Non-Invasive Blood Pressure Sensing via Machine Learning
Abstract
:1. Introduction
2. Dataset
3. Machine Learning Models
3.1. XGBoost Models
3.2. NN Models
4. Results and Discussion
4.1. Training and Test of XGBoost and NN Models
4.2. Comparison with Other Methods
4.3. Compliance to Standards and Classification Guidelines
- Optimal: if SBP < 120 mmHg and DBP < 80 mmHg;
- Normal: if 120 mmHg ≤ SBP ≤ 129 mmHg and/or 80 mmHg ≤ DBP ≤ 84 mmHg;
- High Normal: if 130 mmHg ≤ SBP ≤ 139 mmHg and/or 85 mmHg ≤ DBP ≤ 89 mmHg;
- Grade 1 Hypertension: if 140 mmHg < SBP ≤ 159 mmHg and/or 90 mmHg ≤ DBP ≤ 99 mmHg;
- Grade 2 Hypertension: if 160 mmHg ≤ SBP ≤ 179 mmHg and/or 100 mmHg ≤ DBP ≤ 109 mmHg;
- Grade 3 Hypertension: if SBP ≥ 180 mmHg and/or DBP ≥ 110 mmHg;
- Isolated Systolic Hypertension: if SBP ≥ 140 mmHg and DBP < 90 mmHg.
4.4. Bland–Altman Analysis
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fan, Y.; Xu, P.; Jin, H.; Ma, J.; Qin, L. Vital Sign Measurement in Telemedicine Rehabilitation Based on Intelligent Wearable Medical Devices. IEEE Access 2019, 7, 54819–54823. [Google Scholar] [CrossRef]
- Pintavirooj, C.; Keatsamarn, T.; Treebupachatsakul, T. Multi-Parameter Vital Sign Telemedicine System Using Web Socket for COVID-19 Pandemics. Healthcare 2021, 9, 285. [Google Scholar] [CrossRef] [PubMed]
- De Palma, L.; Attivissimo, F.; Di Nisio, A.; Lanzolla, A.M.L.; Ragolia, M.A.; Spadavecchia, M. Development of a web-based system for interfacing a portable Bluetooth vital sign monitor. In Proceedings of the 2022 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Messina, Italy, 22–24 June 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Celler, B.G.; Sparks, R.S. Home Telemonitoring of Vital Signs-Technical Challenges and Future Directions. IEEE J. Biomed. Health Inform. 2015, 19, 82–91. [Google Scholar] [CrossRef] [PubMed]
- Scarpetta, M.; Spadavecchia, M.; Andria, G.; Ragolia, M.A.; Giaquinto, N. Simultaneous Measurement of Heartbeat Intervals and Respiratory Signal using a Smartphone. In Proceedings of the 2021 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Lausanne, Switzerland, 23–25 June 2021; pp. 1–5. [Google Scholar] [CrossRef]
- Khoshmanesh, F.; Thurgood, P.; Pirogova, E.; Nahavandi, S.; Baratchi, S. Wearable sensors: At the frontier of personalised health monitoring, smart prosthetics and assistive technologies. Biosens. Bioelectron. 2021, 176, 112946. [Google Scholar] [CrossRef]
- Arpaia, P.; Moccaldi, N.; Prevete, R.; Sannino, I.; Tedesco, A. A Wearable EEG Instrument for Real-Time Frontal Asymmetry Monitoring in Worker Stress Analysis. IEEE Trans. Instrum. Meas. 2020, 69, 8335–8343. [Google Scholar] [CrossRef]
- D’Alessandro, V.I.; De Palma, L.; Attivissimo, F.; Di Nisio, A.; Lanzolla, A.M.L. U-Net convolutional neural network for multisource heterogeneous iris segmentation. In Proceedings of the 2023 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Jeju, Republic of Korea, 14–16 June 2023; pp. 1–5. [Google Scholar] [CrossRef]
- Manickam, P.; Mariappan, S.A.; Murugesan, S.M.; Hansda, S.; Kaushik, A.; Shinde, R.; Thipperudraswamy, S.P. Artificial Intelligence (AI) and Internet of Medical Things (IoMT) Assisted Biomedical Systems for Intelligent Healthcare. Biosensors 2022, 12, 562. [Google Scholar] [CrossRef]
- Cheng, Y.-H.; Lech, M.; Wilkinson, R.H. Simultaneous Sleep Stage and Sleep Disorder Detection from Multimodal Sensors Using Deep Learning. Sensors 2023, 23, 3468. [Google Scholar] [CrossRef]
- Castaneda, D.; Esparza, A.; Ghamari, M.; Soltanpur, C.; Nazeran, H. A review on wearable photoplethysmography sensors and their potential future applications in health care. Int. J. Biosens. Bioelectron. 2018, 4, 195–202. [Google Scholar] [CrossRef]
- Longmore, S.K.; Lui, G.Y.; Naik, G.; Breen, P.P.; Jalaludin, B.; Gargiulo, G.D. A Comparison of Reflective Photoplethysmography for Detection of Heart Rate, Blood Oxygen Saturation, and Respiration Rate at Various Anatomical Locations. Sensors 2019, 19, 1874. [Google Scholar] [CrossRef]
- Tamura, T.; Maeda, Y.; Sekine, M.; Yoshida, M. Wearable Photoplethysmographic Sensors-Past and Present. Electronics 2014, 3, 282–302. [Google Scholar] [CrossRef]
- López-Silva, S.M.; Giannetti, R.; Dotor, M.L.; Silveira, J.P.; Golmayo, D.; Miguel-Tobal, F.; Bilbao, A.; Galindo, M.; Martín-Escudero, P. Heuristic algorithm for photoplethysmographic heart rate tracking during maximal exercise test. J. Med. Biol. Eng. 2022, 32, 181–188. [Google Scholar] [CrossRef]
- Qananwah, Q.; Dagamseh, A.; Alquran, H.; Ibrahim, K.S.; Alodat, M.D.; Hayden, O. A comparative study of photoplethysmogram and piezoelectric plethysmogram signals. Phys. Eng. Sci. Med. 2020, 43, 1207–1217. [Google Scholar] [CrossRef]
- De Palma, L.; Scarpetta, M.; Spadavecchia, M. Characterization of Heart Rate Estimation Using Piezoelectric Plethysmography in Time- and Frequency-domain. In Proceedings of the 2020 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Bari, Italy, 1 June–1 July 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Block, R.C.; Yavarimanesh, M.; Natarajan, K.; Carek, A.; Mousavi, A.; Chandrasekhar, A.; Kim, C.-S.; Zhu, J.; Schifitto, G.; Mestha, L.K.; et al. Conventional pulse transit times as markers of blood pressure changes in humans. Sci. Rep. 2020, 10, 16373. [Google Scholar] [CrossRef] [PubMed]
- Geddes, L.; Voelz, M.; Babbs, C.; Bourl, J.; Tacker, W. Pulse transit time as an indicator of arterial blood pressure. Psychophysiology 1981, 18, 71–74. [Google Scholar] [CrossRef] [PubMed]
- Elgendi, M.; Fletcher, R.; Liang, Y.; Howard, N.; Lovell, N.H.; Abbott, D.; Lim, K.; Ward, R. The use of photoplethysmography for assessing hypertension. NPJ Digit. Med. 2019, 2, 60. [Google Scholar] [CrossRef]
- Tarvirdizadeh, B.; Golgouneh, A.; Tajdari, F.; Khodabakhshi, E. A novel online method for identifying motion artifact and photoplethysmography signal reconstruction using artificial neural networks and adaptive neuro-fuzzy inference system. Neural Comput. Applic. 2020, 32, 3549–3566. [Google Scholar] [CrossRef]
- Arabameri, M.; Nazari, R.R.; Abdolshahi, A.; Abdollahzadeh, M.; Mirzamohammadi, S.; Shariatifar, N.; Barba, F.J.; Khaneghah, A.M. Oxidative stability of virgin olive oil: Evaluation and prediction with an adaptive neuro-fuzzy inference system (ANFIS). J. Sci. Food Agric. 2019, 99, 5358–5367. [Google Scholar] [CrossRef]
- Slapničar, G.; Mlakar, N.; Luštrek, M. Blood Pressure Estimation from Photoplethysmogram Using a Spectro-Temporal Deep Neural Network. Sensors 2019, 19, 3420. [Google Scholar] [CrossRef]
- Harfiya, L.N.; Chang, C.C.; Li, Y.H. Continuous Blood Pressure Estimation Using Exclusively Photopletysmography by LSTM-Based Signal-to-Signal Translation. Sensors 2021, 21, 2952. [Google Scholar] [CrossRef]
- Chowdhury, M.H.; Shuzan, M.N.I.; Chowdhury, M.E.H.; Mahbub, Z.B.; Uddin, M.M.; Khandakar, A.; Reaz, M.B.I. Estimating Blood Pressure from the Photoplethysmogram Signal and Demographic Features Using Machine Learning Techniques. Sensors 2020, 20, 3127. [Google Scholar] [CrossRef]
- Tjahjadi, H.; Ramli, K. Noninvasive Blood Pressure Classification Based on Photoplethysmography Using K-Nearest Neighbors Algorithm: A Feasibility Study. Information 2020, 11, 93. [Google Scholar] [CrossRef]
- Hasanzadeh, N.; Ahmadi, M.M.; Mohammadzade, H. Blood Pressure Estimation Using Photoplethysmogram Signal and Its Morphological Features. IEEE Sens. J. 2020, 20, 4300–4310. [Google Scholar] [CrossRef]
- Hsu, Y.C.; Li, Y.H.; Chang, C.C.; Harfiya, L.N. Generalized Deep Neural Network Model for Cuffless Blood Pressure Estimation with Photoplethysmogram Signal Only. Sensors 2020, 20, 5668. [Google Scholar] [CrossRef] [PubMed]
- Kurylyak, Y.; Lamonaca, F.; Grimaldi, D. A Neural Network-based method for continuous blood pressure estimation from a PPG signal. In Proceedings of the 2013 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Minneapolis, MN, USA, 6–9 May 2013; pp. 280–283. [Google Scholar] [CrossRef]
- Attivissimo, F.; De Palma, L.; Di Nisio, A.; Scarpetta, M.; Lanzolla, A.M.L. Photoplethysmography Signal Wavelet Enhancement and Novel Features Selection for Non-Invasive Cuff-Less Blood Pressure Monitoring. Sensors 2023, 23, 2321. [Google Scholar] [CrossRef] [PubMed]
- Kira, K.; Rendell, L.A. The feature selection problem: Traditional methods and a new algorithm. Assoc. Adv. Artif. Intell. 1992, 2, 129–134. [Google Scholar]
- Kononenko, I.; Robnik-Šikonja, M. Overcoming the myopia of inductive learning algorithms with RELIEFF. Appl. Intell. 1997, 7, 39–55. [Google Scholar] [CrossRef]
- Roffo, G. Ranking to learn and learning to rank: On the role of ranking in pattern recognition applications. arXiv 2017, arXiv:1706.05933. [Google Scholar]
- Ding, C.; Peng, H. Minimum redundancy feature selection from microarray gene expression data. J. Bioinform. Comput. Biol. 2005, 3, 185–205. [Google Scholar] [CrossRef]
- Moody, B.; Moody, G.; Villarroel, M.; Clifford, G.D.; Silva, I. MIMIC-III Waveform Database (version 1.0). PhysioNet 2020. [Google Scholar] [CrossRef]
- Johnson, A.E.W.; Pollard, T.J.; Shen, L.; Lehman, L.H.; Feng, M.; Ghassemi, M.; Moody, B.; Szolovits, P.; Celi, L.A.; Mark, R.G. MIMIC-III, a freely accessible critical care database. Sci. Data 2016, 3, 160035. [Google Scholar] [CrossRef]
- Goldberger, A.L.; Amaral, L.A.; Glass, L.; Hausdorff, J.M.; Ivanov, P.C.; Mark, R.G.; Mietus, J.E.; Moody, G.B.; Peng, C.K.; Stanley, H.E. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation 2000, 101, E215–E220. [Google Scholar] [CrossRef] [PubMed]
- Kachuee, M.; Kiani, M.M.; Mohammadzade, H.; Shabany, M. Cuff-less high-accuracy calibration-free blood pressure estimation using pulse transit time. In Proceedings of the 2015 IEEE International Symposium on Circuits and Systems (ISCAS), Lisbon, Portugal, 24–27 May 2015; pp. 1006–1009. [Google Scholar] [CrossRef]
- Kachuee, M.; Kiani, M.M.; Mohammadzade, H.; Shabany, M. Cuffless blood pressure estimation algorithms for continuous health-care monitoring. IEEE Trans. Biomed. Eng. 2017, 64, 859–869. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, A.; Goswami, D.; Mukhopadhyay, J.; Chakrabarti, S. Measurement of Arterial Blood Pressure Through Single-Site Acquisition of Photoplethysmograph Signal. in IEEE Trans. Instrum. Meas. 2021, 70, 4000310. [Google Scholar] [CrossRef]
- Li, Z.; He, W. A Continuous Blood Pressure Estimation Method Using Photoplethysmography by GRNN-Based Model. Sensors 2021, 21, 7207. [Google Scholar] [CrossRef]
- Pandey, R.K.; Lin, T.Y.; Chao, P.C.P. Design and implementation of a photoplethysmography acquisition system with an optimized artificial neural network for accurate blood pressure measurement. Microsyst. Technol. 2021, 27, 2345–2367. [Google Scholar] [CrossRef]
- Guo, J.; Yang, L.; Bie, R.; Yu, J.; Gao, Y.; Shen, Y.; Kos, A. An XGBoost-based physical fitness evaluation model using advanced feature selection and Bayesian hyper-parameter optimization for wearable running monitoring. Comput. Netw. 2019, 151, 166–180. [Google Scholar] [CrossRef]
- Prabha, A.; Yadav, J.; Rani, A.; Singh, V. Intelligent estimation of blood glucose level using wristband PPG signal and physiological parameters. Biomed. Signal Process. Control 2022, 78, 103876. [Google Scholar] [CrossRef]
- Che, X.; Li, M.; Kang, W.; Lai, F.; Wang, J. Continuous Blood Pressure Estimation from Two-Channel PPG Parameters by XGBoost. In Proceedings of the 2019 IEEE International Conference on Robotics and Biomimetics (ROBIO), Dali, China, 6–8 December 2019; pp. 2707–2712. [Google Scholar] [CrossRef]
- Shin, H. XGBoost Regression of the Most Significant Photoplethysmogram Features for Assessing Vascular Aging. IEEE J. Biomed. Health Inform. 2022, 26, 3354–3361. [Google Scholar] [CrossRef]
- Gao, L.; Ding, Y. Disease prediction via Bayesian hyperparameter optimization and ensemble learning. BMC Res. Notes 2020, 13, 205. [Google Scholar] [CrossRef]
- Gregg, M.E.; Matyas, T.A.; James, J.E. A new model of individual differences in hemodynamic profile and blood pressure reactivity. Psychophysiology 2002, 39, 64–72. [Google Scholar] [CrossRef]
- Sherwood, A.; Dolan, C.A.; Light, K.C. Hemodynamics of blood pressure responses during active and passive coping. Psychophysiology 1990, 27, 656–668. [Google Scholar] [CrossRef]
- DeMers, D.; Wachs, D. Physiology, mean arterial pressure. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Kim, J.Y.; Cho, B.H.; Im, S.M.; Jeon, M.J.; Kim, I.Y.; Kim, S.I. Comparative study on artificial neural network with multiple regressions for continuous estimation of blood pressure. In Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China, 17–18 January 2006; pp. 6942–6945. [Google Scholar]
- Cattivelli, F.S.; Garudadri, H. Noninvasive cuffless estimation of blood pressure from pulse arrival time and heart rate with adaptive calibration. In Proceedings of the 2009 Sixth International Workshop on Wearable and Implantable Body Sensor Networks, Berkeley, CA, USA, 3–5 June 2009; pp. 114–119. [Google Scholar]
- Zhang, Y.; Feng, Z. A SVM method for continuous blood pressure estimation from a PPG signal. In Proceedings of the 9th International Conference on Machine Learning and Computing, Singapore, 24–26 February 2017; pp. 128–132. [Google Scholar]
- Zadi, A.S.; Alex, R.; Zhang, R.; Watenpaugh, D.E.; Behbehani, K. Arterial blood pressure feature estimation using photoplethysmography. Comput. Biol. Med. 2018, 102, 104–111. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhou, W.; Xing, Y.; Zhou, X. A Novel Neural Network Model for Blood Pressure Estimation Using Photoplethesmography without Electrocardiogram. J. Healthc. Eng. 2018, 2018, 7804243. [Google Scholar] [CrossRef] [PubMed]
- Fleischhauer, V.; Feldheiser, A.; Zaunseder, S. Beat-to-Beat Blood Pressure Estimation by Photoplethysmography and Its Interpretation. Sensors 2022, 22, 7037. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Po, L.-M.; Fu, H. Cuffless blood pressure estimation based on photoplethysmography signal and its second derivative. Int. J. Comput. Theory Eng. 2017, 9, 202. [Google Scholar] [CrossRef]
- Zhang, G.; Shin, S.; Jung, J.; Li, M.; Kim, Y.T. Machine learning Algorithm for Non-invasive Blood Pressure Estimation Using PPG Signals. In Proceedings of the 2022 IEEE Fifth International Conference on Artificial Intelligence and Knowledge Engineering (AIKE), Laguna Hills, CA, USA, 19–21 September 2022; pp. 94–97. [Google Scholar] [CrossRef]
- Stergiou, G.S.; Alpert, B.; Mieke, S.; Asmar, R.; Atkins, N.; Eckert, S.; Frick, G.; Friedman, B. A universal standard for the validation of blood pressure measuring devices: Association for the Advancement of Medical Instrumentation/European Society of Hypertension/International Organization for Standardization (AAMI/ESH/ISO) Collaboration Statement. Hypertension 2018, 71, 368–374. [Google Scholar] [CrossRef]
- ANSI/AAMI SP10-2002/A1; Association for the Advancement of Medical Instrumentation, American National Standard. Manual, Electronic or Automated Sphygmomanometers. Association for the Advancement of Medical Instrumentation: Arlington, VA, USA, 2003.
- O’brien, E.; Waeber, B.; Parati, G.; Staessen, J.; Myers, M.G. Blood pressure measuring devices: Recommendations of the European Society of Hypertension. BMJ 2001, 322, 531–536. [Google Scholar] [CrossRef]
- Rong, M.; Li, K. A multi-type features fusion neural network for blood pressure prediction based on photoplethysmography. Biomed. Signal Process. Control 2021, 68, 102772. [Google Scholar] [CrossRef]
- Li, Y.H.; Harfiya, L.N.; Chang, C.C. Featureless Blood Pressure Estimation Based on Photoplethysmography Signal Using CNN and BiLSTM for IoT Devices. Hindawi Wirel. Commun. Mob. Comput. 2021, 2021, 9085100. [Google Scholar] [CrossRef]
- Mousavi, S.S.; Firouzmand, M.; Charmi, M.; Hemmati, M.; Moghadam, M.; Ghorbani, Y. Blood pressure estimation from appropriate and inappropriate PPG signals using A whole-based method. Biomed. Signal Process. Control 2019, 47, 196–206. [Google Scholar] [CrossRef]
- Mancia, G.; Fagard, R.; Narkiewicz, K.; Redon, J.; Zanchetti, A.; Böhm, M.; Christiaens, T.; Cifkova, R.; De Backer, G.; Dominiczak, A.; et al. 2013 ESH/ESC Guidelines for the management of arterial hypertension: The Task Force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Eur. Heart J. 2013, 34, 2159–2219. [Google Scholar]
- Altman, D.; Bland, J. Measurement in Medicine: The Analysis of Method Comparison Studies. Statistician 1983, 32, 307. [Google Scholar] [CrossRef]
- Dogan, N. Bland-Altman analysis: A paradigm to understand correlation and agreement. Turk. J. Emerg. Med. 2018, 18, 139–141. [Google Scholar] [CrossRef] [PubMed]
- Giavarina, D. Understanding Bland Altman analysis. Biochem. Medica 2015, 25, 141–151. [Google Scholar] [CrossRef] [PubMed]
Hyper-Parameter | Range | Best |
---|---|---|
Learning rate | [0.01, 1.0] | 0.226 |
Maximum tree depth | [2, 15] | 15 |
Subsample | [0.1, 1.0] | 0.894 |
Subsample ratio of columns by tree | [0.1, 1.0] | 1.0 |
Lambda | [1 × 10−10, 200] | 120.0 |
Alpha | [1 × 10−10, 200] | 1 × 10−10 |
Estimators | [50, 5100] | 5000 |
Hyper-Parameter | Range | Best |
---|---|---|
Learning rate | [0.01, 1.0] | 0.136 |
Maximum tree depth | [2, 20] | 15 |
Subsample | [0.1, 1.0] | 0.894 |
Subsample ratio of columns by tree | [0.1, 1.0] | 1.0 |
Lambda | [1 × 10−9, 200] | 120.0 |
Alpha | [1 × 10−10, 200] | 1 × 10−10 |
Estimators | [50, 6000] | 5200 |
Model | RMSE (mmHg) | MAE (mmHg) | |
---|---|---|---|
XGBoost | SBP | 5.60 | 3.11 |
DBP | 3.92 | 2.09 | |
NN | SBP | 7.80 | 5.00 |
DBP | 5.56 | 3.53 |
Model | RMSE (mmHg) | MAE (mmHg) | R | ME (mmHg) | |
---|---|---|---|---|---|
XGBoost | SBP | 5.67 | 3.12 | 0.95 | 0.020 |
DBP | 3.95 | 2.11 | 0.91 | −0.001 | |
MAP | 3.24 | 2.01 | 0.93 | 0.006 | |
NN | SBP | 7.81 | 5.00 | 0.90 | −0.420 |
DBP | 5.60 | 3.55 | 0.81 | −0.250 | |
MAP | 4.56 | 3.12 | 0.85 | −0.310 |
Work | Method | Data Size | Performance Evaluation | SBP | DBP |
---|---|---|---|---|---|
Kachuee et al. [37] | Support vector machine (SVM) | MIMIC II (1000 subjects) | RMSE | / | / |
MAE | 12.38 | 6.34 | |||
R | / | / | |||
ME | / | / | |||
Kim et al. [50] | ANN | 180 recordings, 45 subjects | RMSE | / | / |
MAE | 4.53 | / | |||
R | / | / | |||
ME | / | / | |||
Cattivelli et al. [51] | Proprietary algorithm | MIMIC database (34 recordings, 25 subjects) | RMSE | 8.37 | 5.92 |
MAE | / | / | |||
R | / | / | |||
ME | / | / | |||
Zhang et al. [52] | SVM | 7000 samples from 32 patients | RMSE | / | / |
MAE | 11.64 | 7.62 | |||
R | / | / | |||
ME | / | / | |||
Zadi et al. [53] | Autoregressive moving average (ARMA) models | 15 subjects | RMSE | 6.49 | 4.33 |
MAE | / | / | |||
R | / | / | |||
ME | / | / | |||
Chowdhury et al. [24] | Gaussian process regression (GPR) | 222 recordings, 126 subjects | RMSE | 6.74 | 3.59 |
MAE | 3.02 | 1.74 | |||
R | 0.95 | 0.96 | |||
ME | / | / | |||
Hasanzadeh et al. [26] | AdaBoost | MIMIC II 942 subjects | RMSE | / | / |
MAE | 8.22 | 4.17 | |||
R | 0.78 | 0.72 | |||
ME | 0.09 | 0.23 | |||
Kachuee et al. [38] | AdaBoost | 1000 subjects | RMSE | / | / |
MAE | 8.21 | 4.31 | |||
R | / | / | |||
ME | / | / | |||
Wang et al. [54] | ANN | 58,795 PPG samples | RMSE | / | / |
MAE | 4.02 | 2.27 | |||
R | / | / | |||
ME | / | / | |||
Kurylyak et al. [28] | ANN | 15,000 PPG heartbeats | RMSE | / | / |
MAE | 3.80 | 2.21 | |||
R | / | / | |||
ME | / | / | |||
Fleischhauer et al. [55] | XGBoost | MIMIC, Queensland, PPG BP (273 subjects and 259,986 single beats) | RMSE | / | / |
MAE | 6.366 | / | |||
R | 0.874 | / | |||
ME | / | / | |||
Liu et al. [56] | SVR | MIMIC II 910 good PPG pules cycles | RMSE | / | / |
MAE | 8.54 | 4.34 | |||
R | / | / | |||
ME | / | / | |||
Zhang et al. [57] | Gradient Boosting Regressor (GBR) | MIMIC II 2842 samples from 12,000 data points | RMSE | / | / |
MAE | 4.33 | 2.54 | |||
R | / | / | |||
ME | / | / | |||
Proposed method | XGBoost | MIMIC III 9.1 × 106 PPG pulses from 1080 subjects | RMSE | 5.67 | 3.95 |
MAE | 3.12 | 2.11 | |||
R | 0.95 | 0.91 | |||
ME | 0.01 | 0.02 |
ME (mmHg) | STD (mmHg) | ||
---|---|---|---|
Results | SBP | 0.009 | 5.60 |
DBP | 0.019 | 3.92 | |
MAP | 0.0157 | 3.21 | |
AAMI | SBP | ≤5 | ≤8 |
DBP |
ME (mmHg) | STD (mmHg) | ||
---|---|---|---|
Results | SBP | 0.020 | 5.67 |
DBP | −0.001 | 3.95 | |
MAP | 0.006 | 3.24 | |
AAMI | SBP | ≤5 | ≤8 |
DBP |
Cumulative Error Percentage | ||||
---|---|---|---|---|
≤5 mmHg | ≤10 mmHg | ≤15 mmHg | ||
Results | SBP | 80.85% | 93.00% | 96.84% |
DBP | 89.56% | 96.86% | 98.74% | |
MAP | 90.89% | 98.18% | 99.49% | |
BHS | Grade A | 60% | 85% | 95% |
Grade B | 50% | 75% | 90% | |
Grade C | 40% | 65% | 85% |
Cumulative Error Percentage | ||||
---|---|---|---|---|
≤5 mmHg | ≤10 mmHg | ≤15 mmHg | ||
Results | SBP | 80.96% | 92.91% | 96.73% |
DBP | 89.48% | 96.87% | 98.68% | |
MAP | 90.84% | 98.07% | 99.44% | |
BHS | Grade A | 60% | 85% | 95% |
Grade B | 50% | 75% | 90% | |
Grade C | 40% | 65% | 85% |
Class | Accuracy | Sensitivity | Specificity | F1-Score | Actual Class Members |
---|---|---|---|---|---|
Grade 1 Hypertension | 91.9% | 75.8% | 95.6% | 77.9% | 18.9% |
Grade 2 Hypertension | 97.7% | 66.0% | 99.3% | 73.6% | 4.9% |
Grade 3 Hypertension | 99.8% | 25.6% | 99.9% | 28.6% | 0.1% |
High Normal | 87.5% | 73.3% | 91.4% | 71.4% | 21.3% |
Isolated Systolic Hypertension | 97.9% | 29.3% | 98.9% | 28.9% | 1.4% |
Normal | 86.0% | 72.8% | 89.8% | 70.1% | 22.5% |
Optimal | 93.1% | 87.5% | 95.6% | 88.6% | 30.8% |
Average | 90.3% | 76.9% | 93.5% | 77.0% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Attivissimo, F.; D’Alessandro, V.I.; De Palma, L.; Lanzolla, A.M.L.; Di Nisio, A. Non-Invasive Blood Pressure Sensing via Machine Learning. Sensors 2023, 23, 8342. https://doi.org/10.3390/s23198342
Attivissimo F, D’Alessandro VI, De Palma L, Lanzolla AML, Di Nisio A. Non-Invasive Blood Pressure Sensing via Machine Learning. Sensors. 2023; 23(19):8342. https://doi.org/10.3390/s23198342
Chicago/Turabian StyleAttivissimo, Filippo, Vito Ivano D’Alessandro, Luisa De Palma, Anna Maria Lucia Lanzolla, and Attilio Di Nisio. 2023. "Non-Invasive Blood Pressure Sensing via Machine Learning" Sensors 23, no. 19: 8342. https://doi.org/10.3390/s23198342
APA StyleAttivissimo, F., D’Alessandro, V. I., De Palma, L., Lanzolla, A. M. L., & Di Nisio, A. (2023). Non-Invasive Blood Pressure Sensing via Machine Learning. Sensors, 23(19), 8342. https://doi.org/10.3390/s23198342