Energy Optimization of Wireless Sensor Embedded Cloud Computing Data Monitoring System in 6G Environment
Abstract
:1. Introduction
2. Related Work
3. Analysis of Embedded Cloud Computing Data Monitoring System Based on Wireless Sensor Network
3.1. Simulation of Wireless Network Algorithm Based on ZigBee Energy Optimization
3.2. Simulation of ZigBee-Optimized Wireless Sensor Network in Embedded Cloud Computing Data Monitoring System
4. Research Results’ Analysis of Embedded Cloud Computing Data Monitoring System Based on ZigBee Energy Optimization Routing Algorithm for Wireless Sensor Networks
4.1. Analysis of Simulation Results of Wireless Sensor Network Routing Algorithm Based on ZigBee Energy Optimization
4.2. Analysis of Simulation Results of ZigBee-Optimized Wireless Sensor Network in Embedded Cloud Computing Data Monitoring System
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Tolani, M.; Singh, R.K.; Shubham, K.; Kumar, R. Two-layer optimized railway monitoring system using Wi-Fi and ZigBee interfaced wireless sensor network. IEEE Sens. J. 2017, 17, 2241–2248. [Google Scholar] [CrossRef]
- Jung, H.J.; Song, Y.; Hong, S.K.; Yang, C.H.; Hwang, S.J.; Jeong, S.Y.; Sung, T.H. Design and optimization of piezoelectric impact-based micro wind energy harvester for wireless sensor network. Sens. Actuators A Phys. 2015, 222, 314–321. [Google Scholar] [CrossRef]
- Ouni, S.; Ayoub, Z.T. Cooperative association/re-association approaches to optimize energy consumption for real-time IEEE 802.15. 4/ZigBee wireless sensor networks. Wirel. Pers. Commun. 2013, 71, 3157–3183. [Google Scholar] [CrossRef]
- Peng, C.; Qian, K.; Wang, C. Design and application of a VOC-monitoring system based on a ZigBee wireless sensor network. IEEE Sens. J. 2014, 15, 2255–2268. [Google Scholar] [CrossRef]
- Jawad, H.M.; Jawad, A.M.; Nordin, R.; Gharghan, S.K.; Abdullah, N.F.; Ismail, M.; Abu-AlShaeer, M.J. Accurate empirical path-loss model based on particle swarm optimization for wireless sensor networks in smart agriculture. IEEE Sens. J. 2019, 20, 552–561. [Google Scholar] [CrossRef]
- Wadhwa, L.K.; Deshpande, R.S.; Priye, V. Extended shortcut tree routing for ZigBee based wireless sensor network. Ad Hoc Netw. 2016, 37, 295–300. [Google Scholar] [CrossRef]
- Govindasamy, J.; Punniakody, S. A comparative study of reactive, proactive and hybrid routing protocol in wireless sensor network under wormhole attack. J. Electr. Syst. Inf. Technol. 2018, 5, 735–744. [Google Scholar] [CrossRef]
- Sundhari RP, M.; Jaikumar, K. IoT assisted Hierarchical Computation Strategic Making (HCSM) and Dynamic Stochastic Optimization Technique (DSOT) for energy optimization in wireless sensor networks for smart city monitoring. Comput. Commun. 2020, 150, 226–234. [Google Scholar] [CrossRef]
- Yu, Y.; Xue, B.; Chen, Z.; Qian, Z. Cluster tree topology construction method based on PSO algorithm to prolong the lifetime of ZigBee wireless sensor networks. EURASIP J. Wirel. Commun. Netw. 2019, 2019, 199. [Google Scholar] [CrossRef] [Green Version]
- Mahmood, A.; Khan, I.; Razzaq, S.; Najam, Z.; Khan, N.A.; Rehman, M.A.; Javaid, N. Home appliances coordination scheme for energy management (HACS4EM) using wireless sensor networks in smart grids. Procedia Comput. Sci. 2014, 32, 469–476. [Google Scholar] [CrossRef]
- Tahmassebpour, M. Methods and algorithms of capacity calculation and increase throughput in wireless sensor networks base of ZigBee: A survey. Indian J. Sci. Technol. 2016, 9, 1–7. [Google Scholar] [CrossRef]
- Rault, T.; Bouabdallah, A.; Challal, Y. Energy efficiency in wireless sensor networks: A top-down survey. Comput. Netw. 2014, 67, 104–122. [Google Scholar] [CrossRef] [Green Version]
- Bhushan, S.; Kumar, M.; Kumar, P.; Stephan, T.; Shankar, A.; Liu, P. FAJIT: A fuzzy-based data aggregation technique for energy efficiency in wireless sensor network. Complex Intell. Syst. 2021, 7, 997–1007. [Google Scholar] [CrossRef]
- Bianchi, V.; Ciampolini, P.; De Munari, I. RSSI-based indoor localization and identification for ZigBee wireless sensor networks in smart homes. IEEE Trans. Instrum. Meas. 2018, 68, 566–575. [Google Scholar] [CrossRef]
- Abella, C.S.; Bonina, S.; Cucuccio, A.; D’Angelo, S.; Giustolisi, G.; Grasso, A.D.; Scuderi, A. Autonomous energy-efficient wireless sensor network platform for home/office automation. IEEE Sens. J. 2019, 19, 3501–3512. [Google Scholar] [CrossRef]
- Wan, B.F.; Zhou, Z.W.; Xu, Y.; Zhang, H.F. A theoretical proposal for a refractive index and angle sensor based on one-dimensional photonic crystals. IEEE Sens. J. 2020, 21, 331–338. [Google Scholar] [CrossRef]
- Zhao, L.; Qu, S.; Yi, Y. A modified cluster-head selection algorithm in wireless sensor networks based on LEACH. EURASIP J. Wirel. Commun. Netw. 2018, 2018, 287. [Google Scholar] [CrossRef]
- Mazinani, A.; Mazinani, S.M.; Mirzaie, M. FMCR-CT: An energy-efficient fuzzy multi cluster-based routing with a constant threshold in wireless sensor network. Alex. Eng. J. 2019, 58, 127–141. [Google Scholar] [CrossRef]
- Singh, R.R.; Yash, S.M.; Shubham, S.C.; Indragandhi, V.; Vijayakumar, V.; Saravanan, P.; Subramaniyaswamy, V. IoT embedded cloud-based intelligent power quality monitoring system for industrial drive application. Future Gener. Comput. Syst. 2020, 112, 884–898. [Google Scholar] [CrossRef]
- Chowdhury, S.M.; Hossain, A. Different energy saving schemes in wireless sensor networks: A survey. Wirel. Pers. Commun. 2020, 114, 2043–2062. [Google Scholar] [CrossRef]
- Govindarajan, R.; Meikandasivam, S.; Vijayakumar, D. Cloud computing based smart energy monitoring system. Int. J. Sci. Technol. Res. 2019, 8, 886–890. [Google Scholar]
- Pereira, R.I.; Dupont, I.M.; Carvalho, P.C.; Jucá, S. IoT embedded linux system based on Raspberry Pi applied to real-time cloud monitoring of a decentralized photovoltaic plant. Measurement 2018, 114, 286–297. [Google Scholar] [CrossRef]
- Atayero, A.A.; Williams, R.; Badejo, J.A.; Popoola, S.I. Cloud based IoT-enabled solid waste monitoring system for smart and connected communities. Int. J. Civ. Eng. Technol. 2019, 10, 2308–2315. [Google Scholar]
- Nilsaz, D.N.; Barati, H. A distributed energy-efficient approach for hole repair in wireless sensor networks. Wirel. Netw. 2020, 26, 1839–1855. [Google Scholar] [CrossRef]
- Karimi, B.S.; Guo, J.; Jafarkhani, H. Energy-efficient node deployment in heterogeneous two-tier wireless sensor networks with limited communication range. IEEE Trans. Wirel. Commun. 2020, 20, 40–55. [Google Scholar] [CrossRef]
- Guleria, K.; Verma, A.K. Comprehensive review for energy efficient hierarchical routing protocols on wireless sensor networks. Wirel. Netw. 2019, 25, 1159–1183. [Google Scholar] [CrossRef]
- Mohamed, R.E.; Saleh, A.I.; Abdelrazzak, M.; Samra, A.S. Survey on wireless sensor network applications and energy efficient routing protocols. Wirel. Pers. Commun. 2018, 101, 1019–1055. [Google Scholar] [CrossRef]
- Li, S.; Kim, J.G.; Han, D.H.; Lee, K.S. A survey of energy-efficient communication protocols with QoS guarantees in wireless multimedia sensor networks. Sensors 2019, 19, 199. [Google Scholar] [CrossRef] [Green Version]
- Almazaideh, M.; Levendovszky, J. Novel reliable and energy-efficient routing protocols for wireless sensor networks. J. Sens. Actuator Netw. 2020, 9, 5. [Google Scholar] [CrossRef] [Green Version]
- Jafarali Jassbi, S.; Moridi, E. Fault tolerance and energy efficient clustering algorithm in wireless sensor networks: FTEC. Wirel. Pers. Commun. 2019, 107, 373–391. [Google Scholar] [CrossRef]
- Selvi, M.; Santhosh Kumar SV, N.; Ganapathy, S.; Ayyanar, A.; Khanna Nehemiah, H.; Kannan, A. An energy efficient clustered gravitational and fuzzy based routing algorithm in WSNs. Wirel. Pers. Commun. 2021, 116, 61–90. [Google Scholar] [CrossRef]
- Harizan, S.; Kuila, P. Coverage and connectivity aware energy efficient scheduling in target based wireless sensor networks: An improved genetic algorithm based approach. Wirel. Netw. 2019, 25, 1995–2011. [Google Scholar] [CrossRef]
- Alsharif, M.H.; Kim, S.; Kuruoğlu, N. Energy harvesting techniques for wireless sensor networks/radio-frequency identification: A review. Symmetry 2019, 11, 865. [Google Scholar] [CrossRef] [Green Version]
- Gudla, S.; Kuda, N.R. Learning automata based energy efficient and reliable data delivery routing mechanism in wireless sensor networks. J. King Saud Univ.-Comput. Inf. Sci. 2022, 34, 5759–5765. [Google Scholar] [CrossRef]
- Saba, T.; Haseeb, K.; Ud Din, I.; Almogren, A.; Altameem, A.; Fati, S.M. EGCIR: Energy-aware graph clustering and intelligent routing using supervised system in wireless sensor networks. Energies 2020, 13, 4072. [Google Scholar] [CrossRef]
- Song, H.; Sui, S.; Han, Q.; Zhang, H.; Yang, Z. Autoregressive integrated moving average model–based secure data aggregation for wireless sensor networks. Int. J. Distrib. Sens. Netw. 2020, 16, 1550147720912958. [Google Scholar] [CrossRef] [Green Version]
- Kanoun, O.; Bradai, S.; Khriji, S.; Bouattour, G.; El Houssaini, D.; Ben Ammar, M.; Viehweger, C. Energy-aware system design for autonomous wireless sensor nodes: A comprehensive review. Sensors 2021, 21, 548. [Google Scholar] [CrossRef]
Type of Technology | Transmission Distance/M | Transmission Efficiency/% | Security/% | Energy Consumption |
---|---|---|---|---|
Zigbee Technology | 150 | 90 | 98 | 300 |
Bluetooth Transmission | 150 | 78 | 60 | 465 |
Wireless Network Transmission | 150 | 80 | 58 | 372 |
Algorithm Type | Energy Consumption/A | Response Time/S | Transmission Efficiency |
---|---|---|---|
Clustering Routing Algorithm 1 | 5300 | 10 | 500 |
Clustering Routing Algorithm 2 | 5800 | 11 | 514 |
AODVjr Algorithm 1 | 4520 | 8 | 654 |
AODVjr Algorithm 2 | 4652 | 9 | 687 |
Fusion Algorithm | 2003 | 3 | 1540 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, H.; Zhou, H.; Liu, Z.; Deng, X. Energy Optimization of Wireless Sensor Embedded Cloud Computing Data Monitoring System in 6G Environment. Sensors 2023, 23, 1013. https://doi.org/10.3390/s23021013
Yang H, Zhou H, Liu Z, Deng X. Energy Optimization of Wireless Sensor Embedded Cloud Computing Data Monitoring System in 6G Environment. Sensors. 2023; 23(2):1013. https://doi.org/10.3390/s23021013
Chicago/Turabian StyleYang, Huaiyuan, Hua Zhou, Zhenyu Liu, and Xiaofan Deng. 2023. "Energy Optimization of Wireless Sensor Embedded Cloud Computing Data Monitoring System in 6G Environment" Sensors 23, no. 2: 1013. https://doi.org/10.3390/s23021013
APA StyleYang, H., Zhou, H., Liu, Z., & Deng, X. (2023). Energy Optimization of Wireless Sensor Embedded Cloud Computing Data Monitoring System in 6G Environment. Sensors, 23(2), 1013. https://doi.org/10.3390/s23021013