AFOs Improve Stride Length and Gait Velocity but Not Motor Function for Most with Mild Cerebral Palsy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Recruitment Procedure
2.2. Characterization of Gait through Objective Parameters
2.3. Characterization of Gross Mobility Gait through Objective Parameters
2.4. Characterization of Ankle–Foot Orthosis
2.5. Minimum Clinically Important Difference (MCID)
2.6. Statistical Analysis
3. Results
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nagae, L.M.; Hoon, A.H.; Stashinko, E.; Lin, D.; Zhang, W.; Levey, E.; Wakana, S.; Jiang, H.; Leite, C.C.; Lucato, L.T.; et al. Diffusion tensor imaging in children with periventricular leukomalacia: Variability of injuries to white matter tracts. Am. J. Neuroradiol. 2007, 28, 1213–1222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scholtes, V.A.; Becher, J.; Beelen, A.; Lankhorst, G.J. Clinical assessment of spasticity in children with cerebral palsy: A critical review of available instruments. Dev. Med. Child Neurol. 2006, 48, 64–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aboutorabi, A.; Arazpour, M.; Bani, M.A.; Saeedi, H.; Head, J.S. Efficacy of ankle foot orthoses types on walking in children with cerebral palsy: A systematic review. Ann. Phys. Rehabil. Med. 2017, 60, 393–402. [Google Scholar] [CrossRef] [PubMed]
- Sussman, M.D.; Aiona, M.D. Treatment of spastic diplegia in patients with cerebral palsy. J. Pediatr. Orthop. B 2004, 13, S1–S12. [Google Scholar]
- Lintanf, M.; Bourseul, J.S.; Houx, L.; Lempereur, M.; Brochard, S.; Pons, C. Effect of ankle-foot orthoses on gait, balance and gross motor function in children with cerebral palsy: A systematic review and meta-analysis. Clin. Rehabil. 2018, 32, 1175–1188. [Google Scholar] [CrossRef]
- Bowers, R.; Ross, K. A review of the effectiveness of lower limb orthoses used in cerebral palsy. In Recent Developments in Healthcare for Cerebral Palsy: Implications and Opportunities for Orthotics; Morris, C., Condie, D., Eds.; International Society for Prosthetics and Orthotics: Copenhagen, Denmark, 2009; pp. 235–297. [Google Scholar]
- Figueiredo, E.M.; Ferreira, G.B.; Moreira, R.C.M.; Kirkwood, R.N.; Fetters, L. Efficacy of ankle-foot orthoses on gait of children with cerebral palsy: Systematic review of literature. Pediatr. Phys. Ther. 2008, 20, 207–223. [Google Scholar] [CrossRef]
- Ricardo, D.; Raposo, M.R.; Cruz, E.B.; Oliveira, R.; Carnide, F.; Veloso, A.P.; João, F. Effects of Ankle Foot Orthoses on the Gait Patterns in Children with Spastic Bilateral Cerebral Palsy: A Scoping Review. Children 2021, 8, 903. [Google Scholar] [CrossRef]
- McMulkin, M.L.; MacWilliams, B.A. Application of the Gillette Gait Index, Gait Deviation Index and Gait Profile Score to multiple clinical pediatric populations. Gait Posture 2015, 41, 608–612. [Google Scholar] [CrossRef]
- Brehm, M.A.; Harlaar, J.; Schwartz, M. Effect of ankle-foot orthoses on walking efficiency and gait in children with cerebral palsy. J. Rehabil. Med. 2008, 40, 529–534. [Google Scholar] [CrossRef] [Green Version]
- Danino, B.; Erel, S.; Kfir, M.; Khamis, S.; Batt, R.; Hemo, Y.; Wientroub, S.; Hayek, S. Are Gait Indices Sensitive Enough to Reflect the Effect of Ankle Foot Orthosis on Gait Impairment in Cerebral Palsy Diplegic Patients? J. Pediatr. Orthop. 2016, 36, 294–298. [Google Scholar] [CrossRef]
- Ries, A.J.; Novacheck, T.F.; Schwartz, M.H. The Efficacy of Ankle-Foot Orthoses on Improving the Gait of Children with Diplegic Cerebral Palsy: A Multiple Outcome Analysis. PM R 2015, 7, 922–929. [Google Scholar] [CrossRef] [PubMed]
- Palisano, R.J.; Hanna, S.E.; Rosenbaum, P.L.; Russell, D.J.; Walter, S.D.; Wood, E.P.; Raina, P.S.; Galuppi, B.E. Validation of a model of gross motor function for children with cerebral palsy. Phys. Ther. 2000, 80, 974–985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferre-Fernadez, M.; Murcia-Gonzalez, M.; Espinosa, M.; Rios-Diaz, J. Measures of Motor and Functional Skills for Children With Cerebral Palsy: A Systematic Review. Pediatr. Phys. Ther. 2019, 32, 12–25. [Google Scholar] [CrossRef]
- Malec, J.F.; Ketchum, J.M. A Standard Method for Determining the Minimal Clinically Important Difference for Rehabilitation Measures. Arch. Phys. Med. Rehabil. 2020, 101, 1090–1094. [Google Scholar] [CrossRef] [PubMed]
- Salas Apaza, J.A.; Franco, J.V.A.; Meza, N.; Madrid, E.; Loézar, C.; Garegnani, L. Minimal clinically important difference: The basics. Medwave 2021, 21, e8149. [Google Scholar] [CrossRef] [PubMed]
- Woaye-Hune, P.; Hardouin, J.B.; Lehur, P.A.; Meurette, G.; Vanier, A. Practical issues encountered while determining Minimal Clinically Important Difference in Patient-Reported Outcomes. Health Qual. Life Outcomes 2020, 18, 156. [Google Scholar] [CrossRef]
- Oeffinger, D.; Bagley, A.; Rogers, S.; Gorton, G.; Kryscio, R.; Abel, M.; Damiano, D.; Barnes, D.; Tylkowski, C. Outcome tools used for ambulatory children with cerebral palsy: Responsiveness and minimum clinically important differences. Dev. Med. Child Neurol. 2008, 50, 918–925. [Google Scholar] [CrossRef]
- Baker, R. Measuring Walking: A Handbook of Clinical Gait Analysis; Wiley: Hoboken, NJ, USA, 2013. [Google Scholar]
- Kadaba, M.P.; Ramakrishnan, H.K.; Wootten, M.E. Measurement of lower extremity kinematics during level walking. J. Orthop. Res. 1990, 8, 383–392. [Google Scholar] [CrossRef]
- Whittle, M. Whittle’s Gait Analysis; Elsevier Ltd.: Oxford, UK, 2012. [Google Scholar]
- Rose, J.; Gamble, J. Human Walking; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2005. [Google Scholar]
- Schwartz, M.H.; Rozumalski, A. The Gait Deviation Index: A new comprehensive index of gait pathology. Gait Posture 2008, 28, 351–357. [Google Scholar] [CrossRef]
- Kobsar, D.; Charlton, J.M.; Hunt, M.A. Individuals with knee osteoarthritis present increased gait pattern deviations as measured by a knee-specific gait deviation index. Gait Posture 2019, 72, 82–88. [Google Scholar] [CrossRef]
- Palisano, R.; Rosenbaum, P.; Walter, S.; Russell, D.; Wood, E.; Galuppi, B. Development and reliability of a system to classify gross motor function in children with cerebral palsy. Dev. Med. Child Neurol. 1997, 39, 214–223. [Google Scholar] [CrossRef] [PubMed]
- Bjornson, K.F.; Graubert, C.S.; McLaughlin, J.F.; Kerfeld, C.I.; Clark, E.M. Test-retest reliability of the Gross Motor Function Measure in children with cerebral palsy. Phys. Ocup. Ther. Pediatr. 1998, 18, 51–61. [Google Scholar] [CrossRef]
- Buckon, C.E.; Thomas, S.S.; Jakobson-Huston, S.; Moor, M.; Sussman, M.; Aiona, M. Comparison of three ankle-foot orthosis configurations for children with spastic diplegia. Dev. Med. Child. Neurol. 2004, 46, 590–598. [Google Scholar] [CrossRef] [PubMed]
- Dalvand, H.; Dehghan, L.; Feizi, A.; Hosseini, S.A.; Amirsalari, S. The impacts of hinged and solid ankle-foot orthoses on standing and walking in children with spastic diplegia. Iran. J. Child Neurol. 2013, 7, 12–19. [Google Scholar]
- Russell, D.J.; Gorter, J.W. Assessing functional differences in gross motor skills in children with cerebral palsy who use an ambulatory aid or orthoses: Can the GMFM-88 help? Dev. Med. Child. Neurol. 2005, 47, 462–467. [Google Scholar] [CrossRef]
- Schünemann, H.J.; Vist, G.E.; Higgins, J.P.; Santesso, N.; Deeks, J.J.; Glasziou, P.; Akl, E.A.; Guyatt, G.H. Cochrane GRADEing Methods Group Interpreting Results and Drawing Conclusions. In Cochrane Handbook for Systematic Reviews of Interventions Version 6.3; Higgins, J.P.T., Thomas, J., Chandler, J., Eds.; Cochrane: London, UK, 2022. [Google Scholar]
- Owens, E. The importance of being earnest about shank and thigh kinematics especially when using ankle-foot orthoses. Prosthet. Orthot. Int. 2010, 34, 254–269. [Google Scholar] [CrossRef]
GMFM and Gait Quality | GMFCS Level I MCID Value | GMFCS Level II MCID Value |
---|---|---|
GMFM Section D score | 3.8 | 5.3 |
GMFM Section E score | 6.5 | 4.5 |
Walking Velocity # | 13.9 | 10.9 |
Walking Cadence # | 9.5 | 12.2 |
Walking Stride Length # | 6.7 | 6.3 |
GDI score | 5 | 5 |
Demographics | n (%) |
---|---|
Sex | |
Male | 79 (63.7%) |
Female | 45 (36.3%) |
AFO type | |
Solid AFO | 35 (28.2%) |
Hinged AFO | 89 (71.8%) |
GMFCS Level | |
Level I | 39 (31.5%) |
Level II | 85 (68.5%) |
GMFM and Gait Quality | Mean BF Value | Mean AFO Value | p Value | >MCID (%) | No Change—MCID (%) | <MCID (%) |
---|---|---|---|---|---|---|
GMFM Section D | 86.8 ± 8.5 | 87.5 ± 8.2 | NS | 10.5% | 82.3% | 7.3% |
GMFM Section E | 75.7 ± 16.6 | 76.4 ± 16.5 | NS | 10.5% | 84.7% | 4.8% |
Walking velocity # | 81.0 ± 21.0 | 91.0 ± 20.0 | <0.001 | 45.2% | 50.0% | 4.8% |
Walking cadence # | 102.0 ± 17.1 | 100.0 ± 13.2 | NS | 11.3% | 58.9% | 29.8% |
Stride length # | 78.0 ± 16.2 | 92.0 ± 15.3 | <0.0001 | 77.4% | 21.8% | 0.8% |
GDI | 63.2 ± 10.0 | 64.8 ± 10.6 | 0.025 | 27.4% | 57.3% | 15.3% |
R Hip GDI | 84.8± 9.8 | 84.7 ± 9.4 | NS | N/A | N/A | N/A |
L Hip GDI | 83.5 ± 10.1 | 83.2 ± 9.9 | NS | N/A | N/A | N/A |
R Knee GDI | 69.2 ± 8.1 | 70.3 ±9.1 | 0.015 | N/A | N/A | N/A |
L Knee GDI | 68.5 ± 7.9 | 69.7 ± 9.1 | 0.017 | N/A | N/A | N/A |
R Ankle GDI | 74.9 ± 13.9 | 76.4 ± 8.7 | NS | N/A | N/A | N/A |
L Ankle GDI | 74.9 ± 14.4 | 75.7 ± 9.1 | NS | N/A | N/A | N/A |
Demographics | Mean ± Standard Deviation BF Value | Mean ± Standard Deviation AFO Value |
---|---|---|
GMFCS Level I | ||
All subjects | 75.2 ± 12.8 | 76.4 ± 6.4 |
Hinged AFO | 72.7 ± 13.5 | 76.8 ± 7.1 |
Solid AFO | 81.4 ± 8.1 | 75.5 ± 7.2 |
GMFCS Level II | ||
All subjects | 74.8 ± 14.5 | 76.5 ± 9.6 |
Hinged AFO | 75.6 ± 14.9 | 75.8 ± 9.4 |
Solid AFO | 72.9 ± 13.6 | 78.2 ± 10.0 |
GMFM and Gait Quality | Significant Decrease in Section D of GMFM Based on MCID | Significant Increase in Section D of GMFM Based on MCID | p Value |
---|---|---|---|
GMFM Section D | 88.0 ± 6.5 | 79.2 ± 8.8 | 0.025 |
GMFM Section E | 79.4 ± 15.3 | 68.5 ± 16.8 | 0.126 |
Walking velocity # | 69.2 ± 17.4 | 72.3 ± 14.7 | 0.695 |
Walking cadence # | 98.6 ± 16.7 | 96.3 ± 11.1 | 0.896 |
Walking Stride length # | 71.2 ± 16.5 | 75.0 ± 10.6 | 0.601 |
GDI score | 70.7 ± 7.1 | 59.2 ± 7.1 | 0.002 |
GMFM and Gait Quality | Significant Decrease in Section E of GMFM Based on MCID | Significant Increase in Section E of GMFM Based on MCID | pValue |
GMFM Section D | 86.0 ± 6.2 | 81.9 ± 8.9 | 0.269 |
GMFM Section E | 73.2 ± 12.0 | 76.8 ± 16.9 | 0.397 |
Walking velocity # | 89.6 ± 22.0 | 84.0 ± 23.1 | 0.624 |
Walking cadence # | 111.6 ± 15.6 | 103.2 ± 15.6 | 0.210 |
Walking Stride length # | 79.7 ± 15.1 | 80.6 ± 13.2 | 0.907 |
GDI score | 61.0 ± 14.3 | 61.2 ± 8.7 | 0.835 |
GMFM and Gait Quality | Cohen’s d |
---|---|
GMFM Section D | 0.14 |
GMFM Section E | 0.17 |
Walking velocity # | 0.76 |
Walking cadence # | 0.18 |
Stride length # | 1.29 |
GDI | 0.30 |
R Hip GDI | 0.04 |
L Hip GDI | 0.04 |
R Knee GDI | 0.22 |
L Knee GDI | 0.22 |
Right Ankle GDI | 0.09 |
Left Ankle GDI | 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
White, H.; Barney, B.; Augsburger, S.; Miller, E.; Iwinski, H. AFOs Improve Stride Length and Gait Velocity but Not Motor Function for Most with Mild Cerebral Palsy. Sensors 2023, 23, 569. https://doi.org/10.3390/s23020569
White H, Barney B, Augsburger S, Miller E, Iwinski H. AFOs Improve Stride Length and Gait Velocity but Not Motor Function for Most with Mild Cerebral Palsy. Sensors. 2023; 23(2):569. https://doi.org/10.3390/s23020569
Chicago/Turabian StyleWhite, Hank, Brian Barney, Sam Augsburger, Eric Miller, and Henry Iwinski. 2023. "AFOs Improve Stride Length and Gait Velocity but Not Motor Function for Most with Mild Cerebral Palsy" Sensors 23, no. 2: 569. https://doi.org/10.3390/s23020569
APA StyleWhite, H., Barney, B., Augsburger, S., Miller, E., & Iwinski, H. (2023). AFOs Improve Stride Length and Gait Velocity but Not Motor Function for Most with Mild Cerebral Palsy. Sensors, 23(2), 569. https://doi.org/10.3390/s23020569