secur. 2021, 109, 102367. [Google Scholar] [CrossRef]
- Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Chintala, S. Pytorch: An Imperative Style, High-Performance Deep Learning Library, Advances in neural information processing systems. In Proceedings of the 2019 Conference on Neural Information Processing Systems, Vancouver, BC, Canada, 8 December–14 December 2019; Volume 32. [Google Scholar]
- Lashkari, A.H.; Gil, G.D.; Mamun, M.S.I.; Ghorbani, A.A. Characterization of tor traffic using time based features. In Proceedings of the ICISSP 2017—3rd International Conference on Information Systems Security and Privacy, Porto, Portugal, 19–21 February 2017; pp. 253–262. [Google Scholar] [CrossRef]
- Li, J.; Cheng, K.; Wang, S.; Morstatter, F.; Trevino, R.P.; Tang, J.; Liu, H. Feature selection: A data perspective. ACM Comput. Surv. (CSUR) 2017, 50, 1–45. [Google Scholar] [CrossRef]
- Ozdemir, S.; Susarla, D. Feature Engineering Made Easy; Packt Publishing Ltd.: Birmingham, UK, 2018; p. 441. [Google Scholar]
- Cárdenas, A.A.; Baras, J.S.; Seamon, K. A framework for the evaluation of intrusion detection systems. In Proceedings of the IEEE Symposium on Security and Privacy, Oakland, CA, USA, 21–24 May 2006; Volome 2006, pp. 63–77. [Google Scholar] [CrossRef]
- Khraisat, A.; Gondal, I.; Vamplew, P.; Kamruzzaman, J.; Alazab, A. A novel ensemble of hybrid intrusion detection system for detecting internet of things attacks. Electronics 2019, 8, 1210. [Google Scholar] [CrossRef]
Class | Flow Count | Percentage | Training 70% | Testing 30% | |
---|---|---|---|---|---|
BENIGN | BENIGN | 2,273,097 | 76.75% | 1,591,167 | 681,929 |
DoS | DDoS | 231,073 | 7.802% | 161,751 | 69,321 |
Heartbleed | 11 | 0.0003% | 7 | 3 | |
DoS slowloris | 5796 | 0.1957% | 4057 | 1738 | |
DoS GoldenEye | 10,293 | 0.3475% | 3087 | 7205 | |
DoS SlowHTTPTest | 5499 | 0.1856% | 3849 | 1649 | |
DoS Hulk | 231,073 | 0.0392% | 161,751 | 69,321 | |
Web Attack | SQL Injection | 5796 | 0.2121% | 4057 | 1738 |
Brute Force | 7938 | 0.2906% | 5556 | 2381 | |
XSS | 5897 | 0.2158% | 4127 | 1769 | |
Infiltration | Infiltration | 10,293 | 0.3768% | 7205 | 3087 |
Port Scan | Port scan | 158,930 | 5.8184% | 111,251 | 47,679 |
Brute Force | FTP-Patator | 1769 | 0.29061% | 1238 | 530 |
SSH-Patator | 5897 | 0.2158% | 4127 | 1769 | |
Bot | Bot | 1966 | 0.0719% | 1376 | 589 |
Class | Flow Count | Training 70% | Testing 30% |
---|---|---|---|
Normal | 77,054 | 53,937 | 23,116 |
DoSS | 53,387 | 37,370 | 16,016 |
Probe | 14,077 | 9853 | 4223 |
R2L | 3880 | 2716 | 1164 |
U2R | 119 | 83 | 35 |
Original Traffic | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Model | Accuracy | Precision | Recall | F1 | ||||||||
DDoS | Web Attack | Infiltration | DDoS | Web Attack | Infiltration | DDoS | Web Attack | Infiltration | DDoS | Web Attack | Infiltration | |
SVM | 98.31 | 97.11 | 99.33 | 97.11 | 96.98 | 98.00 | 97.26 | 97.50 | 97.33 | 97.18 | 97.70 | 97.63 |
KNN | 97.34 | 94.22 | 93.33 | 96.34 | 93.29 | 94.67 | 95.98 | 94.99 | 94.89 | 96.15 | 94.65 | 94.79 |
NB | 98.00 | 97.88 | 98.44 | 97.60 | 97.54 | 97.74 | 97.12 | 97.20 | 97.14 | 97.35 | 97.30 | 97.54 |
LR | 97.34 | 97.40 | 96.63 | 97.30 | 96.33 | 95.53 | 97.98 | 97.11 | 96.83 | 97.63 | 96.90 | 96.45 |
LSTM | 98.34 | 98.88 | 99.23 | 98.11 | 97.78 | 97.93 | 97.98 | 97.88 | 98.93 | 97.65 | 97.80 | 98.73 |
Adversarial Traffic | ||||||||||||
Model | Accuracy | Precision | Recall | F1 | ||||||||
DDoS | Web Attack | Infiltration | DDoS | Web Attack | Infiltration | DDoS | Web Attack | Infiltration | DDoS | Web Attack | Infiltration | |
SVM | 73.58 | 83.52 | 89.44 | 73.00 | 81.00 | 88.94 | 71.38 | 81.00 | 89.44 | 72.18 | 81.00 | 88.74 |
KNN | 64.55 | 64.55 | 84.35 | 62.76 | 61.59 | 83.15 | 64.11 | 61.00 | 82.00 | 63.65 | 61.35 | 82.11 |
NB | 89.43 | 84.44 | 95.43 | 88.63 | 82.94 | 93.83 | 87.73 | 82.44 | 94.93 | 87.93 | 82.64 | 94.83 |
LR | 84.22 | 74.72 | 82.77 | 82.22 | 73.62 | 81.37 | 82.22 | 72.52 | 81.77 | 82.75 | 72.98 | 81.47 |
LSTM | 74.66 | 87.66 | 95.64 | 72.96 | 85.65 | 94.77 | 73.86 | 86.66 | 95.90 | 73.40 | 86.11 | 95.33 |
Original Traffic | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Model | Accuracy | Precision | Recall | F1 | ||||||||
DDoS | U2R | Probe | DDoS | U2R | Probe | DDoS | U2R | Probe | DDoS | U2R | Probe | |
SVM | 97.87 | 97.99 | 97.93 | 98.41 | 96.98 | 98.00 | 95.36 | 92.59 | 96.93 | 98.98 | 95.00 | 96.63 |
KNN | 95.24 | 97.22 | 96.33 | 96.74 | 93.29 | 94.67 | 95.98 | 94.99 | 94.89 | 96.15 | 94.65 | 94.79 |
NB | 98.80 | 97.00 | 94.44 | 97.60 | 98.54 | 94.74 | 95.02 | 97.20 | 95.94 | 96.75 | 98.90 | 95.50 |
LR | 96.14 | 96.98 | 98.63 | 97.30 | 96.33 | 98.83 | 97.98 | 97.11 | 96.83 | 97.63 | 96.90 | 96.45 |
LSTM | 98.50 | 97.48 | 97.93 | 96.16 | 96.78 | 97.93 | 96.98 | 92.08 | 95.95 | 95.95 | 92.90 | 97.73 |
Adversarial Traffic | ||||||||||||
Model | Accuracy | Precision | Recall | F1 | ||||||||
DDoS | U2R | Probe | DDoS | U2R | Probe | DDoS | U2R | Probe | DDoS | U2R | Probe | |
SVM | 51.59 | 56.11 | 49.44 | 53.62 | 41.00 | 58.94 | 53.65 | 31.00 | 49.44 | 42.18 | 33.65 | 53.73 |
KNN | 44.55 | 44.93 | 34.35 | 22.76 | 21.59 | 36.11 | 44.11 | 41.00 | 32.00 | 43.65 | 31.35 | 52.11 |
NB | 42.64 | 34.44 | 35.43 | 82.44 | 46.11 | 31.90 | 37.73 | 52.44 | 54.93 | 37.93 | 32.64 | 44.53 |
LR | 24.22 | 45.64 | 22.77 | 22.22 | 23.62 | 31.37 | 22.22 | 32.52 | 41.77 | 22.75 | 42.98 | 31.37 |
LSTM | 22.44 | 31.77 | 33.40 | 73.62 | 35.65 | 31.47 | 43.86 | 23.65 | 35.90 | 33.65 | 21.47 | 35.34 |
Attack | Baseline | FGSM | JSMA | DeepFool | SGAN-IDS |
---|---|---|---|---|---|
DoSS | 98.50 | 36.33 | 67.33 | 26.64 | 22.44 |
Probe | 97.48 | 43.23 | 51.77 | 30.23 | 31.77 |
U2R | 97.93 | 45.98 | 41.47 | 37.98 | 33.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aldhaheri, S.; Alhuzali, A. SGAN-IDS: Self-Attention-Based Generative Adversarial Network against Intrusion Detection Systems. Sensors 2023, 23, 7796. https://doi.org/10.3390/s23187796
Aldhaheri S, Alhuzali A. SGAN-IDS: Self-Attention-Based Generative Adversarial Network against Intrusion Detection Systems. Sensors. 2023; 23(18):7796. https://doi.org/10.3390/s23187796
Chicago/Turabian StyleAldhaheri, Sahar, and Abeer Alhuzali. 2023. "SGAN-IDS: Self-Attention-Based Generative Adversarial Network against Intrusion Detection Systems" Sensors 23, no. 18: 7796. https://doi.org/10.3390/s23187796
APA StyleAldhaheri, S., & Alhuzali, A. (2023). SGAN-IDS: Self-Attention-Based Generative Adversarial Network against Intrusion Detection Systems. Sensors, 23(18), 7796. https://doi.org/10.3390/s23187796