Ensemble Wavelet Decomposition-Based Detection of Mental States Using Electroencephalography Signals
Abstract
:1. Introduction
- Analysis of ensemble decomposition techniques using multi-wavelet decomposition.
- Statistical analysis to reduce the feature dimensions of multi-wavelet feature analysis for mental state detection.
- Analysis of feature fusion to detect the best combination of features.
- Exploring an optimized ensemble classifier to determine the optimum hyper-parameter selection.
2. Methodology
2.1. Dataset and Preprocessing
2.2. Ensemble Decomposition Techniques
2.2.1. Multilevel Discrete Wavelet Transform (MDWT)
2.2.2. Tunable Q Wavelet Transform (TQWT)
2.2.3. Flexible Analytic Wavelet Transform (FAWT)
2.3. Features Extraction
2.4. Ensemble Classifiers
- 1.
- Construct bootstrap samples M times randomly .
- 2.
- Evaluate the bootstrap estimator .
- 3.
- Repeat steps 1 and 2 L times, where L = 50 or 100.
- 4.
- . Finally, the ensemble estimator is obtained as
2.5. Performance Measure
3. Results
4. Discussion
5. Conclusions
- The model can explore multi-level ensemble wavelet analysis.
- The model is effective and robust due to comprehensive analysis.
- The optimized ensemble classifier allows tuning of the hyper-parameters to achieve the best classification performance.
- The model yielded the highest accuracy of 97.8%.
- The model supports binary and multi-class analyses.
- The model has been tested on a single EEG dataset.
- The dataset contains fewer subjects.
- The model has not been tested with leave-one-subject-out classification.
- Perform adaptive parameter tuning and channel selection.
- Develop model leave-one-subject-out classification on a relatively larger dataset.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nicolas-Alonso, L.F.; Gomez-Gil, J. Brain Computer Interfaces, a Review. Sensors 2012, 12, 1211–1279. [Google Scholar] [CrossRef] [PubMed]
- Ortiz-Echeverri, C.J.; Salazar-Colores, S.; Rodríguez-Reséndiz, J.; Gómez-Loenzo, R.A. A New Approach for Motor Imagery Classification Based on Sorted Blind Source Separation, Continuous Wavelet Transform, and Convolutional Neural Network. Sensors 2019, 19, 4541. [Google Scholar] [CrossRef] [PubMed]
- Sterman, M.B. Physiological origins and functional correlates of EEG rhythmic activities: Implications for self-regulation. Biofeedback Self-Regul. 1996, 21, 3–33. [Google Scholar] [CrossRef]
- Nisha, A.V.; Pallikonda Rajasekaran, M.; Priya, R.K.; Al Bimani, A. Artificial Intelligence based Neurodegenerative Disease Diagnosis and Research Analysis using Functional MRI (FMRI): A Review. In Proceedings of the 2021 3rd International Conference on Advances in Computing, Communication Control and Networking (ICAC3N), Greater Noida, India, 17–18 December 2021; pp. 446–450. [Google Scholar] [CrossRef]
- Eastmond, C.; Subedi, A.; De, S.; Intes, X. Deep learning in fNIRS: A review. Neurophotonics 2022, 9, 041411. [Google Scholar] [CrossRef] [PubMed]
- Fred, A.L.; Kumar, S.N.; Kumar Haridhas, A.; Ghosh, S.; Purushothaman Bhuvana, H.; Sim, W.K.J.; Vimalan, V.; Givo, F.A.S.; Jousmäki, V.; Padmanabhan, P.; et al. A Brief Introduction to Magnetoencephalography (MEG) and Its Clinical Applications. Brain Sci. 2022, 12, 788. [Google Scholar] [CrossRef]
- Rim, B.; Sung, N.J.; Min, S.; Hong, M. Deep Learning in Physiological Signal Data: A Survey. Sensors 2020, 20, 969. [Google Scholar] [CrossRef]
- Neri, L.; Oberdier, M.T.; van Abeelen, K.C.J.; Menghini, L.; Tumarkin, E.; Tripathi, H.; Jaipalli, S.; Orro, A.; Paolocci, N.; Gallelli, I.; et al. Electrocardiogram Monitoring Wearable Devices and Artificial-Intelligence-Enabled Diagnostic Capabilities: A Review. Sensors 2023, 23, 4805. [Google Scholar] [CrossRef]
- Markiewicz, R.; Markiewicz-Gospodarek, A.; Dobrowolska, B. Galvanic Skin Response Features in Psychiatry and Mental Disorders: A Narrative Review. Int. J. Environ. Res. Public Health 2022, 19, 13428. [Google Scholar] [CrossRef]
- Aricò, P.; Borghini, G.; Di Flumeri, G.; Sciaraffa, N.; Colosimo, A.; Babiloni, F. Passive BCI in Operational Environments: Insights, Recent Advances, and Future Trends. IEEE Trans. Biomed. Eng. 2017, 64, 1431–1436. [Google Scholar] [CrossRef]
- Borghini, G.; Astolfi, L.; Vecchiato, G.; Mattia, D.; Babiloni, F. Measuring neurophysiological signals in aircraft pilots and car drivers for the assessment of mental workload, fatigue and drowsiness. Neurosci. Biobehav. Rev. 2014, 44, 58–75. [Google Scholar] [CrossRef]
- Aricò, P.; Borghini, G.; Di Flumeri, G.; Colosimo, A.; Pozzi, S.; Babiloni, F. Chapter 10—A passive brain–computer interface application for the mental workload assessment on professional air traffic controllers during realistic air traffic control tasks. In Brain-Computer Interfaces: Lab Experiments to Real-World Applications; Progress in Brain Research; Coyle, D., Ed.; Elsevier: Amsterdam, The Netherlands, 2016; Volume 228, pp. 295–328. [Google Scholar] [CrossRef]
- Khare, S.; Nishad, A.; Upadhyay, A.; Bajaj, V. Classification of emotions from EEG signals using time-order representation based on the S-transform and convolutional neural network. Electron. Lett. 2020, 56, 1359–1361. [Google Scholar] [CrossRef]
- Khare, S.K.; Bajaj, V. Entropy based Drowsiness Detection using Adaptive Variational Mode Decomposition. IEEE Sens. J. 2020, 21, 6421–6428. [Google Scholar] [CrossRef]
- Khare, S.K.; Bajaj, V.; Acharya, U.R. SchizoNET: A robust and accurate Margenau–Hill time-frequency distribution based deep neural network model for schizophrenia detection using EEG signals. Physiol. Meas. 2023, 44, 035005. [Google Scholar] [CrossRef]
- Yin, Y.; Cai, X.; Ouyang, M.; Li, S.; Li, X.; Wang, P. FoMO and the brain: Loneliness and problematic social networking site use mediate the association between the topology of the resting-state EEG brain network and fear of missing out. Comput. Hum. Behav. 2023, 141, 107624. [Google Scholar] [CrossRef]
- Örün, Ö.; Akbulut, Y. Effect of multitasking, physical environment and electroencephalography use on cognitive load and retention. Comput. Hum. Behav. 2019, 92, 216–229. [Google Scholar] [CrossRef]
- Shahabi, H.; Moghimi, S. Toward automatic detection of brain responses to emotional music through analysis of EEG effective connectivity. Comput. Hum. Behav. 2016, 58, 231–239. [Google Scholar] [CrossRef]
- Myrden, A.; Chau, T. A Passive EEG-BCI for Single-Trial Detection of Changes in Mental State. IEEE Trans. Neural Syst. Rehabil. Eng. 2017, 25, 345–356. [Google Scholar] [CrossRef]
- Li, Y.; Li, X.; Ratcliffe, M.; Liu, L.; Qi, Y.; Liu, Q. A Real-Time EEG-Based BCI System for Attention Recognition in Ubiquitous Environment. In Proceedings of the 2011 International Workshop on Ubiquitous Affective Awareness and Intelligent Interaction (UAAII ’11), New York, NY, USA, 18 September 2011; pp. 33–40. [Google Scholar] [CrossRef]
- Nuamah, J.; Seong, Y. Support vector machine (SVM) classification of cognitive tasks based on electroencephalography (EEG) engagement index. Brain-Comput. Interfaces 2017, 5, 1–12. [Google Scholar] [CrossRef]
- Liu, N.H.; Chiang, C.Y.; Chu, H.C. Recognizing the Degree of Human Attention Using EEG Signals from Mobile Sensors. Sensors 2013, 13, 10273–10286. [Google Scholar] [CrossRef]
- Ke, Y.; Long, C.; Fu, L.; Jia, Y.; Li, P.; Qi, H.; Zhou, P.; Zhang, L.; Wan, B.; Ming, D. Visual Attention Recognition Based on Nonlinear Dynamical Parameters of EEG. Bio-Med. Mater. Eng. 2013, 23, S349–S355. [Google Scholar] [CrossRef]
- Wang, Y.; Jung, T.; Lin, C. EEG-Based Attention Tracking During Distracted Driving. IEEE Trans. Neural Syst. Rehabil. Eng. 2015, 23, 1085–1094. [Google Scholar] [CrossRef] [PubMed]
- Djamal, E.C.; Pangestu, D.P.; Dewi, D.A. EEG-based recognition of attention state using wavelet and support vector machine. In Proceedings of the 2016 International Seminar on Intelligent Technology and Its Applications (ISITIA), Lombok, Indonesia, 28–30 July 2016; pp. 139–144. [Google Scholar] [CrossRef]
- Hamadicharef, B.; Zhang, H.; Guan, C.; Wang, C.; Phua, K.S.; Tee, K.P.; Ang, K.K. Learning EEG-based spectral-spatial patterns for attention level measurement. In Proceedings of the 2009 IEEE International Symposium on Circuits and Systems, Taipei, Taiwan, 24–27 May 2009; pp. 1465–1468. [Google Scholar] [CrossRef]
- Mardi, Z.; Ashtiani, S.; Mikaeili, M. EEG-based Drowsiness Detection for Safe Driving Using Chaotic Features and Statistical Tests. J. Med. Signals Sens. 2011, 1, 130–137. [Google Scholar] [CrossRef] [PubMed]
- Richer, R.; Zhao, N.; Amores, J.; Eskofier, B.M.; Paradiso, J.A. Real-time Mental State Recognition using a Wearable EEG. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 18–21 July 2018; pp. 5495–5498. [Google Scholar] [CrossRef]
- Acı, Ç.İ.; Kaya, M.; Mishchenko, Y. Distinguishing mental attention states of humans via an EEG-based passive BCI using machine learning methods. Expert Syst. Appl. 2019, 134, 153–166. [Google Scholar] [CrossRef]
- Zhang, D.; Cao, D.; Chen, H. Deep Learning Decoding of Mental State in Non-Invasive Brain Computer Interface. In Proceedings of the International Conference on Artificial Intelligence, Information Processing and Cloud Computing, New York, NY, USA, Sanya, China, 19–21 December 2019. AIIPCC ’19. [Google Scholar] [CrossRef]
- Islam, M.; Lee, T. Multivariate Empirical Mode Decomposition of EEG for Mental State Detection at Localized Brain Lobes. In Proceedings of the 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Glasgow, Scotland, 11–15 July 2022; pp. 3694–3697. [Google Scholar] [CrossRef]
- Tiwari, A.; Arora, A.; Goel, V.; Khemchandani, V.; Chandra, S.; Pandey, V. A Deep Learning Approach to Detect Sustained Attention in Real-Time Using EEG Signals. In Proceedings of the 2021 International Conference on Computational Performance Evaluation (ComPE), Shillong, India, 1–3 December 2021; pp. 475–479. [Google Scholar] [CrossRef]
- Samima, S.; Sarma, M. Mental workload level assessment based on compounded hysteresis effect. Cogn. Neurodyn. 2022, 17, 357–372. [Google Scholar] [CrossRef] [PubMed]
- Mohdiwale, S.; Sahu, M.; Sinha, G.R.; Bajaj, V. Automated Cognitive Workload Assessment Using Logical Teaching Learning-Based Optimization and PROMETHEE Multi-Criteria Decision Making Approach. IEEE Sens. J. 2020, 20, 13629–13637. [Google Scholar] [CrossRef]
- Easttom, C.; Alsmadi, I. A Comparitive Study of Machine Learning Algorithms for Identifying Mental States from EEG Recordings. In Proceedings of the 2022 IEEE 12th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV, USA, 26–29 January 2022; pp. 0644–0648. [Google Scholar] [CrossRef]
- Khare, S.K.; Bajaj, V.; Sengur, A.; Sinha, G. Classification of mental states from rational dilation wavelet transform and bagged tree classifier using EEG signals. In Artificial Intelligence-Based Brain-Computer Interface; Elsevier: Amsterdam, The Netherlands, 2022; pp. 217–235. [Google Scholar]
- Kumar, R.S.; Srinivas, K.K.; Peddi, A.; Vardhini, P.A.H. Artificial Intelligence based Human Attention Detection through Brain Computer Interface for Health Care Monitoring. In Proceedings of the 2021 IEEE International Conference on Biomedical Engineering, Computer and Information Technology for Health (BECITHCON), Dhaka, Bangladesh, 4–5 December 2021; pp. 42–45. [Google Scholar] [CrossRef]
- Rastogi, A.; Bhateja, V. Pre-processing of electroencephalography signals using stationary wavelet transform-enhanced fixed-point fast-ICA. In Proceedings of the Data Engineering and Intelligent Computing: Proceedings of ICICC 2020; Springer: Berlin/Heidelberg, Germany, 2021; pp. 387–396. [Google Scholar]
- Available online: https://www.kaggle.com/inancigdem/eeg-data-for-mental-attention-state-detection (accessed on 22 May 2021).
- Parkale, Y.V.; Nalbalwar, S.L. Application of 1-D discrete wavelet transform based compressed sensing matrices for speech compression. SpringerPlus 2016, 5, 2048. [Google Scholar] [CrossRef]
- Selesnick, I.W. Wavelet transform with tunable Q-factor. IEEE Trans. Signal Process. 2011, 59, 3560–3575. [Google Scholar] [CrossRef]
- Bayram, I. An analytic wavelet transform with a flexible time-frequency covering. IEEE Trans. Signal Process. 2012, 61, 1131–1142. [Google Scholar] [CrossRef]
- Sharma, M.; Pachori, R.B.; Rajendra Acharya, U. A new approach to characterize epileptic seizures using analytic time-frequency flexible wavelet transform and fractal dimension. Pattern Recognit. Lett. 2017, 94, 172–179. [Google Scholar] [CrossRef]
- Khare, S.K.; March, S.; Barua, P.D.; Gadre, V.M.; Acharya, U.R. Application of data fusion for automated detection of children with developmental and mental disorders: A systematic review of the last decade. Inf. Fusion 2023, 99, 101898. [Google Scholar] [CrossRef]
- Yaacob, H.; Hossain, F.; Shari, S.; Khare, S.K.; Ooi, C.P.; Acharya, U.R. Application of Artificial Intelligence Techniques for Brain–Computer Interface in Mental Fatigue Detection: A Systematic Review (2011–2022). IEEE Access 2023, 11, 74736–74758. [Google Scholar] [CrossRef]
- Flood, M.W.; Grimm, B. EntropyHub: An open-source toolkit for entropic time series analysis. PLoS ONE 2021, 16, e0259448. [Google Scholar] [CrossRef] [PubMed]
- Too, J.; Abdullah, A.R.; Mohd Saad, N.; Tee, W. EMG feature selection and classification using a Pbest-guide binary particle swarm optimization. Computation 2019, 7, 12. [Google Scholar] [CrossRef]
- Too, J.; Abdullah, A.R.; Saad, N.M. Classification of hand movements based on discrete wavelet transform and enhanced feature extraction. Int. J. Adv. Comput. Sci. Appl. 2019, 10, 1–7. [Google Scholar] [CrossRef]
- Sudarshan, V.K.; Acharya, U.R.; Oh, S.L.; Adam, M.; Tan, J.H.; Chua, C.K.; Chua, K.P.; San Tan, R. Automated diagnosis of congestive heart failure using dual tree complex wavelet transform and statistical features extracted from 2 s of ECG signals. Comput. Biol. Med. 2017, 83, 48–58. [Google Scholar] [CrossRef] [PubMed]
- Baygin, M.; Barua, P.D.; Dogan, S.; Tuncer, T.; Key, S.; Acharya, U.R.; Cheong, K.H. A hand-modeled feature extraction-based learning network to detect grasps using sEMG signal. Sensors 2022, 22, 2007. [Google Scholar] [CrossRef] [PubMed]
- Thornton, C.; Hutter, F.; Hoos, H.H.; Leyton-Brown, K. Auto-WEKA: Combined selection and hyperparameter optimization of classification algorithms. In Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Chicago, IL, USA, 11–14 August 2013; pp. 847–855. [Google Scholar]
- Bühlmann, P. Bagging, Boosting and Ensemble Methods. In Handbook of Computational Statistics: Concepts and Methods; Gentle, J.E., Härdle, W.K., Mori, Y., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 985–1022. [Google Scholar] [CrossRef]
- Luque, A.; Carrasco, A.; Martín, A.; de las Heras, A. The impact of class imbalance in classification performance metrics based on the binary confusion matrix. Pattern Recognit. 2019, 91, 216–231. [Google Scholar] [CrossRef]
- Baygin, M.; Barua, P.D.; Chakraborty, S.; Tuncer, I.; Dogan, S.; Palmer, E.E.; Tuncer, T.; Kamath, A.P.; Ciaccio, E.J.; Acharya, U.R. CCPNet136: Automated detection of schizophrenia using carbon chain pattern and iterative TQWT technique with EEG signals. Physiol. Meas. 2023, 44, 035008. [Google Scholar] [CrossRef]
Class | SB-1 | SB-2 | SB-3 | SB-4 | SB-5 |
---|---|---|---|---|---|
HOCV | |||||
D vs. F | 95.07 | 94.12 | 93.53 | 95.59 | 88.97 |
UF vs. F | 91.18 | 88.97 | 90.07 | 88.60 | 81.62 |
D vs. UF | 88.84 | 86.40 | 87.13 | 88.60 | 80.51 |
D vs. UF vs. F | 87.45 | 84.61 | 84.12 | 81.47 | 75.98 |
FFCV | |||||
D vs. F | 94.93 | 93.53 | 92.21 | 93.09 | 89.19 |
UF vs. F | 89.34 | 88.97 | 88.16 | 85.15 | 82.65 |
D vs. UF | 89.78 | 88.60 | 87.06 | 86.76 | 81.10 |
D vs. UF vs. F | 87.45 | 84.61 | 84.12 | 81.47 | 75.98 |
TFCV | |||||
D vs. F | 94.26 | 93.82 | 92.79 | 92.94 | 88.97 |
UF vs. F | 88.60 | 88.24 | 88.24 | 86.69 | 81.40 |
D vs. UF | 88.53 | 87.65 | 88.01 | 85.51 | 79.12 |
D vs. UF vs. F | 86.27 | 83.33 | 81.57 | 79.22 | 74.17 |
Class | SB-1 | SB-2 | SB-3 | SB-4 | SB-5 | SB-6 | SB-7 | SB-8 |
---|---|---|---|---|---|---|---|---|
HOCV | ||||||||
D vs. F | 95.22 | 95.59 | 94.12 | 97.06 | 95.51 | 94.12 | 95.59 | 96.32 |
UF vs. F | 93.01 | 92.65 | 93.38 | 90.81 | 86.03 | 86.40 | 88.24 | 92.65 |
D vs. UF | 90.74 | 92.65 | 93.75 | 88.24 | 91.18 | 84.19 | 84.19 | 84.93 |
D vs. UF vs. F | 85.78 | 85.34 | 85.64 | 85.49 | 83.14 | 81.86 | 79.71 | 83.68 |
FFCV | ||||||||
D vs. F | 96.10 | 95.07 | 94.41 | 95.51 | 94.49 | 94.19 | 94.12 | 96.32 |
UF vs. F | 91.32 | 90.59 | 91.69 | 90.96 | 89.49 | 87.57 | 84.85 | 90.96 |
D vs. UF | 90.74 | 90.44 | 89.93 | 88.31 | 89.04 | 87.50 | 86.99 | 85.74 |
D vs. UF vs. F | 89.82 | 87.25 | 86.81 | 86.47 | 85.78 | 83.87 | 81.32 | 85.00 |
TFCV | ||||||||
D vs. F | 94.85 | 95.00 | 94.19 | 95.37 | 95.00 | 94.19 | 93.75 | 95.74 |
UF vs. F | 90.74 | 89.71 | 90.66 | 90.07 | 89.26 | 87.72 | 84.85 | 88.24 |
D vs. UF | 90.22 | 90.00 | 88.53 | 88.16 | 87.87 | 84.85 | 84.93 | 84.26 |
D vs. UF vs. F | 89.02 | 85.34 | 85.64 | 85.49 | 83.14 | 81.86 | 79.71 | 83.68 |
Class | SB-1 | SB-2 | SB-3 | SB-4 | SB-5 | SB-6 | SB-7 |
---|---|---|---|---|---|---|---|
HOCV | |||||||
D vs. F | 90.44 | 88.82 | 89.29 | 86.40 | 93.01 | 89.13 | 97.79 |
UF vs. F | 86.76 | 83.82 | 79.41 | 81.25 | 80.15 | 83.46 | 93.75 |
D vs. UF | 83.60 | 81.99 | 81.25 | 83.82 | 84.19 | 80.88 | 92.28 |
D vs. UF vs. F | 76.47 | 76.42 | 76.52 | 76.23 | 77.01 | 75.34 | 91.01 |
FFCV | |||||||
D vs. F | 88.38 | 87.87 | 88.46 | 88.16 | 90.15 | 87.57 | 96.91 |
UF vs. F | 83.38 | 82.72 | 83.60 | 81.84 | 82.43 | 81.25 | 93.09 |
D vs. UF | 81.03 | 82.06 | 80.00 | 81.84 | 81.91 | 80.51 | 91.10 |
D vs. UF vs. F | 73.73 | 76.12 | 75.86 | 76.11 | 76.97 | 75.34 | 90.90 |
TFCV | |||||||
D vs. F | 87.28 | 87.35 | 88.24 | 86.47 | 88.16 | 86.62 | 96.84 |
UF vs. F | 81.76 | 82.13 | 82.13 | 82.06 | 82.13 | 81.91 | 92.94 |
D vs. UF | 77.79 | 78.90 | 78.31 | 79.19 | 79.63 | 79.26 | 90.96 |
D vs. UF vs. F | 73.73 | 74.22 | 75.83 | 75.15 | 73.73 | 73.28 | 90.10 |
No. of Features | TQWT/FAWT | TQWT/MDWT | MDWT/FAWT | Fused Model |
---|---|---|---|---|
One | 86.2 | 81.83 | 81.51 | 86.3 |
Two | 88.26 | 87.7 | 88.24 | 89 |
Three | 86.61 | 82.5 | 84.61 | 91.62 |
Four | 90.98 | 88.62 | 89.61 | 92.45 |
Five | 90.04 | 88.24 | 88.62 | 92.24 |
Six | 90.83 | 88.62 | 89.61 | 91.6 |
IMV | – | – | – | 97.8 |
Measures | Recall (%) | SPE (%) | PPV (%) | F1 Score (%) |
---|---|---|---|---|
Features | FAWT | |||
Drowsy | 91.45 | 94.90 | 89.71 | 90.57 |
Focused | 92.30 | 97.54 | 95.15 | 93.70 |
Unfocused | 86.46 | 92.76 | 85.44 | 85.95 |
Features | MDWT + FAWT | |||
Drowsy | 90.22 | 95.42 | 90.88 | 90.55 |
Focused | 91.63 | 95.88 | 91.76 | 91.70 |
Unfocused | 86.94 | 93.12 | 86.18 | 86.56 |
Features | MDWT + TQWT | |||
Drowsy | 90.23 | 95.49 | 91.03 | 90.63 |
Focused | 90.06 | 95.28 | 90.59 | 90.32 |
Unfocused | 85.52 | 92.19 | 84.26 | 84.89 |
Features | FAWT + TQWT | |||
Drowsy | 92.42 | 94.91 | 89.71 | 91.04 |
Focused | 94.02 | 97.70 | 95.41 | 94.71 |
Unfocused | 87.10 | 94.13 | 88.38 | 87.74 |
Features | Fused model | |||
Drowsy | 93.13 | 95.91 | 91.76 | 92.44 |
Focused | 94.48 | 97.78 | 95.59 | 95.03 |
Unfocused | 89.74 | 94.99 | 90.00 | 89.87 |
Features | Majority iterative voting | |||
Drowsy | 97.12 | 99.63 | 99.26 | 98.18 |
Focused | 97.10 | 99.26 | 98.53 | 97.81 |
Unfocused | 97.71 | 97.11 | 94.12 | 95.88 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khare, S.K.; Bajaj, V.; Gaikwad, N.B.; Sinha, G.R. Ensemble Wavelet Decomposition-Based Detection of Mental States Using Electroencephalography Signals. Sensors 2023, 23, 7860. https://doi.org/10.3390/s23187860
Khare SK, Bajaj V, Gaikwad NB, Sinha GR. Ensemble Wavelet Decomposition-Based Detection of Mental States Using Electroencephalography Signals. Sensors. 2023; 23(18):7860. https://doi.org/10.3390/s23187860
Chicago/Turabian StyleKhare, Smith K., Varun Bajaj, Nikhil B. Gaikwad, and G. R. Sinha. 2023. "Ensemble Wavelet Decomposition-Based Detection of Mental States Using Electroencephalography Signals" Sensors 23, no. 18: 7860. https://doi.org/10.3390/s23187860
APA StyleKhare, S. K., Bajaj, V., Gaikwad, N. B., & Sinha, G. R. (2023). Ensemble Wavelet Decomposition-Based Detection of Mental States Using Electroencephalography Signals. Sensors, 23(18), 7860. https://doi.org/10.3390/s23187860