Performance Enhancement of INS and UWB Fusion Positioning Method Based on Two-Level Error Model
Abstract
:1. Introduction
2. Data Prefiltering
2.1. Wavelet Denoising Method
2.2. Implementation Details
3. Methodology
3.1. Mechanism Error Model
- It is convenient to analyze and calculate the parameters of the stochastic model;
- There are little application condition limitations on the stochastic model;
- There is no need to calibrate a large number of parameters in contrast to other methods.
3.1.1. Stochastic Process Model
3.1.2. Implementation Details
3.2. Propagation Error Model
3.3. Error Model EKF Method
3.3.1. Basic EKF Method
3.3.2. Two-Level Error Model EKF Method
Algorithm 1: Two-Level Error Model EKF |
State Variables: |
Initialization: |
Input: |
Output: |
; |
|
4. Experiment Results and Discussion
4.1. Dataset Description and Prefiltering
4.1.1. Dataset Description
4.1.2. Data Prefiltering Results
4.2. Two-Level Error Model Parameter Estimation Results
4.3. Two-Level Error Model-Based EKF Method Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Angrisano, A.; Petovello, M.; Pugliano, G. Benefits of combined GPS/GLONASS with low-cost MEMS IMUs for vehicular urban navigation. Sensors 2012, 12, 5134–5158. [Google Scholar] [CrossRef] [Green Version]
- Unsal, D.; Demirbas, K. Estimation of deterministic and stochastic IMU error parameters. In Proceedings of the 2012 IEEE/ION Position, Location and Navigation Symposium, Myrtle Beach, SC, USA, 23–26 April 2012; pp. 862–868. [Google Scholar]
- Lee, D.; Lee, S.; Park, S.; Ko, S. Test and error parameter estimation for MEMS—Based low cost IMU calibration. Int. J. Precis. Eng. Manuf. 2011, 12, 597–603. [Google Scholar] [CrossRef]
- Bhatia, S.; Yang, H.; Zhang, R.; Höflinger, F.; Reindl, L. Development of an analytical method for IMU calibration. In Proceedings of the 2016 13th International Multi-Conference on Systems, Signals & Devices (SSD), Leipzig, Germany, 21–24 March 2016; pp. 131–135. [Google Scholar]
- Xing, Z.; Gebre-Egziabher, D. Modeling and bounding low cost inertial sensor errors. In Proceedings of the 2008 IEEE/ION Position, Location and Navigation Symposium, Monterey, CA, USA, 5–8 May 2008; pp. 1122–1132. [Google Scholar]
- Ghanipoor, F.; Hashemi, M.; Salarieh, H. Toward calibration of low-precision MEMS IMU using a nonlinear model and TUKF. IEEE Sens. J. 2020, 20, 4131–4138. [Google Scholar] [CrossRef]
- Farrell, J.A.; Silva, F.O.; Rahman, F.; Wendel, J. Inertial Measurement Unit Error Modeling Tutorial: Inertial Navigation System State Estimation with Real-Time Sensor Calibration. IEEE Control. Syst. Mag. 2022, 42, 40–66. [Google Scholar]
- Allan, D.W. Statistics of atomic frequency standards. Proc. IEEE 1966, 54, 221–230. [Google Scholar] [CrossRef] [Green Version]
- IEEE, B IEEE-SA Standards Board. IEEE Standard Specification Format Guide and Test Procedure for Single-Axis Interferometric Fiber Optic Gyros; IEEE: Piscataway, NJ, USA, 1998. [Google Scholar]
- Neumaier, A.; Schneider, T. Estimation of parameters and eigenmodes of multivariate autoregressive models. ACM Trans. Math. Softw. (TOMS) 2001, 27, 27–57. [Google Scholar] [CrossRef]
- Gallon, E.; Joerger, M.; Pervan, B. Development of Stochastic IMU Error Models for INS/GNSS Integration. In Proceedings of the 34th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2021), St. Louis, MI, USA, 20–24 September 2021; pp. 20–24. [Google Scholar]
- Hsieh, C.-S. Robust two-stage Kalman filters for systems with unknown inputs. IEEE Trans. Autom. Control 2000, 45, 2374–2378. [Google Scholar] [CrossRef]
- Gillijns, S.; De Moor, B. Unbiased minimum-variance input and state estimation for linear discrete-time systems. Automatica 2007, 43, 111–116. [Google Scholar] [CrossRef]
- Kong, H.; Sukkarieh, S. An internal model approach to estimation of systems with arbitrary unknown inputs. Automatica 2019, 108, 108482. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiao, M.; Wang, Z.; Fu, H.; Wu, Y. Robust three-stage unscented Kalman filter for Mars entry phase navigation. Inf. Fusion 2019, 51, 67–75. [Google Scholar] [CrossRef]
- Shen, Q.; Yang, D.; Li, J.; Chang, H. Bias Accuracy Maintenance Under Unknown Disturbances by Multiple Homogeneous MEMS Gyroscopes Fusion. IEEE Trans. Ind. Electron. 2022, 70, 3178–3187. [Google Scholar] [CrossRef]
- Bar-Itzhack, I.Y.; Berman, N. Control theoretic approach to inertial navigation systems. J. Guid. Control Dyn. 1988, 11, 237–245. [Google Scholar] [CrossRef]
- Benson, D.O. A comparison of two approaches to pure-inertial and Doppler-inertial error analysis. IEEE Trans. Aerosp. Electron. Syst. 1975, AES-11, 447–455. [Google Scholar] [CrossRef]
- Barrau, A.; Bonnabel, S. A mathematical framework for IMU error propagation with applications to preintegration. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020; pp. 5732–5738. [Google Scholar]
- Li, K.; Lu, X.; Li, W. Nonlinear error model based on quaternion for the INS: Analysis and comparison. IEEE Trans. Veh. Technol. 2020, 70, 263–272. [Google Scholar] [CrossRef]
- Zhu, T.; Li, A.; Li, K.; Qin, F. The Quaternion Based Error Model Based on SE (3) of the INS. IEEE Sens. J. 2022, 22, 13067–13077. [Google Scholar] [CrossRef]
- Zhang, H.; Li, L.; Wang, L.; Zhang, G. An improved vibration and disturbance reduction method for a quad-rotor micro air vehicle. In Proceedings of the International Conference on Automatic Control and Artificial Intelligence (ACAI 2012), Xiamen, China, 3–5 March 2012; pp. 461–464. [Google Scholar]
- Primer, A.; Burrus, C.S.; Gopinath, R.A. Introduction to wavelets and wavelet transforms. In Proceedings of the International Conference, January 1998. [Google Scholar]
- Mallat, S.G. A theory for multiresolution signal decomposition: The wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 1989, 11, 674–693. [Google Scholar] [CrossRef] [Green Version]
- Donoho, D.L.; Johnstone, J.M. Ideal spatial adaptation by wavelet shrinkage. Biometrika 1994, 81, 425–455. [Google Scholar] [CrossRef]
- Donoho, D.L. De-noising by soft-thresholding. IEEE Trans. Inf. Theory 1995, 41, 613–627. [Google Scholar] [CrossRef] [Green Version]
- Donoho, D.L.; Johnstone, I.M. Adapting to unknown smoothness via wavelet shrinkage. J. Am. Stat. Assoc. 1995, 90, 1200–1224. [Google Scholar] [CrossRef]
- Moulin, P.; Liu, J. Analysis of multiresolution image denoising schemes using generalized Gaussian and complexity priors. IEEE Trans. Inf. Theory 1999, 45, 909–919. [Google Scholar] [CrossRef] [Green Version]
- Chang, S.G.; Yu, B.; Vetterli, M. Adaptive wavelet thresholding for image denoising and compression. IEEE Trans. Image Process. 2000, 9, 1532–1546. [Google Scholar] [CrossRef]
- Edition, F.; Papoulis, A. Probability, Random Variables, and Stochastic Processes; McGraw-Hill Europe: New York, NY, USA, 2002. [Google Scholar]
- Nassar, S. Improving the Inertial Navigation System (INS) Error Model for INS and INS/DGPS Applications; Department of Geomatics Engineering, University of Calgary: Calgary, AB, Canada, 2003. [Google Scholar]
- Hayes, M.H. Statistical Digital Signal Processing and Modeling; John Wiley & Sons: New York, NY, USA, 2009. [Google Scholar]
- Nikolic, J.; Furgale, P.; Melzer, A.; Siegwart, R. Maximum likelihood identification of inertial sensor noise model parameters. IEEE Sens. J. 2015, 16, 163–176. [Google Scholar] [CrossRef]
- Queralta, J.P.; Almansa, C.M.; Schiano, F.; Floreano, D.; Westerlund, T. Uwb-based system for uav localization in gnss-denied environments: Characterization and dataset. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 24 October 2020–24 January 2021; pp. 4521–4528. [Google Scholar]
Sensor | Axis | ||
---|---|---|---|
Accelerometer | x | ||
y | |||
z | |||
Gyroscope | x | 0 | |
y | 0 | ||
z | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Zhang, Y.; Shi, Y.; Yuan, S.; Zhu, S. Performance Enhancement of INS and UWB Fusion Positioning Method Based on Two-Level Error Model. Sensors 2023, 23, 557. https://doi.org/10.3390/s23020557
Li Z, Zhang Y, Shi Y, Yuan S, Zhu S. Performance Enhancement of INS and UWB Fusion Positioning Method Based on Two-Level Error Model. Sensors. 2023; 23(2):557. https://doi.org/10.3390/s23020557
Chicago/Turabian StyleLi, Zhonghan, Yongbo Zhang, Yutong Shi, Shangwu Yuan, and Shihao Zhu. 2023. "Performance Enhancement of INS and UWB Fusion Positioning Method Based on Two-Level Error Model" Sensors 23, no. 2: 557. https://doi.org/10.3390/s23020557
APA StyleLi, Z., Zhang, Y., Shi, Y., Yuan, S., & Zhu, S. (2023). Performance Enhancement of INS and UWB Fusion Positioning Method Based on Two-Level Error Model. Sensors, 23(2), 557. https://doi.org/10.3390/s23020557