Omnidirectional Haptic Stimulation System via Pneumatic Actuators for Presence Presentation
Abstract
:1. Introduction
2. Related Works
2.1. Wearable Devices
2.2. Pneumatic Actuators
2.3. Haptic Stimulation
3. Proposed Device
3.1. Fabrication of Pneumatic Actuator
3.2. Prototype
4. Preliminary Study
4.1. Preliminary Study 1: Haptic Presentation of Multiple Pressure Patterns
4.2. Preliminary Study 2: Haptic Presentation by Actuators with Different Shapes
5. User Study
5.1. Guided Walking Experiment
- Did you clearly feel the pressure presented by the actuator?
- Did you clearly feel the differences between directional presentations?
- Do you feel any discomfort due to the pressure presentations?
5.2. Result of the Guided Experiment
5.3. Result of the Questionnaire Survey
6. Summary
7. Limitations and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Heinrich, L.M.; Gullone, E. The clinical significance of loneliness: A literature review. Clin. Psychol. Rev. 2006, 26, 695–718. [Google Scholar] [CrossRef] [PubMed]
- Perissinotto, C.M.; Stijacic Cenzer, I.; Covinsky, K.E. Loneliness in older persons: A predictor of functional decline and death. Arch. Intern. Med. 2012, 172, 1078–1083. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takeuchi, K.; Yamazaki, Y.; Yoshifuji, K. Avatar Work: Telework for Disabled People Unable to Go Outside by Using Avatar Robots. In Proceedings of the 2020 ACM/IEEE International Conference on Human-Robot Interaction (HRI ’20), Cambridge, UK, 23–26 March 2020; Association for Computing Machinery: New York, NY, USA, 2020; pp. 53–60. [Google Scholar]
- Jeong, K.; Sung, J.; Lee, H.-S.; Kim, A.; Kim, H.; Park, C.; Jeong, Y.; Lee, J.; Kim, J. Fribo: A Social Networking Robot for Increasing Social Connectedness through Sharing Daily Home Activities from Living Noise Data. In Proceedings of the 2018 ACM/IEEE International Conference on Human-Robot Interaction (HRI ’18), Chicago, IL, USA, 5–8 March 2018; Association for Computing Machinery: New York, NY, USA; pp. 114–122. [Google Scholar]
- Endo, S.; Fujinami, K. Realizing Loose Communication with Tangible Avatar to Facilitate Recipient’s Imagination. Information 2018, 9, 32. [Google Scholar] [CrossRef] [Green Version]
- Ishi, C.; Minato, T.; Ishiguro, H. Analysis and generation of laughter motions, and evaluation in an android robot. APSIPA Trans. Signal Inf. Process. 2019, 8, E6. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Vinayagamoorthy, V.; Williamson, J.; Shamma, D.A.; Cesar, P. Social VR: A New Medium for Remote Communication and Collaboration. In Proceedings of the Extended Abstracts of the 2021 CHI Conference on Human Factors in Computing Systems (CHI EA ’21), Yokohama, Japan, 8–13 May 2021; Association for Computing Machinery: New York, NY, USA, 2021; Volume 81, pp. 1–6. [Google Scholar]
- Sasikumar, P.; Collins, M.; Bai, H.; Billinghurst, M. XRTB: A Cross Reality Teleconference Bridge to incorporate 3D interactivity to 2D Teleconferencing. In Proceedings of the Extended Abstracts of the 2021 CHI Conference on Human Factors in Computing Systems (CHI EA ’21), Yokohama, Japan, 8–13 May 2021; Association for Computing Machinery: New York, NY, USA, 2021; Volume 170, pp. 1–4. [Google Scholar]
- Teo, T.; Lawrence, L.; Lee, G.A.; Billinghurst, M.; Adcock, M. Mixed Reality Remote Collabora-tion Combining 360 Video and 3D Reconstruction. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (CHI ’19), Scotland, UK, 4–9 May 2019; Association for Computing Machinery: New York, NY, USA, 2019; Volume 201, pp. 1–14. [Google Scholar]
- Nguyen, C.; DiVerdi, S.; Hertzmann, A.; Liu, F. CollaVR: Collaborative In-Headset Review for VR Video. In Proceedings of the 30th Annual ACM Symposium on User Interface Software and Technology (UIST’17), Québec City, QC, Canada, 22–25 October 2017; Association for Computing Machinery: New York, NY, USA, 2017; pp. 267–277. [Google Scholar]
- Mostofa, N.; Avendano, I.; McMahan, R.P.; Conner, N.E.; Anderson, M.; Welch, G.F. Tactile Telepresence for Isolated Pa-tients. In Proceedings of the 2021 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct), Bari, Italy, 4–8 October 2021; pp. 346–351. [Google Scholar]
- Yabutani, M.; Mashiba, Y.; Kawamura, H.; Harada, S.; Zempo, K. Sharing Heartbeat: To-ward Conducting Heartrate and Speech Rhythm through Tactile Presentation of Pseudo-heartbeats. In The Adjunct Publica-tion of the 35th Annual ACM Symposium on User Interface Software and Technology (UIST ’22 Adjunct); Association for Computing Machinery: New York, NY, USA, 2022; Volume 18, pp. 1–4. [Google Scholar]
- Wang, R.; Quek, F.; Tatar, D.; Teh, K.S.; Cheok, A. Keep in touch: Channel, expectation and experience. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’12), Austin, TX, USA, 5–10 May 2012; Association for Computing Machinery: New York, NY, USA, 2012; pp. 139–148. [Google Scholar]
- Karasawa, M.; Kajimoto, H. Presentation of a Feeling of Presence Using an Electrostatic Field: Pres-ence-like Sensation Presentation Using an Electrostatic Field. In Extended Abstracts of the 2021 CHI Conference on Human Factors in Computing Systems (CHI EA ’21); Association for Computing Machinery: New York, NY, USA, 2021; Volume 285, pp. 1–4. [Google Scholar]
- Liu, L.; Yao, C.; Liu, Y.; Wang, P.; Chen, Y.; Ying, F. FlowGlove: A Liquid-Based Wearable Device for Haptic Interaction in Virtual Reality. In HCI International 2020—Late Breaking Papers: Digital Human Modeling and Ergonomics, Mobility and Intelligent Environments Proceedings of the 22nd HCI International Conference, HCII 2020, Copenhagen, Denmark, 19–24, July 2020; Springer-Verlag: Berlin/Heidelberg, Germany, 2020; pp. 316–331. [Google Scholar]
- Zhu, M.; Memar, A.H.; Gupta, A.; Samad, M.; Agarwal, P.; Visell, Y.; Keller, S.J.; Colonnese, N. PneuSleeve: In-fabric Multimodal Actuation and Sensing in a Soft, Compact, and Expressive Haptic Sleeve. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems (CHI ’20), Honolulu, HI, USA, 25–30 April 2020; Association for Computing Machinery: New York, NY, USA, 2020; pp. 1–12. [Google Scholar]
- Tsai, H.-R.; Liao, Y.-S.; Tsai, C. ImpactVest: Rendering Spatio-Temporal Multilevel Impact Force Feed-back on Body in VR. In Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems (CHI ’22), New Orleans, LA, USA, 29 April–5 May 2022; Association for Computing Machinery: New York, NY, USA, 2022; Volume 356, pp. 1–11. [Google Scholar]
- Tsai, H.-R.; Chang, Y.-C.; Wei, T.-Y.; Tsao, C.-A.; Koo, X.C.-y.; Wang, H.-C.; Chen, B.-Y. GuideBand: Intuitive 3D Multilevel Force Guidance on a Wristband in Virtual Reality. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems (CHI ’21), Yokohama, Japan, 8–13 May 2021; Association for Computing Machinery: New York, NY, USA, 2021. [Google Scholar]
- Dobbelstein, D.; Henzler, P.; Rukzio, E. Unconstrained Pedestrian Navigation based on Vibro-tactile Feedback around the Wristband of a Smartwatch. In Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems, CHI EA ’16, ACM, San Jose, CA, USA, 7–12 May 2016; pp. 2439–2445. [Google Scholar] [CrossRef]
- Yoshida, S.; Xie, H.; Miyata, K. NaviChoker: Augmenting Pressure Sensation via Pneumatic Actu-ator. In Proceedings of the 12th Augmented Human International Conference (AH2021); Geneva, Switzerland, 27–28 May 2021, Association for Computing Machinery: New York, NY, USA, 2021; Volume 10, pp. 1–4. [Google Scholar]
- Xie, H.; Mitsuhashi, K.; Torii, T. Augmenting human with a tail. In Proceedings of the 10th Augmented Human International Conference 2019, AH2019, Reims, France, 11–12 March 2019; Association for Computing Machinery: New York, NY, USA, 2019. [Google Scholar]
- Xie, H.; Matsuzaki, H.; Torii, T. xClothes: Augmenting human thermoregulation using shape changing clothes. In Proceedings of the 11th Augmented Human International Conference, AH ’20, Winnipeg, MB, Canada, 27–29 May 2020; Association for Computing Machinery: New York, NY, USA, 2020. [Google Scholar]
- Jeong, K.; Seong, Y.; Chung, J.; Park, Y.; Lee, W. Directional thermal perception for wearable device. In Proceedings of the ACM SIGGRAPH Symposium on Applied Perception (SAP ’15); Association for Computing Machinery: New York, NY, USA, 2015; p. 133. [Google Scholar]
- Yamazaki, Y.; Hasegawa, S.; Mitake, H.; Shirai, A. Neck strap haptics: An algorithm for non-visible vr information using haptic perception on the neck. In ACM SIGGRAPH 2019 Posters, SIGGRAPH ’19; Association for Computing Machinery: New York, NY, USA, 2019. [Google Scholar]
- Tsukada, K.; Yasumura, M. Activebelt: Belt-type wearable tactile display for directional navigation. In Proceedings of the International Conference on Ubiquitous Computing, Nottingham, UK, 7–10 September 2004; Springer: Berlin/Heidelberg, Germany, 2004; pp. 384–399. [Google Scholar] [CrossRef] [Green Version]
- Maeda, T.; Ando, H.; Amemiya, T.; Nagaya, N.; Sugimoto, M.; Inami, M. Shaking the world: Galvanic vestibular stimulation as a novel sensation interface. In ACM SIGGRAPH 2005 Emerging Technologies (SIGGRAPH ’05); Association for Computing Machinery: New York, NY, USA, 2005; p. 17-es. [Google Scholar]
- Niiyama, R.; Sun, X.; Yao, L.; Ishii, H.; Rus, D.; Kim, S. Sticky Actuator: Free-Form Planar Actuators for Animated Objects. In Proceedings of the Ninth International Conference on Tangible, Embedded, and Embodied Interaction, TEI, Stanford, CA, USA, 15–19 January 2015; pp. 77–84. [Google Scholar]
- Sonar, H.A.; Huang, J.-L.; Paik, J. Soft Touch using Soft Pneumatic Actuator–Skin as a Wearable Haptic Feedback Device. Adv. Intell. Syst. 2021, 3, 202000168. [Google Scholar] [CrossRef]
- Zhang, B.; Sra, M. PneuMod: A Modular Haptic Device with Localized Pressure and Thermal Feedback. In Proceedings of the 27th ACM Symposium on Virtual Reality Software and Technology (VRST ’21), Osaka, Japan, 8–10 December 2021; Association for Computing Machinery: New York, NY, USA, 2021; Volume 30, pp. 1–7. [Google Scholar]
- Delazio, A.; Nakagaki, K.; Klatzky, R.L.; Hudson, S.E.; Lehman, J.F.; Sample, A.P. Force Jacket: Pneumatically-Actuated Jacket for Embodied Haptic Experiences. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (CHI ’18), Montreal, QC, Canada, 21–26 April 2018; Association for Computing Machinery: New York, NY, USA, 2018; Volume 320, pp. 1–12. [Google Scholar]
- Liu, S.-H.; Yen, P.-C.; Mao, Y.-H.; Lin, Y.-H.; Chandra, E.; Chen, M.Y. HeadBlaster: A wearable approach to simulating motion perception using head-mounted air propulsion jets. ACM Trans. Graph. 2020, 39, 4. [Google Scholar] [CrossRef]
- Jansen, Y.; Karrer, T.; Borchers, J. MudPad: Tactile feedback and haptic texture overlay for touch sur-faces. In ACM International Conference on Interactive Tabletops and Surfaces (ITS ’10), Saarbrücken Germany, 7–10 November 2010; Association for Computing Machinery: New York, NY, USA, 2010; pp. 11–14. [Google Scholar]
- Hashizume, S.; Takazawa, K.; Koike, A.; Ochiai, Y. Cross-field haptics: Push-pull haptics combined with magnetic and electrostatic fields. In ACM Siggraph 2016 Posters (Siggraph ’16); Association for Computing Machinery: New York, NY, USA, 2016; Volume 30, pp. 1–2. [Google Scholar]
- Song, S.; Noh, G.; Yoo, J.; Oakley, I.; Cho, J.; Bianchi, A. Hot & Tight: Exploring Thermo and Squeeze Cues Recognition on Wrist Wearables. In Proceedings of the 2015 ACM International Symposium on Wearable Computers—ISWC’ 15, Osaka, Japan, 7–11 September 2015; ACM Press: New York, NY, USA, 2015; pp. 39–42. [Google Scholar]
- Lopes, P.; You, S.; Cheng, L.-P.; Marwecki, S.; Baudisch, P. Providing Haptics to Walls & Heavy Objects in Virtual Reality by Means of Electrical Muscle Stimulation. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, Denver, CO, USA, 6–11 May 2017; ACM: New York, NY, USA, 2017; pp. 1471–1482. [Google Scholar] [CrossRef]
- Greenberg, S.; Carpendale, S.; Marquardt, N.; Buxton, B. Sketching User Experiences: The Workbook; Elsevier: Amsterdam, The Netherlands, 2011; 227p. [Google Scholar] [CrossRef]
- Takahashi, K.; Mitsuhashi, H.; Murata, K.; Norieda, S.; Watanabe, K. Feelings of animacy and pleasantness from tactile stimulation: Effect of stimulus frequency and stimulated body part. In Proceedings of the 2011 IEEE International Conference on Systems, Man, and Cybernetics, Anchorage, AK, USA, 9–12 October 2011; pp. 3292–3297. [Google Scholar] [CrossRef]
- Yohanan, S.; Chan, M.; Hopkins, J.; Sun, H.; MacLean, K. Hapticat: Exploration of affective touch. In Proceedings of the 7th international conference on Multimodal interfaces (ICMI ’05), Trento, Italy, 4–6 October 2005; Association for Computing Machinery: New York, NY, USA, 2005; pp. 222–229. [Google Scholar]
- Zhang, X.; Shtarbanov, A.; Zeng, J.; Chen, V.K.; Bove, V.M.; Maes, P.; Rekimoto, J. Bubble: Wearable assis-tive grasping augmentation based on soft inflatables. In Proceedings of the Extended Abstracts of the 2019 CHI Conference on Human Factors in Computing Systems, Glasgow, UK, 4–9 May 2019; pp. 1–6. [Google Scholar]
Ours | xClothes [22] | ActiveBelt [25] | Sticky Actuator [27] | Force Jacket [30] | HeadBlaster [31] | Cross-Field Haptics [33] | |
---|---|---|---|---|---|---|---|
Safety | ✔︎ | ✔︎ | ✔︎ | ✔︎ | ✔︎ | ✘ | ✘ |
Wearable | ✔︎ | ✔︎ | ✔︎ | ✘ | ✔︎ | ✔︎ | ✘ |
Various applications | ✔︎ | ✘ | ✔︎ | ✔︎ | ✔︎ | ✘ | ✘ |
Low cost | ✔︎ | ✔︎ | ✘ | ✔︎ | ✘ | ✘ | ✘ |
Clear haptic | ✔︎ | ✘ | ✘ | ✘ | ✔︎ | ✔︎ | ✔︎ |
Shape\User | A | B | C | D | E | F | G | H | M Total | F Total | Total | Mave | Fave | Ave |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Circular | 5 | 8 | 7 | 7 | 6 | 6 | 6 | 6 | 27 | 24 | 51 | 6.750 | 6.000 | 6.375 |
Triangle | 7 | 7 | 6 | 5 | 6 | 6 | 8 | 3 | 25 | 23 | 48 | 6.250 | 5.750 | 6.000 |
Square | 6 | 5 | 6 | 8 | 6 | 4 | 8 | 7 | 25 | 25 | 50 | 6.250 | 6.250 | 6.250 |
Rectangle | 5 | 2 | 7 | 6 | 5 | 4 | 8 | 4 | 20 | 21 | 41 | 5.000 | 5.250 | 5.130 |
Total | 23 | 22 | 26 | 26 | 23 | 20 | 30 | 20 | 97 | 93 | 190 |
Cave | 6.375 |
Rave | 5.125 |
z | 1.556 |
P | 0.119 |
Shape | Circular | Triangle | Square | Rectangle |
---|---|---|---|---|
Fave | 6.000 | 5.750 | 6.250 | 5.250 |
Mave | 6.750 | 6.250 | 6.250 | 5.000 |
Ave | 6.375 | 6.000 | 6.250 | 5.125 |
z | 1.239 | 0.298 | 0.149 | 0.146 |
P | 0.215 | 0.766 | 0.882 | 0.884 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoshida, S.; Xie, H.; Miyata, K. Omnidirectional Haptic Stimulation System via Pneumatic Actuators for Presence Presentation. Sensors 2023, 23, 584. https://doi.org/10.3390/s23020584
Yoshida S, Xie H, Miyata K. Omnidirectional Haptic Stimulation System via Pneumatic Actuators for Presence Presentation. Sensors. 2023; 23(2):584. https://doi.org/10.3390/s23020584
Chicago/Turabian StyleYoshida, Shogo, Haoran Xie, and Kazunori Miyata. 2023. "Omnidirectional Haptic Stimulation System via Pneumatic Actuators for Presence Presentation" Sensors 23, no. 2: 584. https://doi.org/10.3390/s23020584
APA StyleYoshida, S., Xie, H., & Miyata, K. (2023). Omnidirectional Haptic Stimulation System via Pneumatic Actuators for Presence Presentation. Sensors, 23(2), 584. https://doi.org/10.3390/s23020584