Dynamic Characterization of a Low-Cost Fully and Continuously 3D Printed Capacitive Pressure-Sensing System for Plantar Pressure Measurements
Abstract
:1. Introduction
2. Sensor Development
3. Experimental Methods
3.1. Test Setup—Dynamic Characterization of the 3D Printed Capacitive Pressure-Sensing System
3.2. Phase-Lag Characterization of the Measurement System
3.2.1. Force Measurement Phase Lag
3.2.2. Capacitance Measurement Phase Lag
3.3. Sensitivity Characterization of the Omega Load Cell
3.4. Test Procedure—Dynamic Characterization of the 3D Printed Capacitive Pressure-Sensing System
4. Results and Discussion
4.1. Dynamic Sensor Characterization Results
4.2. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baker, R. The history of gait analysis before the advent of modern computers. Gait Posture 2007, 26, 331–342. [Google Scholar] [CrossRef] [PubMed]
- Muro-De-La-Herran, A.; Garcia-Zapirain, B.; Mendez-Zorrilla, A. Gait analysis methods: An overview of wearable and non-wearable systems, highlighting clinical applications. Sensors 2014, 14, 3362–3394. [Google Scholar] [CrossRef] [PubMed]
- Buldt, A.K.; Forghany, S.; Landorf, K.B.; Murley, G.S.; Levinger, P.; Menz, H.B. Centre of pressure characteristics in normal, planus and cavus feet. J. Foot Ankle Res. 2018, 11, 3. [Google Scholar] [CrossRef] [PubMed]
- Orlin, M.N.; McPoil, T.G. Plantar pressure assessment. Phys. Ther. 2000, 80, 399–409. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-Bautista, J.A.; Hernández-Zavala, A.; Chaparro-Cárdenas, S.L.; Huerta-Ruelas, J.A. Review on plantar data analysis for disease diagnosis. Biocybern. Biomed. Eng. 2018, 38, 342–361. [Google Scholar] [CrossRef]
- Gross, K.D.; Felson, D.; Niu, J.; Hunter, D.J.; Guermazi, A.; Roemer, F.W.; Dufour, A.; Gensure, R.H.; Hannan, M. Association of flat feet with knee pain and cartilage damage in older adults. Arthritis Care Res. 2011, 63, 937–944. [Google Scholar] [CrossRef] [PubMed]
- Hsu, W.-C.; Sugiarto, T.; Chen, J.-W.; Lin, Y.-J. The design and application of simplified insole-based prototypes with plantar pressure measurement for fast screening of flat-foot. Sensors 2018, 18, 3617. [Google Scholar] [CrossRef] [PubMed]
- Margiotta, N.; Avitabile, G.; Coviello, G. A wearable wireless system for gait analysis for early diagnosis of Alzheimer and Parkinson disease. In Proceedings of the 2016 5th International Conference on Electronic Devices, Systems and Applications (ICEDSA), Ras Al Khaimah, United Arab, 6–8 December 2016; IEEE: New York, NY, USA, 2016; pp. 1–4. [Google Scholar]
- Shull, P.B.; Jirattigalachote, W.; Hunt, M.A.; Cutkosky, M.R.; Delp, S.L. Quantified self and human movement: A review on the clinical impact of wearable sensing and feedback for gait analysis and intervention. Gait Posture 2014, 40, 11–19. [Google Scholar] [CrossRef]
- Razak, A.H.A.; Zayegh, A.; Begg, R.K.; Wahab, Y. Foot plantar pressure measurement system: A review. Sensors 2012, 12, 9884–9912. [Google Scholar] [CrossRef]
- Chen, J.; Dai, Y.; Grimaldi, N.S.; Lin, J.; Hu, B.; Wu, Y.; Gao, S. Plantar Pressure-Based Insole Gait Monitoring Techniques for Diseases Monitoring and Analysis: A Review. Adv. Mater. Technol. 2022, 7, 2100566. [Google Scholar] [CrossRef]
- Subramaniam, S.; Majumder, S.; Faisal, A.I.; Deen, M.J. Insole-based systems for health monitoring: Current solutions and research challenges. Sensors 2022, 22, 438. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Huang, M.; Amini, N.; Liu, J.J.; He, L.; Sarrafzadeh, M. Smart insole: A wearable system for gait analysis. In Proceedings of the 5th International Conference on Pervasive Technologies Related to Assistive Environments, Heraklion Crete, Greece, 6–8 June 2012; Association for Computing Machinery: New York, NY, USA, 2012; pp. 1–4. [Google Scholar]
- Aqueveque, P.; Germany, E.; Osorio, R.; Pastene, F. Gait segmentation method using a plantar pressure measurement system with custom-made capacitive sensors. Sensors 2020, 20, 656. [Google Scholar] [CrossRef] [PubMed]
- Sorrentino, I.; Chavez, F.J.A.; Latella, C.; Fiorio, L.; Traversaro, S.; Rapetti, L.; Tirupachuri, Y.; Guedelha, N.; Maggiali, M.; Dussoni, S.; et al. A novel sensorised insole for sensing feet pressure distributions. Sensors 2020, 20, 747. [Google Scholar] [CrossRef]
- Tao, J.; Dong, M.; Li, L.; Wang, C.; Li, J.; Liu, Y.; Bao, R.; Pan, C. Real-time pressure mapping smart insole system based on a controllable vertical pore dielectric layer. Microsyst. Nanoeng. 2020, 6, 62. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Wang, Y.L.; Xia, Y.; Wu, X.; Kirk, T.V.; Chen, X.D. A low-cost and highly integrated sensing insole for plantar pressure measurement. Sens. Bio-Sens. Res. 2019, 26, 100298. [Google Scholar] [CrossRef]
- De Guzman, S.; Lowe, A.; Williams, C.; Kalra, A.; Anand, G. The Development of a Built-In Shoe Plantar Pressure Measurement System for Children. Sensors 2022, 22, 8327. [Google Scholar] [CrossRef] [PubMed]
- Ho, J.; Kim, Y.; Min, S. Customized Textile Capacitive Insole Sensor for Center of Pressure Analysis. Sensors 2022, 22, 9390. [Google Scholar] [CrossRef]
- Chen, D.; Cai, Y.; Huang, M. Customizable pressure sensor array: Design and evaluation. IEEE Sens. J. 2018, 18, 6337–6344. [Google Scholar] [CrossRef]
- Varoto, R.; Oliveira, G.C.; de Lima, A.V.F.; Critter, M.M.; Cliquet, A., Jr. A low cost wireless system to monitor plantar pressure using insole sensor: Feasibility approach. In Proceedings of the 10th International Joint Conference on Biomedical Engineering Systems and Technologies—Volume 1: BIODEVICES, (BIOSTEC 2017), Porto, Portugal, 21–23 February 2017; SciTePress: Setubal, Portugal, 2017; pp. 207–214. [Google Scholar] [CrossRef]
- Leigh, S.J.; Bradley, R.J.; Purssell, C.P.; Billson, D.R.; Hutchins, D.A. A simple, low-cost conductive composite material for 3D printing of electronic sensors. PLoS ONE 2012, 7, e49365. [Google Scholar] [CrossRef]
- Jia, W.; Zhang, Q.; Cheng, Y.; Wang, J.; Zhang, H.; Sang, S.; Ji, J. A Flexible Capacitive Paper-Based Pressure Sensor Fabricated Using 3D Printing. Chemosensors 2022, 10, 432. [Google Scholar] [CrossRef]
- Nga, D.T.N.; Mattana, G.; Thu, V.T.; Roussel, R.; Piro, B. A simple flexible printed capacitive pressure sensor for chronic wound monitoring. Sens. Actuators A Phys. 2022, 338, 113490. [Google Scholar] [CrossRef]
- Ntagios, M.; Nassar, H.; Pullanchiyodan, A.; Navaraj, W.T.; Dahiya, R. Robotic hands with intrinsic tactile sensing via 3D printed soft pressure sensors. Adv. Intell. Syst. 2020, 2, 1900080. [Google Scholar] [CrossRef]
- Ntagios, M.; Dervin, S.; Dahiya, R. 3D printed capacitive pressure sensing sole for anthropomorphic robots. In Proceedings of the 2021 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS), Manchester, UK, 20–23 June 2021; IEEE: New York, NY, USA, 2021; pp. 1–4. [Google Scholar]
- Saari, M.; Xia, B.; Cox, B.; Krueger, P.S.; Cohen, A.L.; Richer, E.; de Wild, M.; Zimmermann, S.; Rüegg, J.; Schumacher, R.; et al. Fabrication and analysis of a composite 3D printed capacitive force sensor. 3D Print. Addit. Manuf. 2016, 3, 136–141. [Google Scholar] [CrossRef]
- Valentine, A.D.; Busbee, T.A.; Boley, J.W.; Raney, J.R.; Chortos, A.; Kotikian, A.; Berrigan, J.D.; Durstock, M.F.; Lewis, J.A. Hybrid 3D printing of soft electronics. Adv. Mater. 2017, 29, 1703817. [Google Scholar] [CrossRef] [PubMed]
- Voronov, V.I.; Dovgolevskiy, P.A. Designing a subsystem for creating a three-dimensional model of an orthopedic insole based on data from a laser 3D scanning of the patient’s feet. In Proceedings of the 2020 International Conference on Engineering Management of Communication and Technology (EMCTECH), Vienna, Austria, 20–22 October 2020; IEEE: New York, NY, USA, 2020; pp. 1–6. [Google Scholar]
- Schouten, M.; Sanders, R.; Krijnen, G. 3D printed flexible capacitive force sensor with a simple micro-controller based readout. In Proceedings of the 2017 IEEE SENSORS, Glasgow, UK, 29 October–1 November 2017; IEEE: New York, NY, USA, 2017; pp. 1–3. [Google Scholar]
- Schouten, M.; Spaan, C.; Kosmas, D.; Sanders, R.; Krijnen, G. 3D printed capacitive shear and normal force sensor using a highly flexible dielectric. In Proceedings of the 2021 IEEE Sensors Applications Symposium (SAS), Sundsvall, Sweden, 23–25 August 2021; IEEE: New York, NY, USA, 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Samarentsis, A.G.; Makris, G.; Spinthaki, S.; Christodoulakis, G.; Tsiknakis, M.; Pantazis, A.K. A 3D-Printed Capacitive Smart Insole for Plantar Pressure Monitoring. Sensors 2022, 22, 9725. [Google Scholar] [CrossRef] [PubMed]
- Ntagios, M.; Dahiya, R. 3D Printed Soft and Flexible Insole with Intrinsic Pressure Sensing Capability. IEEE Sensors J. 2022. [Google Scholar] [CrossRef]
- Elvin, N.G.; Elvin, A.A. Vibrational energy harvesting from human gait. IEEE/ASME Trans. Mechatron. 2012, 18, 637–644. [Google Scholar] [CrossRef]
- Hessert, M.J.; Vyas, M.; Leach, J.; Hu, K.; Lipsitz, L.A.; Novak, V. Foot pressure distribution during walking in young and old adults. BMC Geriatr. 2005, 5, 8. [Google Scholar] [CrossRef]
- Nandikolla, V.K.; Bochen, R.; Meza, S.; Garcia, A. Experimental gait analysis to study stress distribution of the human foot. J. Med. Eng. 2017, 2017, 3432074. [Google Scholar] [CrossRef]
- Ray, J.D.; Bert, C.W. The use of lissajous figures in vibration testing. In Symposium Management; The Shock and Vibration Information Center, Naval Research Laboratory: Washington, DC, USA, 1974; p. 117. [Google Scholar]
- Pedar®. Dynamic Pressure Distribution Inside the Footwear. novel.de: Munich, Germany. 2023. Available online: https://novel.de/products/pedar/ (accessed on 7 July 2023).
- Qi, H.J.; Boyce, M.C. Stress–strain behavior of thermoplastic polyurethanes. Mech. Mater. 2005, 37, 817–839. [Google Scholar] [CrossRef]
Setting | NinjaTek NinjaFlex TPU | NinjaTek Eel TPU | Protopasta Conductive PLA |
---|---|---|---|
Layer Height | 0.125 mm | 0.125 mm | 0.125 mm |
Initial Layer Height | 0.3 mm | 0.3 mm | 0.3 mm |
Infill Pattern | Grid | Lines | Lines |
Infill Density | 10% or 30% | 100% | 100% |
Infill Overlap Percent | 15% | 15% | 75% |
Skin Overlap Percent | 15% | 15% | 75% |
Printing Temperature | 230 °C | 230 °C | 215 °C |
Build Plate Temperature | 41 °C | 41 °C | 41 °C |
Flow | 150% | 150% | 130% |
Initial Layer Flow | 150% | 150% | 130% |
Enable Retraction | Unchecked | Unchecked | Unchecked |
Standby Temperature | 230 °C | 230 °C | 230 °C |
Print Speed | 9 mm/s | 9 mm/s | 9 mm/s |
Infill Speed | 9 mm/s | 9 mm/s | 35 mm/s |
Wall Speed | 9 mm/s | 9 mm/s | 9 mm/s |
Outer Wall Speed | 9 mm/s | 9 mm/s | 30 mm/s |
Inner Wall Speed | 9 mm/s | 9 mm/s | 9 mm/s |
Enable Print Cooling | Unchecked | Unchecked | Unchecked |
Enable Prime Tower | Unchecked | Unchecked | Unchecked |
Enable Ooze Shield | Checked | Checked | Checked |
Ooze Shield Angle | 0° | 0° | 0° |
Ooze Shield Distance | 6 mm | 6 mm | 6 mm |
Frequency (Hz) | Sensitivity (mV/N) | Intercept (mV) |
---|---|---|
1 | 0.331 | −2.48 |
3 | 0.332 | −2.95 |
5 | 0.340 | −1.35 |
7 | 0.347 | −2.34 |
Frequency (Hz) | Pressure (N/cm2) | Average Output Voltage Range (V) | Average SNR (dB) | ||||
---|---|---|---|---|---|---|---|
PLA-TPU-10 | PLA-TPU-30 | Eel-TPU-30 | PLA-TPU-10 | PLA-TPU-30 | Eel-TPU-30 | ||
1 | 23.9 | 0.090 | 0.055 | 0.059 | 9.060 | 3.844 | 5.076 |
1 | 33.4 | 0.106 | 0.055 | 0.061 | 13.761 | 4.982 | 7.674 |
1 | 52.5 | 0.179 | 0.057 | 0.092 | 18.603 | 8.004 | 10.400 |
1 | 71.7 | 0.275 | 0.071 | 0.097 | 22.281 | 10.749 | 13.501 |
3 | 23.9 | 0.090 | 0.049 | 0.073 | 9.447 | 3.332 | 5.081 |
3 | 33.4 | 0.103 | 0.051 | 0.061 | 12.709 | 5.641 | 7.418 |
3 | 52.5 | 0.157 | 0.076 | 0.078 | 15.688 | 7.322 | 9.768 |
3 | 71.7 | 0.248 | 0.070 | 0.107 | 21.145 | 9.239 | 12.697 |
5 | 23.9 | 0.084 | 0.051 | 0.057 | 7.952 | 3.262 | 3.335 |
5 | 33.4 | 0.108 | 0.062 | 0.068 | 12.588 | 4.427 | 4.827 |
5 | 52.5 | 0.148 | 0.059 | 0.084 | 16.575 | 6.817 | 9.999 |
5 | 71.7 | 0.210 | 0.066 | 0.088 | 19.970 | 8.491 | 11.833 |
7 | 23.9 | 0.078 | 0.051 | 0.061 | 8.149 | 2.519 | 5.346 |
7 | 33.4 | 0.098 | 0.057 | 0.065 | 11.312 | 4.612 | 6.331 |
7 | 52.5 | 0.152 | 0.053 | 0.080 | 13.716 | 5.942 | 9.114 |
7 | 71.7 | 0.211 | 0.072 | 0.084 | 19.205 | 7.961 | 10.882 |
Frequency (Hz) | Pressure (N/cm2) | Average Sensitivity (V/(N/cm2)) × 10−4 | Average Hysteresis (%) | Average Linearity Error (%) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
PLA-TPU-10 | PLA-TPU-30 | Eel-TPU-30 | PLA-TPU-10 | PLA-TPU-30 | Eel-TPU-30 | PLA-TPU-10 | PLA-TPU-30 | Eel-TPU-30 | ||
1 | 23.9 | 14.49 | 4.42 | 6.30 | 31.16 | 60.87 | 50.00 | 22.12 | 43.52 | 36.54 |
1 | 33.4 | 15.10 | 4.35 | 6.40 | 24.27 | 51.86 | 44.95 | 17.56 | 36.79 | 32.67 |
1 | 52.5 | 18.12 | 4.32 | 6.29 | 14.53 | 40.29 | 30.89 | 10.75 | 29.84 | 22.19 |
1 | 71.7 | 20.11 | 4.27 | 6.15 | 11.87 | 33.41 | 24.26 | 9.02 | 24.64 | 18.01 |
3 | 23.9 | 13.14 | 3.94 | 5.60 | 31.75 | 59.56 | 51.65 | 22.25 | 41.53 | 35.91 |
3 | 33.4 | 13.35 | 3.87 | 5.90 | 25.82 | 52.44 | 39.68 | 18.11 | 36.37 | 28.31 |
3 | 52.5 | 15.48 | 3.82 | 5.56 | 19.92 | 40.05 | 30.54 | 14.57 | 27.79 | 21.96 |
3 | 71.7 | 16.92 | 3.75 | 5.65 | 17.89 | 36.84 | 25.78 | 13.72 | 25.59 | 18.78 |
5 | 23.9 | 12.91 | 3.59 | 5.45 | 29.29 | 60.08 | 49.72 | 21.42 | 42.07 | 35.44 |
5 | 33.4 | 12.99 | 3.47 | 5.28 | 23.49 | 47.52 | 40.12 | 19.48 | 33.99 | 27.05 |
5 | 52.5 | 14.29 | 3.38 | 5.31 | 20.09 | 42.07 | 29.01 | 17.44 | 29.67 | 20.74 |
5 | 71.7 | 14.56 | 3.60 | 5.36 | 18.21 | 34.02 | 24.32 | 15.68 | 24.74 | 18.30 |
7 | 23.9 | 12.33 | 3.69 | 4.92 | 30.32 | 60.29 | 47.75 | 22.30 | 42.17 | 33.79 |
7 | 33.4 | 11.61 | 3.33 | 4.92 | 25.18 | 55.55 | 40.54 | 20.10 | 37.96 | 28.45 |
7 | 52.5 | 13.03 | 3.31 | 5.14 | 23.07 | 40.69 | 27.88 | 17.94 | 27.94 | 19.30 |
7 | 71.7 | 14.19 | 3.30 | 4.85 | 22.79 | 35.41 | 24.94 | 17.46 | 25.13 | 17.98 |
Minimum SNR (dB) | Resolvable Pressure and Frequency Range (N/cm2)/(Hz) | Sensitivity (V/(N/cm2)) × 10−4 | Hysteresis (%) | Linearity Error (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
PLA-TPU-10 | PLA-TPU-30 | Eel-TPU-30 | PLA-TPU-10 | PLA-TPU-30 | Eel-TPU-30 | PLA-TPU-10 | PLA-TPU-30 | Eel-TPU-30 | PLA-TPU-10 | PLA-TPU-30 | Eel-TPU-30 | |
0 | (23.88–71.65)/(1–7) | (23.88–71.65)/(1–7) | (23.88–71.65)/(1–7) | %) | %) | %) | 11.9– 31.8%) | %) | %) | %) | 11%) | 11%) |
6 | (23.88–71.65)/(1–7) | (71.65)/(1–7) | (52.54–71.65)/(1–7) | %) | %) | %) | 11.9–31.8 %) | %) | %) | %) | %) | 12%) |
8 | (33.43–71.65)/(1–7) | (71.65)/(1–5) | (52.54–71.65)/(1–7) | %) | %) | %) | 11.9–25.8 %) | %) | %) | %) | %) | 12%) |
10 | (33.43–71.65)/(1–7) | (71.65)/(1) | (71.65)/(1–7) | %) | %) | 4.85–6.15 %) | 11.9–25.8 %) | %) | ) | %) | %) | 10%) |
Sensor Performance | Evaluation Range | Materials and Fabrication Methods | |||||||
---|---|---|---|---|---|---|---|---|---|
Source | Sensitivity | Hysteresis Error | Linearity Error | Tested Frequencies | Tested Pressures | Electrode | Dielectric | Continuously 3D printed | Fully 3D Printed |
PLA-TPU-10 (this work) | V/(N/cm^2) | 11.9–31.8% | 9.0–22.3% | 1–7 Hz | N/cm2 | PLA; FDM Printed | TPU; FDM Printed | Yes | Yes |
PLA-TPU-30 (this work) | V/(N/cm2) | 33.4–60.9% | 24.6–43.5% | 1–7 Hz | N/cm2 | PLA; FDM Printed | TPU; FDM Printed | Yes | Yes |
Eel-TPU-30 (this work) | V/(N/cm2) | 24.3–51.7% | 18.0–36.5% | 1–7 Hz | N/cm2 | TPU; FDM Printed | TPU; FDM Printed | Yes | Yes |
[32] | 1190 | 9.8% | - | Hz | 41.5–872.4 kPa | PLA; FDM Printed | TPU; FDM Printed | No | Yes |
[26] | - | - | - | 0–35 kPa | TPU; FDM Printed | EcoFlex Rubber; poured | No | No | |
[23] | - | - | 0.3–44 kPa | AgNW and filter paper; poured and heated | UV resin/TPU; DLP/FDM Printed | No | No | ||
[24] | - | - | - | 0.001–0.5 kPa | Silver; Ink Jet Printed | 9495MP 3M tape; placed by hand | No | No | |
[33] | 854–1065 | 9.57% | - | - | 0–300 kPa | TPU; FDM Printed | EcoFlex Rubber; poured | No | No |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gothard, A.T.; Hott, J.W.; Anton, S.R. Dynamic Characterization of a Low-Cost Fully and Continuously 3D Printed Capacitive Pressure-Sensing System for Plantar Pressure Measurements. Sensors 2023, 23, 8209. https://doi.org/10.3390/s23198209
Gothard AT, Hott JW, Anton SR. Dynamic Characterization of a Low-Cost Fully and Continuously 3D Printed Capacitive Pressure-Sensing System for Plantar Pressure Measurements. Sensors. 2023; 23(19):8209. https://doi.org/10.3390/s23198209
Chicago/Turabian StyleGothard, Andrew T., Jacob W. Hott, and Steven R. Anton. 2023. "Dynamic Characterization of a Low-Cost Fully and Continuously 3D Printed Capacitive Pressure-Sensing System for Plantar Pressure Measurements" Sensors 23, no. 19: 8209. https://doi.org/10.3390/s23198209
APA StyleGothard, A. T., Hott, J. W., & Anton, S. R. (2023). Dynamic Characterization of a Low-Cost Fully and Continuously 3D Printed Capacitive Pressure-Sensing System for Plantar Pressure Measurements. Sensors, 23(19), 8209. https://doi.org/10.3390/s23198209