Rapid Identification of Main Vegetation Types in the Lingkong Mountain Nature Reserve Based on Multi-Temporal Modified Vegetation Indices
Abstract
:1. Introduction
2. Materials and Methods
2.1. Profile of the Study Area
2.2. Data sources
2.2.1. Multi-Temporal Remote Sensing Data
2.2.2. Field Survey Data
2.3. Methodology
2.3.1. Classification Features
Typical Vegetation Indices
Uni/Multi-Temporal Modified Vegetation Indices
Optimal Feature Set
2.3.2. Classification Method and Accuracy Evaluation
3. Results
3.1. Random Forest Classification by Different Classification Feature Sets
3.2. Rapid Classification by the Decision Tree Based on the Optimal Feature Set
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mougi, A.; Kondoh, M. Diversity of Interaction Types and Ecological Community Stability. Science 2012, 337, 349–351. [Google Scholar] [CrossRef]
- Urrutia-Cordero, P.; Langenheder, S.; Striebel, M.; Angeler, D.G.; Bertilsson, S.; Eklov, P.; Hansson, L.-A.; Kelpsiene, E.; Laudon, H.; Lundgren, M.; et al. Integrating multiple dimensions of ecological stability into a vulnerability framework. J. Ecol. 2022, 110, 374–386. [Google Scholar] [CrossRef]
- Van der Merwe, H.; Hoffman, M.T. Vegetation of Akkerendam Nature Reserve, Northern Cape: Delineation and dynamics over 100 years. Bothalia 2019, 49, a2401. [Google Scholar] [CrossRef] [Green Version]
- Cheng, X.; Han, H.; Kang, F.; Song, Y.; Liu, K. Point pattern analysis of different life stages of Quercus liaotungensis in Lingkong Mountain, Shanxi Province, China. J. Plant Interact. 2014, 9, 233–240. [Google Scholar] [CrossRef]
- Duan, J.; Zhang, Q.; Bai, J.; Guo, D. Community characteristics and canopy structure of pine-oak forest at the Lingkong Moun-tain in Shanxi, China. Chin. J. Appl. Ecol. 2019, 30, 49–57. (In Chinese) [Google Scholar]
- Huo, M.; Gou, D.; Zhang, J.; Wang, Z.; Shangguan, T.; Li, R.; Liu, W. Tree community characteristics and spatial patterns of the forms Pinus tabuliformis -Quercus wutaishanica in Lingkong Mountain. Acta Ecol. Sin. 2014, 34, 5925–5935. (In Chinese) [Google Scholar]
- Chytry, M.; Schaminee, J.H.J.; Schwabe, A. Vegetation survey: A new focus for Applied Vegetation Science. Appl. Veg. Sci. 2011, 14, 435–439. [Google Scholar] [CrossRef]
- Zhou, X.; Li, Y.; Luo, Y.; Sun, Y.; Su, Y.; Tan, C.; Liu, Y. Research on remote sensing classification of fruit trees based on Sentinel-2 multi-temporal imageries. Sci. Rep. 2022, 12, 11549. [Google Scholar] [CrossRef]
- Vasilakos, C.; Kavroudakis, D.; Georganta, A. Machine Learning Classification Ensemble of Multitemporal Sentinel-2 Images: The Case of a Mixed Mediterranean Ecosystem. Remote Sens. 2020, 12, 2005. [Google Scholar] [CrossRef]
- Kenduiywo, B.K.; Bargiel, D.; Soergel, U. Crop-type mapping from a sequence of Sentinel 1 images. Int. J. Remote Sens. 2018, 39, 6383–6404. [Google Scholar] [CrossRef]
- Li, Z.; Zhou, G.; Song, Q. A temporal group attention approach for multitemporal multisensor crop classification. Infrared Phys. Technol. 2020, 105, 103152. [Google Scholar] [CrossRef]
- Sun, Y.; Qin, Q.; Ren, H.; Zhang, T.; Chen, S. Red-Edge Band Vegetation Indices for Leaf Area Index Estimation From Sentinel-2/MSI Imagery. IEEE Trans. Geosci. Remote Sens. 2020, 58, 826–840. [Google Scholar] [CrossRef]
- Bayle, A.; Carlson, B.Z.; Thierion, V.; Isenmann, M.; Choler, P. Improved Mapping of Mountain Shrublands Using the Sentinel-2 Red-Edge Band. Remote Sens. 2019, 11, 2807. [Google Scholar] [CrossRef] [Green Version]
- Fang, P.; Yan, N.; Wei, P.; Zhao, Y.; Zhang, X. Aboveground Biomass Mapping of Crops Supported by Improved CASA Model and Sentinel-2 Multispectral Imagery. Remote Sens. 2021, 13, 2755. [Google Scholar] [CrossRef]
- Wang, M.; Li, M.; Wang, F.; Ji, X. Exploring the Optimal Feature Combination of Tree Species Classification by Fusing Multi-Feature and Multi-Temporal Sentinel-2 Data in Changbai Mountain. Forests 2022, 13, 1058. [Google Scholar] [CrossRef]
- Liu, M.; Liu, J.; Atzberger, C.; Jiang, Y.; Ma, M.; Wang, X. Zanthoxylum bungeanum Maxim mapping with multi-temporal Sentinel-2 images: The importance of different features and consistency of results. ISPRS J. Photogramm. Remote Sens. 2021, 174, 68–86. [Google Scholar] [CrossRef]
- Abubakar, G.A.; Wang, K.; Shahtahamssebi, A.; Xue, X.; Belete, M.; Gudo, A.J.A.; Mohamed Shuka, K.A.; Gan, M. Mapping Maize Fields by Using Multi-Temporal Sentinel-1A and Sentinel-2A Images in Makarfi, Northern Nigeria, Africa. Sustainability 2020, 12, 2539. [Google Scholar] [CrossRef] [Green Version]
- Zeng, Y.; Hao, D.; Huete, A.; Dechant, B.; Berry, J.; Chen, J.M.; Joiner, J.; Frankenberg, C.; Bond-Lamberty, B.; Ryu, Y.; et al. Optical vegetation indices for monitoring terrestrial ecosystems globally. Nat. Rev. Earth Environ. 2022, 3, 477–493. [Google Scholar] [CrossRef]
- Tayade, R.; Yoon, J.; Lay, L.; Khan, A.L.; Yoon, Y.; Kim, Y. Utilization of Spectral Indices for High-Throughput Phenotyping. Plants 2022, 11, 1712. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, W.; Sun, Y.; Chang, C.; Yu, J.; Zhang, W. Fusion of Multispectral Aerial Imagery and Vegetation Indices for Machine Learning-Based Ground Classification. Remote Sens. 2021, 13, 1411. [Google Scholar] [CrossRef]
- Huete, A.R. A soil-Adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Xue, J.; Su, B. Significant Remote Sensing Vegetation Indices: A Review of Developments and Applications. J. Sens. 2017, 2017, 1353691. [Google Scholar] [CrossRef]
- Aiazzi, B.; Alparone, L.; Baronti, S.; Garzelli, A. Context-driven fusion of high spatial and spectral resolution images based on oversampled multiresolution analysis. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2300–2312. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Tanre, D. Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. IEEE Trans.Geosci. Remote Sens. 1992, 30, 260–271. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Baloloy, A.B.; Blanco, A.C.; Ana, R.R.C.S.; Nadaoka, K. Development and application of a new mangrove vegetation index (MVI) for rapid and accurate mangrove mapping. ISPRS J. Photogramm. Remote Sens. 2020, 166, 95–117. [Google Scholar] [CrossRef]
- d’Andrimont, R.; Taymans, M.; Lemoine, G.; Ceglar, A.; Yordanov, M.; van der Velde, M. Detecting flowering phenology in oil seed rape parcels with Sentinel-1 and-2 time series. Remote Sens. Environ. 2020, 239, 111660. [Google Scholar] [CrossRef]
- Jiang, H.; Chen, A.; Wu, Y.; Zhang, C.; Chi, Z.; Li, M.; Wang, X. Vegetation Monitoring for Mountainous Regions Using a New Integrated Topographic Correction (ITC) of the SCS plus C Correction and the Shadow-Eliminated Vegetation Index. Remote Sens. 2022, 14, 3073. [Google Scholar] [CrossRef]
- Zhang, Z.; He, G.; Zhang, X.; Long, T.; Wang, G.; Wang, M. A coupled atmospheric and topographic correction algorithm for remotely sensed satellite imagery over mountainous terrain. GIScience Remote Sens. 2018, 55, 400–416. [Google Scholar] [CrossRef]
- Jordan, C.F. Derivation of leaf-area index from quality of light on the forest floor. Ecology 1969, 50, 663–666. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Rouse, J.W., Jr.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the Great Plains with ERTS. In Proceedings of the 3rd Earth Resource Technology Satellite (ERTS) Symposium, Washington, DC, USA, 10–14 December 1973; pp. 309–317. [Google Scholar]
- Wasniewski, A.; Hoscilo, A.; Chmielewska, M. Can a Hierarchical Classification of Sentinel-2 Data Improve Land Cover Mapping? Remote Sens. 2022, 14, 989. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Yi, Z.; Jia, L.; Chen, Q. Crop Classification Using Multi-Temporal Sentinel-2 Data in the Shiyang River Basin of China. Remote Sens. 2020, 12, 4052. [Google Scholar] [CrossRef]
- Tang, K.; Zhu, W.; Zhan, P.; Ding, S. An Identification Method for Spring Maize in Northeast China Based on Spectral and Phenological Features. Remote Sens. 2018, 10, 193. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Liu, H.-Y.; Zhang, Y.; Li, Y.-f. Classification of land-cover types in muddy tidal flat wetlands using remote sensing data. J. Appl. Remote Sens. 2014, 7, 073457. [Google Scholar] [CrossRef] [Green Version]
- Cui, B.; Huang, W.; Ye, H.; Chen, Q. The Suitability of PlanetScope Imagery for Mapping Rubber Plantations. Remote Sens. 2022, 14, 1061. [Google Scholar] [CrossRef]
- Sumner, Z.; Varco, J.J.; Dhillon, J.S.; Fox, A.A.A.; Czarnecki, J.; Henry, W.B. Ground versus aerial canopy reflectance of corn: Red-edge and non-red edge vegetation indices. Agron. J. 2021, 113, 2782–2797. [Google Scholar] [CrossRef]
- Hua, Y.; Zhao, X. Multi-Model Estimation of Forest Canopy Closure by Using Red Edge Bands Based on Sentinel-2 Images. Forests 2021, 12, 1768. [Google Scholar] [CrossRef]
- Tao, H.; Feng, H.; Xu, L.; Miao, M.; Long, H.; Yue, J.; Li, Z.; Yang, G.; Yang, X.; Fan, L. Estimation of Crop Growth Parameters Using UAV-Based Hyperspectral Remote Sensing Data. Sensors 2020, 20, 1296. [Google Scholar] [CrossRef] [Green Version]
- Chan, J.C.-W.; Huang, C.; DeFries, R.S. Enhanced algorithm performance for land cover classification from remotely sensed data using bagging and boosting. IEEE Trans. Geosci. Remote Sens. 2001, 39, 693–695. [Google Scholar]
- Shao, Y.; Lunetta, R.S. Comparison of support vector machine, neural network, and CART algorithms for the land-cover classification using limited training data points. ISPRS J. Photogramm. Remote Sens. 2012, 70, 78–87. [Google Scholar] [CrossRef]
- Yue, J.; Zhao, W.; Mao, S.; Liu, H. Spectral-spatial classification of hyperspectral images using deep convolutional neural networks. Remote Sens. Lett. 2015, 6, 468–477. [Google Scholar] [CrossRef]
- Fakhri, S.A.; Sayadi, S.; Naghavi, H.; Latifi, H. A novel vegetation index-based workflow for semi-arid, sparse woody cover mapping. J. Arid Environ. 2022, 201, 104748. [Google Scholar] [CrossRef]
- Phiri, D.; Simwanda, M.; Nyirenda, V.; Murayama, Y.; Ranagalage, M. Decision Tree Algorithms for Developing Rulesets for Object-Based Land Cover Classification. ISPRS Int. J. Geo-Inf. 2020, 9, 329. [Google Scholar] [CrossRef]
- Ren, C.; Zhang, B.; Wang, Z.; Li, L.; Jia, M. Mapping Forest Cover in Northeast China from Chinese HJ-1 Satellite Data Using an Object-Based Algorithm. Sensors 2018, 18, 4452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faridatul, M.I.; Wu, B. Automatic Classification of Major Urban Land Covers Based on Novel Spectral Indices. ISPRS Int. J. Geoinf. 2018, 7, 453. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Du, J. Classification of desert steppe species based on unmanned aerial vehicle hyperspectral remote sensing and continuum removal vegetation indices. Optik 2021, 247, 167877. [Google Scholar] [CrossRef]
- Qian, Y.; Zhou, W.; Nytch, C.J.; Han, L.; Li, Z. A new index to differentiate tree and grass based on high resolution image and object-based methods. Urban For. Urban Green. 2020, 53, 126661. [Google Scholar] [CrossRef]
Feature Band Combinations | Sum of Standard Deviations |
---|---|
RE4&Feb and SWIR-1&Feb | 391.40 |
RE4&Dec and SWIR-1&Dec | 456.15 |
Feature Band Combinations | Sum of Standard Deviations |
---|---|
NIR&June and NIR&Otc | 720.60 |
RE4&June and RE4&Otc | 719.15 |
Feature Band Combinations | Sum of Standard Deviations |
---|---|
RE2&June and RE2&Aug | 724.87 |
RE3&June and RE3&Aug | 897.84 |
NIR&June and NIR&Aug | 976.94 |
RE4&June and RE4&Aug | 877.05 |
Feature Band Combinations | Sum of Standard Deviations |
---|---|
RE2&June and RE2&Oct | 545.04 |
RE3&June and RE3&Oct | 683.33 |
NIR&June and NIR&Oct | 785.02 |
RE4&June and RE4&Oct | 743.65 |
Vegetation Type | The Optimal Feature Set | Multi-Temporal DVI | Multi-Temporal RVI | Multi-Temporal NDVI | ||||
---|---|---|---|---|---|---|---|---|
PA/% | UA/% | PA/% | UA/% | PA/% | UA/% | PA/% | UA/% | |
Crops | 100 | 98.44 | 100 | 81.82 | 100 | 90 | 100 | 94.03 |
Scrub grass | 98.61 | 100 | 90.28 | 98.48 | 90.28 | 100 | 94.44 | 98.55 |
Pinus tabulaeformis | 100 | 98.32 | 100 | 100 | 100 | 98.32 | 100 | 100 |
Qrcus wutaishanica | 99.21 | 97.66 | 93.65 | 88.72 | 99.21 | 93.28 | 98.41 | 94.66 |
Pine-oak mixed forests | 97.44 | 100 | 87.18 | 100 | 97.44 | 99.13 | 94.87 | 100 |
Larix principis-rupprechtii | 95.83 | 100 | 69.44 | 94.34 | 90.28 | 100 | 91.67 | 100 |
Shaw | 96.83 | 93.85 | 95.24 | 73.17 | 84.13 | 85.48 | 88.89 | 81.16 |
OA/% | 98.41 | 91.27 | 95.56 | 96.03 | ||||
kappa | 0.98 | 0.90 | 0.95 | 0.95 |
Class | Ground Truth (pixel) | PA | |||||||
---|---|---|---|---|---|---|---|---|---|
Veg 1 | Veg 2 | Veg 3 | Veg 4 | Veg 5 | Veg 6 | Veg 7 | Total | % | |
Veg 1 | 62 | 0 | 0 | 0 | 0 | 0 | 0 | 62 | 98.41 |
Veg 2 | 0 | 72 | 0 | 0 | 0 | 0 | 0 | 72 | 100 |
Veg 3 | 0 | 0 | 117 | 0 | 0 | 0 | 0 | 117 | 100 |
Veg 4 | 1 | 0 | 0 | 125 | 9 | 0 | 0 | 135 | 99.21 |
Veg 5 | 0 | 0 | 0 | 0 | 108 | 14 | 3 | 125 | 92.31 |
Veg 6 | 0 | 0 | 0 | 1 | 0 | 58 | 0 | 59 | 80.57 |
Veg 7 | 0 | 0 | 0 | 0 | 0 | 0 | 60 | 60 | 95.24 |
Total | 63 | 72 | 117 | 126 | 117 | 72 | 63 | 630 | - |
UA% | 100 | 100 | 100 | 92.59 | 86.4 | 98.31 | 100 | - | - |
OA: 95.56% kappa: 0.95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, W.; Zhu, H.; Li, S.; Ding, H.; Bi, R. Rapid Identification of Main Vegetation Types in the Lingkong Mountain Nature Reserve Based on Multi-Temporal Modified Vegetation Indices. Sensors 2023, 23, 659. https://doi.org/10.3390/s23020659
Fang W, Zhu H, Li S, Ding H, Bi R. Rapid Identification of Main Vegetation Types in the Lingkong Mountain Nature Reserve Based on Multi-Temporal Modified Vegetation Indices. Sensors. 2023; 23(2):659. https://doi.org/10.3390/s23020659
Chicago/Turabian StyleFang, Wenjing, Hongfen Zhu, Shuai Li, Haoxi Ding, and Rutian Bi. 2023. "Rapid Identification of Main Vegetation Types in the Lingkong Mountain Nature Reserve Based on Multi-Temporal Modified Vegetation Indices" Sensors 23, no. 2: 659. https://doi.org/10.3390/s23020659
APA StyleFang, W., Zhu, H., Li, S., Ding, H., & Bi, R. (2023). Rapid Identification of Main Vegetation Types in the Lingkong Mountain Nature Reserve Based on Multi-Temporal Modified Vegetation Indices. Sensors, 23(2), 659. https://doi.org/10.3390/s23020659