Construction of a Winter Wheat Comprehensive Growth Monitoring Index Based on a Fuzzy Degree Comprehensive Evaluation Model of Multispectral UAV Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Data Acquisition
2.2.1. UAV Multispectral Imagery
2.2.2. Ground Data Acquisition
- (1)
- Above-ground biomass (AGB)
- (2)
- Leaf chlorophyll content (SPAD)
- (3)
- Leaf water content (LWC)
2.3. Methods
- (1)
- Acquisition and preprocessing of UAV multispectral data in the study area, which is in Section 2.2.1 of the article. Based on the preprocessed multispectral images, vegetation indices (VIs) and texture features (TFs) are extracted as input feature variables for the inverse model of comprehensive growth indicators;
- (2)
- Construction of two kinds of winter wheat comprehensive growth indicators. The above-ground biomass (AGB), leaf chlorophyll content (SPAD) and leaf water content (LWC) of winter wheat are measured using field samples, and CGIewm and CGIfce are constructed based on the entropy weight method (EWM) and fuzzy degree comprehensive evaluation model (FCE), respectively;
- (3)
- Construction and validation of the inversion model of comprehensive growth indexes. The features were categorized into three feature groups: vegetation index; texture features; and the combination of the two, which are used as input variables to construct the inversion models of CGIewm and CGIfce, with ①, ② and ③ indicating the variable groupings and the order of model construction, respectively. The four regression algorithms selected in this study are partial least squares (PLS), random forest (RF), extreme learning machine (ELM) and particle swarm optimization extreme learning machine (PSO-ELM) for model construction. The accuracy of the inverse model is verified by R2 and nRMSE.
2.3.1. Vegetation Indexes (VIs) Construction
2.3.2. Texture Features (TFs) Extraction
2.3.3. Entropy Weight Method and Fuzzy Comprehensive Evaluation Model
- (1)
- Entropy weight method (EWM)
- (2)
- Fuzzy comprehension evaluation method (FCE)
2.3.4. Machine Learning Algorithms
- (1)
- Initialize the particle swarm. PSO parameters include acceleration constants, inertia weight, particle dimensions, maximum iteration count and population size;
- (2)
- Train the ELM algorithm with random input weights and thresholds for each particle to obtain the output weight prediction. The root mean square error calculated from the training samples is used as the particle fitness. Update the individual and global best values based on the higher fitness value. During the iteration process, update the particle’s velocity and position using Equations (10) and (11). Stop the iteration when reaching the maximum iteration count or the best fitness;
- (3)
- Obtain the optimal fitness and hidden layer thresholds and input them into the ELM structure to calculate the weight matrix and obtain the prediction results.
2.3.5. Evaluation of Model Accuracy
3. Results and Analysis
3.1. Comprehensive Growth Indicator Construction
3.2. Correlation Analysis
3.3. Input Variables
3.4. Model Construction
3.4.1. Inversion Model Construction of Comprehensive Indicators Based on the EWM
3.4.2. Inversion Model Construction of Comprehensive Indicators Based on the FCE
3.4.3. Construction of the PSO-ELM-CGIfce Inversion Model
4. Discussion
4.1. Combination of VIs and TFs as Input Variables
4.2. Comprehensive Growth Indicators Construction
4.3. Inversion Model Construction of Winter Wheat CGIs
5. Conclusions
- (1)
- The biomass, leaf chlorophyll content and leaf water content of winter wheat were used to construct the CGIs (CGIewm, CGIfce) by EWM and FCE. According to Pearson correlation analysis with VIs, CGIewm and CGIfce are significantly correlated with each other. The correlation between CGIfce and most VIs is greater than that of CGIewm, and the CGIs of winter wheat constructed by the two methods contain more growth information than the single index. CGIfce has a better response relationship with the selected Vis;
- (2)
- When constructing the CGIewm inversion model, the model accuracy constructed by the RF, PLS and ELM algorithms is improved after introducing TFs as model input variables based on the VIs, and the R2 is 0.47, 0.51 and 0.58, respectively, of which the ELM is improved the most, with the R2 improved by 20.83%, and the nRMSE reduced by 9.83%. When constructing the CGIfce inversion model, the accuracy of all algorithms, except PLS, is improved accordingly with the introduction of TFs. The ELM-CGIfce of winter wheat can better reflect the growth of winter wheat in the study area, with R2 of 0.65 and nRMSE of 16.34%. The combination of VIs and TFs effectively improves the inversion accuracy of the comprehensive growth indicators;
- (3)
- After optimizing the ELM-CGIfce model of winter wheat growth by PSO, the prediction accuracy of the model is significantly improved. The R2 increased from 0.65 to 0.84, which is 29.23% higher, and nRMSE reduced by 31.82%. The PSO algorithm optimizes the parameters of the ELM algorithm, and PSO-ELM-CGIfce more accurately estimates the CGIfce of winter wheat.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mahlayeye, M.; Darvishzadeh, R.; Nelson, A. Cropping patterns of annual crops: A remote sensing review. Remote Sens. 2022, 14, 2404. [Google Scholar] [CrossRef]
- Liu, Y.; Feng, H.K.; Yue, J.B.; Li, Z.H.; Yang, G.J.; Song, X.Y.; Yang, X.D.; Zhao, Y. Remote-sensing estimation of potato above-ground biomass based on spectral and spatial features extracted from high-definition digital camera images. Comput. Electron. Agric. 2022, 198, 107089. [Google Scholar] [CrossRef]
- Zhu, W.X.; Rezaei, E.E.; Nouri, H.; Sun, Z.; Li, J.; Yu, D.; Siebert, S. UAV-based indicators of crop growth are robust for distinct water and nutrient management but vary between crop development phases. Field Crops Res. 2022, 284, 108582. [Google Scholar] [CrossRef]
- Guo, Y.; He, J.; Huang, J.; Jing, Y.; Xu, S.; Wang, L.; Li, S.; Zheng, G. Effects of the spatial resolution of UAV images on the prediction and transferability of nitrogen content model for winter wheat. Drones. 2022, 6, 299. [Google Scholar] [CrossRef]
- Hasan, U.; Sawut, M.; Chen, S. Estimating the leaf area index of winter wheat based on unmanned aerial vehicle RGB-image parameters. Sustainability 2019, 11, 6829. [Google Scholar] [CrossRef]
- Wang, W.; Zheng, H.; Wu, Y.; Yao, X.; Zhu, Y.; Cao, W.; Cheng, T. An assessment of background removal approaches for improved estimation of rice leaf nitrogen concentration with unmanned aerial vehicle multispectral imagery at various observation times. Field Crops Res. 2022, 283, 108543. [Google Scholar] [CrossRef]
- Zhu, W.; Sun, Z.G.; Yang, T.; Li, J.; Peng, J.B.; Zhu, K.Y.; Li, S.J.; Gong, H.T.; Lyu, Y.; Li, B.B.; et al. Estimating leaf chlorophyll content of crops via optimal unmanned aerial vehicle hyperspectral data at multi-scales. Comput. Electron. Agric. 2020, 178, 105786. [Google Scholar] [CrossRef]
- Devia, C.A.; Rojas, J.P.; Petro, E.; Martinez, C.; Mondragon, I.F.; Patino, D.; Rebolledo, M.C.; Colorado, J. High-Throughput Biomass Estimation in Rice Crops Using UAV Multispectral Imagery. J. Intell. Robot. Syst. 2019, 96, 573–589. [Google Scholar] [CrossRef]
- Sapkota, S.; Paudyal, D.R. Growth monitoring and yield estimation of maize plant using unmanned aerial vehicle (UAV) in a hilly region. Sensors 2023, 23, 5432. [Google Scholar] [CrossRef]
- Dilmurat, K.; Sagan, V.; Moose, S. AI-driven maize yield forecasting using unmanned aerial vehicle-based hyperspectral and lidar data fusion. ISPRS Annals of the Photogrammetry. Remote Sens. Spat. Inf. Sci. 2022, 3, 193–199. [Google Scholar]
- Adeluyi, O.; Harris, A.; Foster, T.; Clay, G.D. Exploiting centimetre resolution of drone-mounted sensors for estimating mid-late season above ground biomass in rice. Eur. J. Agron. 2022, 132, 126411. [Google Scholar] [CrossRef]
- Liu, Y.N.; Liu, S.S.; Li, J.; Guo, X.Y.; Wang, S.Q.; Lu, J.W. Estimating biomass of winter oilseed rape using vegetation indices and texture metrics derived from UAV multispectral images. Comput. Electron. Agric. 2019, 166, 105026. [Google Scholar] [CrossRef]
- Yue, J.B.; Yang, G.J.; Tian, Q.J.; Feng, H.K.; Xu, K.J.; Zhou, C.Q. Estimate of winter-wheat above-ground biomass based on UAV ultrahigh-ground-resolution image textures and vegetation indices. Isprs J. Photogramm. 2019, 150, 226–244. [Google Scholar] [CrossRef]
- Yue, J.B.; Zhou, C.Q.; Guo, W.; Feng, H.K.; Xu, K.J. Estimation of winter-wheat above-ground biomass using the wavelet analysis of unmanned aerial vehicle-based digital images and hyperspectral crop canopy images. Int. J. Remote Sens. 2021, 42, 1602–1622. [Google Scholar] [CrossRef]
- Huang, Y.Y.; Ma, Q.M.; Wu, X.M.; Li, H.; Xu, K.; Ji, G.X.; Qian, F.; Li, L.X.; Huang, Q.; Long, Y.; et al. Estimation of chlorophyll content in Brassica napus based on unmanned aerial vehicle images. Oil Crop Sci. 2022, 7, 149–155. [Google Scholar] [CrossRef]
- Ndlovu, H.S.; Odindi, J.; Sibanda, M.; Mutanga, O.; Clulow, A.; Chimonyo, V.G.P.; Mabhaudhi, T. A comparative estimation of maize leaf water content using machine learning techniques and unmanned aerial vehicle (UAV)-based proximal and remotely sensed data. Remote Sens. 2021, 13, 4091. [Google Scholar] [CrossRef]
- Feng, H.; Tao, H.; Li, Z.; Yang, G.; Zhao, C. Comparison of UAV RGB imagery and hyperspectral remote-sensing data for monitoring winter wheat growth. Remote Sens. 2022, 14, 3811. [Google Scholar] [CrossRef]
- Sun, Q.; Chen, L.P.; Xu, X.B.; Gu, X.H.; Hu, X.Q. A new comprehensive index for monitoring maize lodging severity using UAV-based multi-spectral imagery. Comput. Electron. Agric. 2022, 202, 107362. [Google Scholar] [CrossRef]
- Wang, H.D.; Cheng, M.H.; Zhang, S.H.; Fan, J.L.; Feng, H.; Zhang, F.C.; Wang, X.K.; Sun, L.J.; Xiang, Y.Z. Optimization of irrigation amount and fertilization rate of drip-fertigated potato based on Analytic Hierarchy Process and Fuzzy Comprehensive Evaluation methods. Agric. Water Manag. 2021, 256, 107130. [Google Scholar] [CrossRef]
- Yang, C.B.; Xu, J.; Feng, M.C.; Bai, J.; Sun, H.; Song, L.F.; Wang, C.; Yang, W.D.; Xiao, L.J.; Zhang, M.J.; et al. Evaluation of hyperspectral monitoring model for aboveground dry biomass of winter wheat by using multiple factors. Agronomy 2023, 13, 983. [Google Scholar] [CrossRef]
- Xu, Y.F.; Cheng, Q.; Wei, X.P.; Yang, B.; Xia, S.S.; Rui, T.T.; Zhang, S.W. Monitoring of winter wheat growth under UAV using variation coefficient method and optimized neural network. T Chin. Soc. Agric. Eng. 2021, 37, 71–80. [Google Scholar]
- Shen, L.; Gao, M.; Yan, J.; Wang, Q.; Shen, H. Winter wheat SPAD value inversion based on multiple pretreatment methods. Remote Sens. 2022, 14, 4660. [Google Scholar] [CrossRef]
- Pan, H.Z.; Chen, Z.X.; Ren, J.Q.; Li, H.; Wu, S.R. Modeling winter wheat leaf area index and canopy water content with three different approaches using Sentinel-2 multispectral instrument data. IEEE J.-STARS 2018, 12, 482–492. [Google Scholar] [CrossRef]
- El-Hendawy, S.; Al-Suhaibani, N.; Al-Ashkar, I.; Alotaibi, M.; Tahir, M.U.; Solieman, T.; Hassan, W.M. Combining genetic analysis and multivariate modeling to evaluate spectral reflectance indices as indirect selection tools in wheat breeding under water deficit stress conditions. Remote Sens. 2020, 12, 1480. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, F.; Zhang, L.; Lin, Y.; Wang, S.; Xie, Y. UNVI-Based time series for vegetation discrimination using separability analysis and random forest classification. Remote Sens. 2020, 12, 529. [Google Scholar] [CrossRef]
- Ouaadi, N.; Jarlan, L.; Ezzahar, J.; Zribi, M.; Khabba, S.; Bouras, E.; Bousbih, S.; Frison, P.L. Monitoring of wheat crops using the backscattering coefficient and the interferometric coherence derived from Sentinel-1 in semi-arid areas. Remote Sens. Environ. 2020, 251, 112050. [Google Scholar] [CrossRef]
- Li, X.; Yang, C.; Huang, W.; Tang, J.; Tian, Y.; Zhang, Q. Identification of cotton root rot by multifeature selection from sentinel-2 images using random forest. Remote Sens. 2020, 12, 3504. [Google Scholar] [CrossRef]
- Feng, L.; Wu, W.; Wang, J.; Zhang, C.; Zhao, Y.; Zhu, S.; He, Y. Wind field distribution of multi-rotor UAV and its influence on spectral information acquisition of rice canopies. Remote Sens. 2019, 11, 602. [Google Scholar] [CrossRef]
- Aburas, M.M.; Abdullah, S.H.; Ramli, M.F.; Ash’aari, Z.H. Measuring land cover change in Seremban, Malaysia using NDVI index. Procedia Environ. Sci. 2015, 30, 238–243. [Google Scholar] [CrossRef]
- Issa, S.; Dahy, B.; Saleous, N.; Ksiksi, T. Carbon stock assessment of date palm using remote sensing coupled with field-based measurements in Abu Dhabi (United Arab Emirates). Int. J. Remote Sens. 2019, 40, 7561–7580. [Google Scholar] [CrossRef]
- Ferreira, L.G.; Huete, A.R. Assessing the seasonal dynamics of the Brazilian Cerrado vegetation through the use of spectral vegetation indices. Int. J. Remote Sens. 2004, 25, 1837–1860. [Google Scholar] [CrossRef]
- Radočaj, D.; Šiljeg, A.; Marinović, R.; Jurišić, M. State of Major Vegetation Indices in Precision Agriculture Studies Indexed in Web of Science: A Review. Agriculture 2023, 13, 707. [Google Scholar] [CrossRef]
- Zhao, Y.L.; Zheng, W.X.; Xiao, W.; Zhang, S.; Lv, X.J.; Zhang, J.Y. Rapid monitoring of reclaimed farmland effects in coal mining subsidence area using a multi-spectral UAV platform. Environ. Monit. Assess. 2020, 192, 474. [Google Scholar] [CrossRef] [PubMed]
- Upendar, K.; Agrawal, K.N.; Chandel, N.S.; Singh, K. Greenness identification using visible spectral colour indices for site specific weed management. Plant Physiol. Rep. 2021, 26, 179–187. [Google Scholar] [CrossRef]
- Qiao, L.; Zhao, R.M.; Tang, W.J.; An, L.L.; Sun, H.; Li, M.Z.; Wang, N.; Liu, Y.; Liu, G.H. Estimating maize LAI by exploring deep features of vegetation index map from UAV multispectral images. Field Crops Res. 2022, 289, 108739. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Prueger, J.H. Value of using different vegetative indices to quantify agricultural crop characteristics at different growth stages under varying management practices. Remote Sens. 2010, 2, 562–578. [Google Scholar] [CrossRef]
- Xiao, W.; Chen, J.L.; Da, H.Z.; Reng, H.; Zhang, J.Y.; Zhang, L. Inversion and Analysis of Maize Biomass in Coal Mining Sub-sidence Area Based on UAV Images. Trans. Chin. Soc. Agric. Mach. 2018, 49, 169–180. [Google Scholar]
- Luo, P.L.; Liao, J.J.; Shen, G.Z. Combining spectral and texture features for estimating leaf area index and biomass of maize using Sentinel-1/2, and Landsat-8 data. IEEE Access 2020, 8, 53614–53626. [Google Scholar] [CrossRef]
- Girolamo-Neto, C.D.; Sanches, I.D.; Neves, A.K.; Prudente, V.H.R.; Körting, T.S.; Picoli, M.C.A.; Aragão, L.E.O.e.C.d. Assessment of Texture Features for Bermudagrass (Cynodon dactylon) Detection in Sugarcane Plantations. Drones. 2019, 3, 36. [Google Scholar] [CrossRef]
- Li, Z.; Luo, Z.J.; Wang, Y.; Fan, G.Y.; Zhang, J.M. Suitability evaluation system for the shallow geothermal energy implementation in region by Entropy Weight Method and TOPSIS method. Renew. Energy 2022, 184, 564–576. [Google Scholar] [CrossRef]
- Zhe, W.; Xigang, X.; Feng, Y. An abnormal phenomenon in entropy weight method in the dynamic evaluation of water quality index. Ecol. Indic. 2021, 131, 108137. [Google Scholar] [CrossRef]
- Wu, Y.N.; Zhang, T. Risk assessment of offshore wave-wind-solar-compressed air energy storage power plant through fuzzy comprehensive evaluation model. Energy 2021, 223, 120057. [Google Scholar] [CrossRef]
- Xiao, B.; Zeng, Y.; Zou, Y.; Hu, W. Hydropower Unit State Evaluation Model Based on AHP and Gaussian Threshold Improved Fuzzy Comprehensive Evaluation. Energies 2023, 16, 5592. [Google Scholar] [CrossRef]
- Burnett, A.C.; Anderson, J.; Davidson, K.J.; Ely, K.S.; Lamour, J.; Li, Q.Y.; Morrison, B.D.; Yang, D.D.; Rogers, A.; Serbin, S.P. A best-practice guide to predicting plant traits from leaf-level hyperspectral data using partial least squares regression. J. Exp. Bot. 2021, 72, 6175–6189. [Google Scholar] [CrossRef]
- Desai, S.; Ouarda, T.B.M.J. Regional hydrological frequency analysis at ungauged sites with random forest regression. J. Hydrol. 2021, 594, 125861. [Google Scholar] [CrossRef]
- Sulaiman, S.M.; Jeyanthy, P.A.; Devaraj, D.; Shihabudheen, K.V. A novel hybrid short-term electricity forecasting technique for residential loads using Empirical Mode Decomposition and Extreme Learning Machines. Comput. Electr. Eng. 2022, 98, 107663. [Google Scholar] [CrossRef]
- Haq, Z.U.; Ullah, H.; Khan, M.N.A.; Naqvi, S.R.; Ahad, A.; Amin, N.A.S. Comparative study of machine learning methods integrated with genetic algorithm and particle swarm optimization for bio-char yield prediction. Bioresour. Technol. 2022, 363, 128008. [Google Scholar] [CrossRef]
- Barzegar, R.; Adamowski, J.; Moghaddam, A.A. Application of wavelet-artificial intelligence hybrid models for water quality prediction: A case study in Aji-Chay River, Iran. Stoch. Environ. Res. Risk Assess. 2016, 30, 1797–1819. [Google Scholar] [CrossRef]
- Zhou, C.; Gong, Y.; Fang, S.H.; Yang, K.L.; Peng, Y.; Wu, X.T.; Zhu, R.S. Combining spectral and wavelet texture features for unmanned aerial vehicles remote estimation of rice leaf area index. Front. Plant Sci. 2022, 13, 957870. [Google Scholar] [CrossRef]
- Zhai, W.; Li, C.; Cheng, Q.; Mao, B.; Li, Z.; Li, Y.; Ding, F.; Qin, S.; Fei, S.; Chen, Z. Enhancing Wheat Above-Ground Biomass Estimation Using UAV RGB Images and Machine Learning: Multi-Feature Combinations, Flight Height, and Algorithm Implications. Remote Sens. 2023, 15, 3653. [Google Scholar] [CrossRef]
- Xu, T.; Wang, F.; Xie, L.; Yao, X.; Zheng, J.; Li, J.; Chen, S. Integrating the Textural and Spectral Information of UAV Hyperspectral Images for the Improved Estimation of Rice Aboveground Biomass. Remote Sens. 2022, 14, 2534. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, K.; Sun, Y.; Zhao, Y.; Zhuang, H.; Ban, W.; Chen, Y.; Fu, E.; Chen, S.; Liu, J.; et al. Combining Spectral and Texture Features of UAS-Based Multispectral Images for Maize Leaf Area Index Estimation. Remote Sens. 2022, 14, 331. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Qiu, X.L.; Wu, Y.T.; Zhu, Y.; Cao, Q.; Liu, X.J.; Cao, W.X. Combining texture, color, and vegetation indices from fixed-wing UAS imagery to estimate wheat growth parameters using multivariate regression methods. Comput. Electron. Agric. 2021, 185, 106138. [Google Scholar] [CrossRef]
- Tian, Y.C.; Huang, H.; Zhou, G.Q.; Zhang, Q.; Tao, J.; Zhang, Y.L.; Lin, J.L. Aboveground mangrove biomass estimation in Beibu Gulf using machine learning and UAV remote sensing. Sci. Total Environ. 2021, 781, 146816. [Google Scholar] [CrossRef]
- Pei, H.J.; Feng, H.K.; Li, C.C.; Jin, X.L.; Li, Z.H.; Yang, G.J. Remote sensing monitoring of winter wheat growth with UAV based on comprehensive index. T Chin. Soc. Agric. Eng. 2017, 33, 74–82. [Google Scholar]
- Ding, X.; Chong, X.; Bao, Z.; Xue, Y.; Zhang, S. Fuzzy Comprehensive Assessment Method Based on the Entropy Weight Method and Its Application in the Water Environmental Safety Evaluation of the Heshangshan Drinking Water Source Area, Three Gorges Reservoir Area, China. Water 2017, 9, 329. [Google Scholar] [CrossRef]
- Maimaitijiang, M.; Ghulam, A.; Sidike, P.; Hartling, S.; Maimaitiyiming, M.; Peterson, K.; Shavers, E.; Fishman, J.; Peterson, P.; Kadam, S.; et al. Unmanned Aerial System (UAS)-based phenotyping of soybean using multi-sensor data fusion and extreme learning machine. ISPRS J. Photogramm. 2017, 134, 43–58. [Google Scholar] [CrossRef]
- Xu, T.Y.; Guo, Z.H.; Yu, F.H.; Xu, B.; Feng, S. Genetic algorithm combined with extreme learning machine to diagnose nitrogen deficiency in rice in cold region. T Agric. Eng. 2020, 36, 209–218. [Google Scholar]
- Lima, A.R.; Cannon, A.J.; Hsieh, W.W. Nonlinear regression in environmental sciences using extreme learning machines: A comparative evaluation. Environ. Model. Softw. 2015, 73, 175–188. [Google Scholar] [CrossRef]
- Ahmad, I.; Basheri, M.; Iqbal, M.J.; Rahim, A. Performance comparison of support vector machine, random forest, and extreme learning machine for intrusion detection. IEEE Access 2018, 6, 33789–33795. [Google Scholar] [CrossRef]
- Cao, Y.L.; Jiang, K.L.; Wu, J.X.; Yu, F.H.; Du, W.; Xu, T.Y. Inversion modeling of japonica rice canopy chlorophyll content with UAV hyperspectral remote sensing. PLoS ONE 2020, 15, e0238530. [Google Scholar] [CrossRef] [PubMed]
Band Name | Blue | Green | Red | Red Edge | Near Infrared |
---|---|---|---|---|---|
Center Wavelength (nm) | 450 | 560 | 650 | 730 | 840 |
Band Width (nm) | 32 | 32 | 32 | 32 | 52 |
Vegetation Index | Abbreviations | Formula | Reference |
---|---|---|---|
Re-Normalized Vegetation Index | RDVI | RDVI = (NIR − R)/(NIR + R)^0.5 | [27] |
Ratio Vegetation Index | RVI | RVI = NIR/R | [28] |
Normalized Difference Vegetation Index | NDVI | NDVI = (NIR − R)/(NIR + R) | [29] |
Difference vegetation index | DVI | DVI = NIR − R | [30] |
Soil-Adjusted Vegetation Index | SAVI | SAVI = 1.5(NIR − R)/(NIR + R + 0.5) | [31] |
Optimized Soil-Adjusted Vegetation Index | OSAVI | OSAVI = 1.16(NIR − R)/(NIR + R + 0.16) | [32] |
Triangular vegetation index | TVI | TVI = 60(NIR − G) − 100(R − G) | [33] |
Excess Red Index | EXR | EXR = 1.4R − G | [34] |
Normalized Difference Red Edge Index | NDRE | NDRE = (NIR − RE)/(NIR + RE) | [35] |
Normalized Pigment Chlorophyll Index | NPCI | NPCI = (R − B)/(R + B) | [36] |
Enhanced Vegetation Index2 | EVI2 | EVI2 = (NIR − R)/(1 + NIR + 2.4R) | [37] |
Modified Vegetation Index | MVI | [37] |
Parameters | Abbreviations | Formula |
---|---|---|
Mean | mean | |
Variance | var | |
Contrast | con | |
Dissimilarity | dis | |
Homogeneity | hom | |
Entropy | ent | |
Second moment | sm | |
Correlation | corr |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, J.; Zhang, S.; Zhang, Y.; Hu, R.; Lawi, A.S. Construction of a Winter Wheat Comprehensive Growth Monitoring Index Based on a Fuzzy Degree Comprehensive Evaluation Model of Multispectral UAV Data. Sensors 2023, 23, 8089. https://doi.org/10.3390/s23198089
Yu J, Zhang S, Zhang Y, Hu R, Lawi AS. Construction of a Winter Wheat Comprehensive Growth Monitoring Index Based on a Fuzzy Degree Comprehensive Evaluation Model of Multispectral UAV Data. Sensors. 2023; 23(19):8089. https://doi.org/10.3390/s23198089
Chicago/Turabian StyleYu, Jing, Shiwen Zhang, Yanhai Zhang, Ruixin Hu, and Abubakar Sadiq Lawi. 2023. "Construction of a Winter Wheat Comprehensive Growth Monitoring Index Based on a Fuzzy Degree Comprehensive Evaluation Model of Multispectral UAV Data" Sensors 23, no. 19: 8089. https://doi.org/10.3390/s23198089
APA StyleYu, J., Zhang, S., Zhang, Y., Hu, R., & Lawi, A. S. (2023). Construction of a Winter Wheat Comprehensive Growth Monitoring Index Based on a Fuzzy Degree Comprehensive Evaluation Model of Multispectral UAV Data. Sensors, 23(19), 8089. https://doi.org/10.3390/s23198089