Gas Sensor Array Fault Diagnosis Based on Multi-Dimensional Fusion, an Attention Mechanism, and Multi-Task Learning
Abstract
:1. Introduction
- (1)
- A multi-dimensional feature fusion method integrating a residual network (ResNet) and Bi-LSTM is proposed. Deep and comprehensive features can be extracted by fusing the 2D spatial features and 1D temporal features of samples for the fault diagnosis of a gas sensor array.
- (2)
- A ResNet equipped with convolutional block attention module (CBAM) is proposed for the 2D feature extraction of gas sensor data to capture and refine important fault features more effectively, and the diagnostic accuracy of the model is further improved.
- (3)
- A multi-task learning module was designed for gas sensor fault detection, fault identification, and fault localization. This approach can fully utilize the extracted comprehensive features to perform the three tasks in unison. The diagnostic accuracy can be improved by parameter sharing and the mutual promotion of simultaneous training between related tasks.
2. Theoretical Background
2.1. ResNet
2.2. CBAM
2.3. Bi-LSTM
3. Proposed Method
3.1. Multi-Dimensional Feature Fusion Module
3.2. Multi-Task Learning Module
3.2.1. Fault Detection Classifier
3.2.2. Fault Identification and Localization Classifier
3.3. MAM-Net Model Training
4. Dataset Preparation
4.1. Dataset Description
4.2. Fault Injection
- Broken circuit fault: The value returned by the gas sensor drops to zero and stops changing because of a circuit break or short circuit in the system.
- Bias fault: The output value is stabilized around a fixed value due to the reaction-sensitive unit of the semiconductor gas sensor with the heating wire off.
- Spike fault: The output value appears as a pulse value because of an abnormal voltage spike pulse in the sensor circuit.
- Noise fault: The output values appear irregular and strongly disturbed because of external disturbances.
- Gain fault: The output value has a constant ratio to the ideal value because of internal circuit issues.
5. Experimental Results
5.1. Two-Dimensional Encoder Performance Comparison
5.1.1. Performance Comparison of ResNet with Different Depths and Dimensions
5.1.2. Performance Comparison of Different Attention Modules
5.2. Multi-Dimensional Feature Extraction vs. Single-Dimension Feature Extraction
5.3. Multi-Task Learning vs. Single-Task Learning
5.4. Model Validation
5.4.1. Compared Methods
- (1)
- MLP
- (2)
- LeNet
- (3)
- DenseNet
- (4)
- RepVGG
- (5)
- CNN
- (6)
- Inception
- (7)
- CNN-LSTM
- (8)
- MFSMTP
- (9)
- MTL-CNN
5.4.2. Comparison of Fault Detection Performance
5.4.3. Comparison of Fault Identification Performance
5.4.4. Comparison of Fault Localization Performance
6. Discussion
6.1. Diagnostic Performance of Different Methods on Different Amounts of Data
6.2. Diagnostic Performance of MAM-Net on Imbalanced Dataset
6.3. Generalization Performance of MAM-Net
6.4. Real-Time Analysis of the Proposed Methods
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ali, S.; Glass, T.; Parr, B.; Potgieter, J.; Alam, F. Low Cost Sensor with IoT LoRaWAN Connectivity and Machine Learning-Based Calibration for Air Pollution Monitoring. IEEE Trans. Instrum. Meas. 2021, 70, 5500511. [Google Scholar] [CrossRef]
- Pavani, M.; Rao, P.T. Monitoring Real-Time Urban Carbon Monoxide (CO) Emissions Using Wireless Sensor Networks. In Information and Communication Technology for Intelligent Systems (ICTIS); Springer International Publishing: Cham, Switzerland, 2017; Volume 2, pp. 290–297. [Google Scholar]
- Shaalan, N.M.; Ahmed, F.; Saber, O.; Kumar, S. Gases in Food Production and Monitoring: Recent Advances in Target Chemiresistive Gas Sensors. Chemosensors 2022, 10, 338. [Google Scholar] [CrossRef]
- Zaytsev, V.; Ermatov, T.I.; Fedorov, F.S.; Balabin, N.; Kapralov, P.O.; Bondareva, J.V.; Ignatyeva, D.O.; Khlebtsov, B.N.; Kosolobov, S.S.; Belotelov, V.I.; et al. Design of an Artificial Opal/Photonic Crystal Interface for Alcohol Intoxication Assessment: Capillary Condensation in Pores and Photonic Materials Work Together. Anal. Chem. 2022, 94, 12305–12313. [Google Scholar] [CrossRef]
- Gao, H.Y.; Yu, Q.; Chen, K.; Sun, P.; Liu, F.M.; Yan, X.; Liu, F.M.; Lu, G.Y. Ultrasensitive gas sensor based on hollow tungsten trioxide-nickel oxide (WO3-NiO) nanoflowers for fast and selective xylene detection. J. Colloid Interface Sci. 2019, 535, 458–468. [Google Scholar] [CrossRef] [PubMed]
- Su, P.-G.; Li, M.-C. Recognition of binary mixture of NO2 and NO gases using a chemiresistive sensors array combined with principal component analysis. Sens. Actuators A 2021, 331, 112980. [Google Scholar] [CrossRef]
- Mishra, A.; Rajput, N.S. A novel modular ANN architecture for efficient monitoring of gases/odours in real-time. Mater. Res. Express. 2018, 5, 045904. [Google Scholar] [CrossRef]
- Pareek, V.; Chaudhury, S.; Singh, S. Online Pattern Recognition of Time-series Gas Sensor Data with Adaptive 2D-CNN Ensemble. In Proceedings of the 11th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems—Technology and Applications (IDAACS), Kracow, Poland, 22–25 September 2021; pp. 679–683. [Google Scholar] [CrossRef]
- Xu, Y.; Meng, R.; Yang, Z. Research on Micro-Fault Detection and Multiple-Fault Isolation for Gas Sensor Arrays Based on Serial Principal Component Analysis. Electronics 2022, 11, 1755. [Google Scholar] [CrossRef]
- Ni, Q.; Ji, J.C.; Halkon, B.; Feng, K.; Nandi, A.K. Physics-Informed Residual Network (PIResNet) for rolling element bearing fault diagnostics. Mech. Syst. Signal Process. 2023, 200, 110544. [Google Scholar] [CrossRef]
- Feng, K.; Ji, J.C.; Zhang, Y.; Ni, Q.; Liu, Z.; Beer, M. Digital twin-driven intelligent assessment of gear surface degradation. Mech. Syst. Signal Process. 2023, 186, 109896. [Google Scholar] [CrossRef]
- Feng, K.; Ji, J.C.; Ni, Q.; Li, Y.; Mao, W.; Liu, L. A novel vibration-based prognostic scheme for gear health management in surface wear progression of the intelligent manufacturing system. Wear 2023, 522, 204697. [Google Scholar] [CrossRef]
- He, W.; He, Y.G.; Li, B. Generative Adversarial Networks with Comprehensive Wavelet Feature for Fault Diagnosis of Analog Circuits. IEEE Trans. Instrum. Meas. 2020, 69, 6640–6650. [Google Scholar] [CrossRef]
- Yang, J.L.; Sun, Z.; Chen, Y.S. Fault Detection Using the Clustering-kNN Rule for Gas Sensor Arrays. Sensors 2016, 16, 2069. [Google Scholar] [CrossRef]
- Yu, Z.; Xu, Y.; Ma, Y.; Wu, Y.; Chung, J.-G. Study of Sensor Fault Detection Based on Modified SVM Algorithm. In Proceedings of the International SoC Design Conference (ISOCC), Jeju, Republic of Korea, 3–6 November 2014; pp. 294–295. [Google Scholar]
- Zhao, Z.; Zhang, J.; Sun, Y.; Liu, Z. Sensor fault diagnosis of aero-engine based on divided flight status. Rev. Sci. Instrum. 2017, 88, 8. [Google Scholar] [CrossRef]
- Cai, J.; Sun, W.; Jiao, Z.; Li, R.; Geng, L.; Qi, P.; Liu, X. Dual redundancy fault diagnosis and reconstruction system of sensors based on BP neural network. In Proceedings of the 16th IEEE Conference on Industrial Electronics and Applications (ICIEA), Virtual Event, 1–4 August 2021; pp. 1378–1382. [Google Scholar] [CrossRef]
- Zhao, X.J.; Wen, Z.H.; Pan, X.F.; Ye, W.B.; Bermak, A. Mixture Gases Classification Based on Multi-Label One-Dimensional Deep Convolutional Neural Network. IEEE Access 2019, 7, 12630–12637. [Google Scholar] [CrossRef]
- Abboush, M.; Bamal, D.; Knieke, C.; Rausch, A. Intelligent Fault Detection and Classification Based on Hybrid Deep Learning Methods for Hardware-in-the-Loop Test of Automotive Software Systems. Sensors 2022, 22, 4006. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Qu, L.; Peng, K. Sensor and Actuator Fault Diagnosis for Robot Joint Based on Deep CNN. Entropy 2021, 23, 751. [Google Scholar] [CrossRef]
- Gao, T.; Sheng, W.; Zhou, M.L.; Fang, B.; Zheng, L.P. MEMS Inertial Sensor Fault Diagnosis Using a CNN-Based Data-Driven Method. Int. J. Pattern Recognit. Artif. Intell. 2020, 34, 2059048. [Google Scholar] [CrossRef]
- Du, X.; Chen, J.J.; Zhang, H.B.; Wang, J.Q. Fault Detection of Aero-Engine Sensor Based on Inception-CNN. Aerospace 2022, 9, 236. [Google Scholar] [CrossRef]
- Wan, C.; Yu, Q.; Li, J. A Voltage Sensor Fault Diagnosis Method Based on Long Short-Term Memory Neural Networks for Battery Energy Storage System. In Proceedings of the 2021 IEEE/IAS Industrial and Commercial Power System Asia (I&CPS Asia), Chengdu, China, 18–21 July 2021; pp. 163–167. [Google Scholar] [CrossRef]
- Chu, K.S.K.; Chew, K.W.; Chang, Y.C. Fault-Diagnosis and Fault-Recovery System of Hall Sensors in Brushless DC Motor Based on Neural Networks. Sensors 2023, 23, 4330. [Google Scholar] [CrossRef]
- Pan, T.; Chen, J.; Zhang, T.; Liu, S.; He, S.; Lv, H. Generative adversarial network in mechanical fault diagnosis under small sample: A systematic review on applications and future perspectives. ISA Trans. 2022, 128, 1–10. [Google Scholar] [CrossRef]
- Deng, X.; Xiao, L.; Liu, X.; Zhang, X. One-Dimensional Residual GANomaly Network-Based Deep Feature Extraction Model for Complex Industrial System Fault Detection. IEEE Trans. Instrum. Meas. 2023, 72, 3520013. [Google Scholar] [CrossRef]
- Liu, H.Q.; Zhao, H.B.; Wang, J.Y.; Yuan, S.; Feng, W.Q. LSTM-GAN-AE: A Promising Approach for Fault Diagnosis in Machine Health Monitoring. IEEE Trans. Instrum. Meas. 2022, 71, 3503113. [Google Scholar] [CrossRef]
- Sun, Y.Y.; Liu, S.X.; Zhao, T.T.; Zou, Z.H.; Shen, B.; Yu, Y.; Zhang, S.; Zhang, H.Q. A New Hydrogen Sensor Fault Diagnosis Method Based on Transfer Learning With LeNet-5. Front. Neurorobot. 2021, 15, 5171. [Google Scholar] [CrossRef]
- Sun, Y.Y.; Zhang, H.Q.; Zhao, T.T.; Zou, Z.H.; Shen, B.; Yang, L.X. A New Convolutional Neural Network with Random Forest Method for Hydrogen Sensor Fault Diagnosis. IEEE Access 2020, 8, 85421–85430. [Google Scholar] [CrossRef]
- Sun, Y.Y.; Zhao, T.T.; Zou, Z.H.; Chen, Y.S.; Zhang, H.Q. Imbalanced data fault diagnosis of hydrogen sensors using deep convolutional generative adversarial network with convolutional neural network. Rev. Sci. Instrum. 2021, 92, 095007. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Liang, R.; Ran, W.; Chen, W. Gearbox fault diagnosis method based on deep learning multi-task framework. Int. J. Struct. Integr. 2023, 14, 401–415. [Google Scholar] [CrossRef]
- Zhou, L.; Wang, H.W.; Xu, S.S. Aero-engine prognosis strategy based on multi-scale feature fusion and multi-task parallel learning. Reliab. Eng. Syst. Saf. 2023, 234, 109182. [Google Scholar] [CrossRef]
- Tian, J.H.; Han, D.Y.; Xiao, L.F.; Shi, P.M. Multi-scale deep coupling convolutional neural network with heterogeneous sensor data for intelligent fault diagnosis. J. Intell. Fuzzy Syst. 2021, 41, 2225–2238. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, M.; Li, Y.; Xu, Z.; Wang, J.; Fang, X. A Multi-Input and Multi-Task Convolutional Neural Network for Fault Diagnosis Based on Bearing Vibration Signal. IEEE Sens. J. 2021, 21, 10946–10956. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, X.; Xie, S.; Wang, J.; Zhou, X. A Novel Fault Diagnosis Method for Analog Circuits Based on Multi-Input Deep Residual Networks with an Improved Empirical Wavelet Transform. Appl. Sci. 2022, 12, 1675. [Google Scholar] [CrossRef]
- Al-Dulaimi, A.; Zabihi, S.; Asif, A.; Mohammadi, A. A multimodal and hybrid deep neural network model for remaining useful life estimation. Comput. Ind. 2019, 108, 186–196. [Google Scholar] [CrossRef]
- Wu, J.F.; Yao, L.; Liu, B.; Ding, Z.Y.; Zhang, L. Multi-task learning based Encoder-Decoder: A comprehensive detection and diagnosis system for multi-sensor data. Adv. Mech. Eng. 2021, 13, 1–14. [Google Scholar] [CrossRef]
- Zhang, Z.; Qin, R.; Li, G.; Du, Z.; Li, Z.; Lin, Y.; He, W. Deep learning-based monitoring of surface residual stress and efficient sensing of AE for laser shock peening. J. Mater. Process. Technol. 2022, 303, 117515. [Google Scholar] [CrossRef]
- Jia, Z.; Wang, K.; Li, Y.; Liu, Z.B.; Qin, J.; Yang, Q.Q. High Precision Feature Fast Extraction Strategy for Aircraft Attitude Sensor Fault Based on RepVGG and SENet Attention Mechanism. Sensors 2022, 22, 9662. [Google Scholar] [CrossRef]
- Zhao, M.H.; Zhong, S.S.; Fu, X.Y.; Tang, B.P.; Pecht, M. Deep Residual Shrinkage Networks for Fault Diagnosis. IEEE Trans. Ind. Inform. 2020, 16, 4681–4690. [Google Scholar] [CrossRef]
- Cui, J.; Xie, P.; Wang, X.; Wang, J.; He, Q.; Jiang, G.Q. M2FN: An end-to-end multi-task and multi-sensor fusion network for intelligent fault diagnosis. Measurement 2022, 204, 112085. [Google Scholar] [CrossRef]
- Chen, J.; Hu, W.; Cao, D.; Zhang, Z.; Chen, Z. A Novel Multi-task Learning Method with Attention Mechanism for Wind Turbine Blades Imbalance Fault Diagnosis. In Proceedings of the 4th Asia Energy and Electrical Engineering Symposium (AEEES), Chengdu, China, 25–28 March 2022; pp. 857–862. [Google Scholar] [CrossRef]
- Xin, R.; Feng, X.; Wang, T.; Miao, F.; Yu, C. A Multi-Task-Based Deep Multi-Scale Information Fusion Method for Intelligent Diagnosis of Bearing Faults. Machines 2023, 11, 198. [Google Scholar] [CrossRef]
- Zhang, J.; Sun, J.; Wang, J.; Yue, X.-G. Visual object tracking based on residual network and cascaded correlation filters. J. Ambient. Intell. Humaniz. Comput. 2021, 12, 8427–8440. [Google Scholar] [CrossRef]
- Shafiq, M.; Gu, Z. Deep Residual Learning for Image Recognition: A Survey. Appl. Sci. 2022, 12, 8972. [Google Scholar] [CrossRef]
- Zhang, K.; Tang, B.; Deng, L.; Tan, Q.; Yu, H. A fault diagnosis method for wind turbines gearbox based on adaptive loss weighted meta-ResNet under noisy labels. Mech. Syst. Signal Process. 2021, 161, 107963. [Google Scholar] [CrossRef]
- Yan, J.L.; Kan, J.M.; Luo, H.F. Rolling Bearing Fault Diagnosis Based on Markov Transition Field and Residual Network. Sensors 2022, 22, 3936. [Google Scholar] [CrossRef] [PubMed]
- Woo, S.H.; Park, J.; Lee, J.Y.; Kweon, I.S. CBAM: Convolutional Block Attention Module. In Proceedings of the 15th European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; Volume 11211, pp. 3–19. [Google Scholar] [CrossRef]
- Liu, R.; Tao, F.; Liu, X.; Na, J.; Leng, H.; Wu, J.; Zhou, T. RAANet: A Residual ASPP with Attention Framework for Semantic Segmentation of High-Resolution Remote Sensing Images. Remote Sens. 2022, 14, 3109. [Google Scholar] [CrossRef]
- Li, J.; Liu, Y.; Li, Q. Intelligent fault diagnosis of rolling bearings under imbalanced data conditions using attention-based deep learning method. Measurement 2022, 189, 110500. [Google Scholar] [CrossRef]
- Zhang, L.J.; Duan, L.X. Cross-scenario transfer diagnosis of reciprocating compressor based on CBAM and ResNet. J. Intell. Fuzzy Syst. 2022, 43, 5929–5943. [Google Scholar] [CrossRef]
- Zheng, G.; Chen, W.; Qian, Q.; Kumar, A.; Sun, W.; Zhou, Y. TCM in milling processes based on attention mechanism-combined long short-term memory using a sound sensor under different working conditions. Int. J. Hydromech. 2022, 5, 243–259. [Google Scholar] [CrossRef]
- Park, S.; On, B.-W.; Lee, R.; Park, M.-W.; Lee, S.-H. A Bi-LSTM and k-NN Based Method for Detecting Major Time Zones of Overloaded Vehicles. Symmetry 2019, 11, 1160. [Google Scholar] [CrossRef]
- Tehrani, A.; Yadollahzadeh-Tabari, M.; Zehtab-Salmasi, A.; Enayatifar, R. Wearable Sensor-Based Human Activity Recognition System Employing Bi-LSTM Algorithm. Comput. J. 2023, bxad035. [Google Scholar] [CrossRef]
- Zou, F.Q.; Zhang, H.F.; Sang, S.T.; Li, X.M.; He, W.Y.; Liu, X.W. Bearing fault diagnosis based on combined multi-scale weighted entropy morphological filtering and bi-LSTM. Appl. Intell. 2021, 51, 6647–6664. [Google Scholar] [CrossRef]
- Burgues, J.; Jimenez-Soto, J.M.; Marco, S. Estimation of the limit of detection in semiconductor gas sensors through linearized calibration models. Anal. Chim. Acta 2018, 1013, 13–25. [Google Scholar] [CrossRef]
- Burgues, J.; Marco, S. Multivariate estimation of the limit of detection by orthogonal partial least squares in temperature-modulated MOX sensors. Anal. Chim. Acta 2018, 1019, 49–64. [Google Scholar] [CrossRef]
- Safavi, S.; Safavi, M.A.; Hamid, H.; Fallah, S. Multi-Sensor Fault Detection, Identification, Isolation and Health Forecasting for Autonomous Vehicles. Sensors 2021, 21, 2549. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.; Song, K.; Chen, Y.S.; Wei, G.; Wang, Q. Fault diagnosis method of self-validating metal oxide semiconductor gas sensor based on t-distribution stochastic neighbor embedding and random forest. Rev. Sci. Instrum. 2019, 90, 055002. [Google Scholar] [CrossRef] [PubMed]
- He, K.; Zhang, X.; Ren, S.; Sun, J. In Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Fang, C.; Li, H.Y.; Li, L.; Su, H.Y.; Tang, J.; Bai, X.; Liu, H. Smart Electronic Nose Enabled by an All-Feature Olfactory Algorithm. Adv. Intell. Syst. 2022, 4, 2200074. [Google Scholar] [CrossRef]
- Liu, Y.; Xiang, H.; Jiang, Z.S.; Xiang, J.W. A Domain Adaption ResNet Model to Detect Faults in Roller Bearings Using Vibro-Acoustic Data. Sensors 2023, 23, 3068. [Google Scholar] [CrossRef]
- Zhao, W.; Li, J.; Li, H. A multi-task learning approach for chemical process abnormity locations and fault classifications. Chemom. Intell. Lab. Syst. 2023, 233, 104719. [Google Scholar] [CrossRef]
- Powers, D.M.W. Evaluation: From precision, recall and F-measure to ROC, informedness, markedness and correlation. arXiv 2020, arXiv:2010.16061. [Google Scholar]
- Peng, X.; Ratha, N.; Pankanti, S. Learning Face Recognition from Limited Training Data using Deep Neural Networks. In Proceedings of the 2016 23rd International Conference on Pattern Recognition (ICPR), Cancun, Mexico, 4–8 December 2016; pp. 1442–1447. [Google Scholar]
- Fonollosa, J.; Sheik, S.; Huerta, R.; Marco, S. Reservoir computing compensates slow response of chemosensor arrays exposed to fast varying gas concentrations in continuous monitoring. Sens. Actuators B 2015, 215, 618–629. [Google Scholar] [CrossRef]
Fault Type | Value | Value |
---|---|---|
Healthy signal | 1 | 0 |
Broken circuit fault | 0 | 0 |
Bias fault | 0 | (0.95–1.05), : time of failure |
Spike fault | 1 | 40–45 (random variations in the cycle) |
Noise fault | 0.6–1.4, varies with time | 0 |
Gain fault | 1.5–2.0, varies with time | 0 |
Fault Type | Label | Ds1 | Ds2 | Ds3 |
---|---|---|---|---|
Healthy signal | 0 | 2128 (266 × 8) | 1120 (140 × 8) | 560 (70 × 8) |
Broken circuit signal | 1 | 2128 | 1120 | 560 |
Bias fault | 2 | 2128 | 1120 | 560 |
Spike fault | 3 | 2128 | 1120 | 560 |
Noise fault | 4 | 2128 | 1120 | 560 |
Gain fault | 5 | 2128 | 1120 | 560 |
Model | Acc (%) (Fault Detection) | Acc (%) (Fault Identification) | Acc (%) (Fault Localization) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Ds1 | Ds2 | Ds3 | Ds1 | Ds2 | Ds3 | Ds1 | Ds2 | Ds3 | ||
Dep | ResNet18 | 99.73 | 97.87 | 98.93 | 99.88 | 99.16 | 99.04 | 99.97 | 99.76 | 99.28 |
ResNet34 | 100.0 | 98.39 | 98.52 | 99.92 | 99.46 | 99.30 | 99.98 | 99.78 | 99.56 | |
ResNet50 | 100.0 | 98.49 | 98.38 | 99.98 | 99.28 | 99.41 | 99.98 | 99.77 | 99.24 | |
Dim | 1D-ResNet 34 | 99.86 | 98.82 | 94.03 | 99.77 | 99.40 | 97.10 | 99.79 | 99.40 | 95.25 |
2D-ResNet 34 | 100.0 | 98.39 | 98.52 | 99.92 | 99.46 | 99.30 | 99.98 | 99.78 | 99.56 |
Method | Model | Acc (%) (Fault Detection) | Acc (%) (Fault Identification) | Acc (%) (Fault Localization) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Ds1 | Ds2 | Ds3 | Ds1 | Ds2 | Ds3 | Ds1 | Ds2 | Ds3 | ||
Single-dimensional feature extraction | ResNet + SENet | 100.0 | 99.20 | 99.08 | 99.86 | 99.39 | 98.71 | 99.97 | 99.49 | 99.51 |
ResNet + DRSN | 99.98 | 98.78 | 98.67 | 99.77 | 99.30 | 98.50 | 99.80 | 99.58 | 99.36 | |
ResNet + CBAM | 100.0 | 99.66 | 99.14 | 99.90 | 99.41 | 99.50 | 99.86 | 99.30 | 99.56 | |
Bi-LSTM | 97.75 | 78.21 | 78.68 | 95.65 | 83.14 | 79.65 | 96.69 | 82.99 | 75.99 | |
Multi-dimensional feature extraction | ResNet(CBAM) + Bi-LSTM | 99.97 | 99.69 | 99.25 | 99.92 | 99.40 | 99.54 | 99.96 | 99.38 | 99.82 |
Method | Acc (%) (Fault Detection) | Acc (%) (Fault Identification) | Acc (%) (Fault Localization) | ||||||
---|---|---|---|---|---|---|---|---|---|
Ds1 | Ds2 | Ds3 | Ds1 | Ds2 | Ds3 | Ds1 | Ds2 | Ds3 | |
Single fault detection | 99.54 | 97.37 | 97.37 | - | - | - | - | - | - |
Single fault diagnosis | - | - | - | 99.85 | 99.26 | 99.26 | - | - | - |
Single fault localization | - | - | - | - | - | - | 99.98 | 99.77 | 99.77 |
Multi-task learning | 99.97 | 99.69 | 99.25 | 99.92 | 99.40 | 99.54 | 99.96 | 99.38 | 99.82 |
Module | Layer | Specification | Output Size |
---|---|---|---|
-- | Inputs | -- | |
2D encoder ResNet34 (CBAM) | Conv1 | 3 × 3, 64, s =1, p = 1 | |
Max pool | 3 × 3, s =2, p = 1 | ||
Conv2_x | |||
Conv3_x | |||
Conv4_x | |||
Conv5_x | |||
Gap | Output size = (1,1) | ||
1D encoder | Bi-Lstm | Hidden size = 256 | |
Multi-task learning | Linear | (1024, 512) | |
Linear | (512, Class) |
Methods | Fault Detection (%) | Fault Identification (%) | Fault Localization (%) | ||||||
---|---|---|---|---|---|---|---|---|---|
Precision | Recall | F1 | Precision | Recall | F1 | Precision | Recall | F1 | |
MLP | 77.51 | 53.88 | 53.00 | 68.44 | 66.18 | 66.37 | 89.70 | 61.77 | 70.27 |
LeNet | 95.36 | 96.56 | 95.95 | 95.39 | 94.70 | 94.90 | 97.31 | 95.62 | 96.38 |
DenseNet | 95.89 | 95.89 | 95.90 | 98.89 | 98.71 | 98.78 | 96.14 | 94.94 | 95.47 |
RepVGG | 94.61 | 96.37 | 95.50 | 94.96 | 94.79 | 94.72 | 91.76 | 91.34 | 91.44 |
CNN | 97.31 | 96.92 | 97.09 | 98.72 | 98.64 | 98.66 | 99.31 | 99.00 | 99.14 |
Inception | 95.27 | 93.68 | 94.44 | 96.68 | 96.53 | 96.52 | 92.09 | 92.80 | 92.20 |
CNN-LSTM | 96.31 | 96.06 | 96.18 | 98.34 | 98.17 | 98.25 | 95.26 | 94.05 | 94.53 |
MTL-CNN | 94.08 | 96.23 | 95.10 | 92.04 | 92.05 | 92.00 | 82.69 | 81.17 | 81.49 |
MSFMTP | 98.70 | 98.11 | 98.40 | 97.23 | 98.20 | 97.16 | 97.68 | 97.31 | 97.41 |
Proposed model (MAM-Net) | 99.41 (↑0.71) | 99.87 (↑1.76) | 99.65 (↑1.25) | 99.83 (↑0.94) | 99.80 (↑1.09) | 99.81 (↑1.03) | 99.86 (↑0.55) | 99.69 (↑0.69) | 99.78 (↑0.64) |
Method | Acc (%) (Fault Detection) | Acc (%) (Fault Identification) | Acc (%) (Fault Localization) | |||
---|---|---|---|---|---|---|
Ds1 | Ds2 | Ds1 | Ds2 | Ds1 | Ds2 | |
MLP | 80.52 | 74.01 | 73.56 | 69.91 | 86.21 | 85.43 |
LeNet | 98.60 | 93.83 | 99.70 | 97.90 | 99.71 | 97.88 |
DenseNet | 99.51 | 94.96 | 99.77 | 98.21 | 99.94 | 98.85 |
RepVGG | 99.77 | 96.02 | 99.92 | 98.24 | 99.98 | 97.83 |
CNN | 99.58 | 97.17 | 99.76 | 99.26 | 99.86 | 99.48 |
Inception | 99.95 | 97.38 | 99.49 | 98.27 | 99.49 | 96.72 |
CNN-LSTM | 99.17 | 97.24 | 99.60 | 99.45 | 99.67 | 98.53 |
MTL-CNN | 99.54 | 95.00 | 98.79 | 95.30 | 99.93 | 92.78 |
MSFMTP | 99.73 | 97.25 | 99.92 | 98.56 | 99.92 | 99.12 |
Proposed model (MAM-Net) | 99.77 (–) | 98.39 (↑1.01) | 99.92 (–) | 99.46 (↑0.01) | 99.99 (↑0.01) | 99.75 (↑0.27) |
Method | Acc (%) (Fault Detection) | Acc (%) (Fault Identification) | Acc (%) (Fault Localization) |
---|---|---|---|
MLP | 78.43 | 74.78 | 83.62 |
LeNet | 88.12 | 99.41 | 99.77 |
DenseNet | 99.21 | 99.44 | 99.51 |
RepVGG | 99.09 | 99.62 | 99.77 |
CNN | 99.21 | 99.84 | 99.79 |
Inception | 99.07 | 99.65 | 99.43 |
CNN-LSTM | 98.78 | 94.05 | 94.53 |
MTL-CNN | 96.41 | 92.25 | 95.99 |
MSFMTP | 97.35 | 93.02 | 98.12 |
Proposed model (MAM-Net) | 99.74 (↑0.53) | 99.78 (–) | 99.90 (↑0.11) |
Method | Acc (%) (Fault Detection) | Acc (%) (Fault Identification) | Acc (%) (Fault Localization) |
---|---|---|---|
MLP | 78.10 | 58.80 | 75.78 |
LeNet | 86.08 | 86.23 | 96.55 |
DenseNet | 96.70 | 96.79 | 98.28 |
RepVGG | 94.31 | 97.16 | 98.80 |
CNN | 98.85 | 97.62 | 99.38 |
Inception | 98.21 | 96.97 | 98.74 |
CNN-LSTM | 99.09 | 97.54 | 98.86 |
MTL-CNN | 98.57 | 92.38 | 97.48 |
MSFMTP | 98.24 | 92.87 | 98.04 |
Proposed model (MAM-Net) | 99.00 (–) | 98.70 (↑1.08) | 99.50 (↑0.12) |
Method | Diagnostic Time (s) (Fault Detection) | Diagnostic Time (s) (Fault Identification) | Diagnostic Time (s) (Fault Localization) |
---|---|---|---|
MLP | 0.000908 | 0.000908 | 0.001090 |
LeNet | 0.021080 | 0.024532 | 0.021260 |
DenseNet | 0.108900 | 0.101667 | 0.116933 |
RepVGG | 0.093128 | 0.078500 | 0.095940 |
CNN | 0.566950 | 0.051789 | 0.069959 |
Inception | 0.072141 | 0.067871 | 0.065235 |
CNN-LSTM | 0.127745 | 0.131743 | 0.133921 |
MSFMTP | 0.079318 (Simultaneous for three tasks) | ||
MTL-CNN | 0.134287 (Simultaneous for three tasks) | ||
Proposed model (MAM-Net) | 0.462554 (Simultaneous for three tasks) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, P.; Wang, Q.; Chen, H.; Lu, G. Gas Sensor Array Fault Diagnosis Based on Multi-Dimensional Fusion, an Attention Mechanism, and Multi-Task Learning. Sensors 2023, 23, 7836. https://doi.org/10.3390/s23187836
Huang P, Wang Q, Chen H, Lu G. Gas Sensor Array Fault Diagnosis Based on Multi-Dimensional Fusion, an Attention Mechanism, and Multi-Task Learning. Sensors. 2023; 23(18):7836. https://doi.org/10.3390/s23187836
Chicago/Turabian StyleHuang, Pengyu, Qingfeng Wang, Haotian Chen, and Geyu Lu. 2023. "Gas Sensor Array Fault Diagnosis Based on Multi-Dimensional Fusion, an Attention Mechanism, and Multi-Task Learning" Sensors 23, no. 18: 7836. https://doi.org/10.3390/s23187836
APA StyleHuang, P., Wang, Q., Chen, H., & Lu, G. (2023). Gas Sensor Array Fault Diagnosis Based on Multi-Dimensional Fusion, an Attention Mechanism, and Multi-Task Learning. Sensors, 23(18), 7836. https://doi.org/10.3390/s23187836