Influence of the Long-Range Transport of Siberian Biomass Burnings on Air Quality in Northeast China in June 2017
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. MODIS Fire, Aerosol, and Land Cover Products
2.3. Meteorological Data
2.4. AIRS CO Concentration
2.5. CALIPSO Aerosol Vertical Profile
2.6. OMI Aerosol Index
2.7. PM2.5 Data
3. Results
3.1. Overview of Siberian 2017 BB Event
3.2. Long-Range Transportation Trajectory of Siberian Plume
3.3. Impact of Siberian Plume on Trace Gases and Aerosols
4. Discussions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Andreae, M.O.; Merlet, P. Emission of trace gases and aerosols from biomass burning. Glob. Biogeochem. Cycles 2001, 15, 955–966. [Google Scholar] [CrossRef] [Green Version]
- Mkoma, S.L.; Kawamura, K.; Fu, P.Q. Contributions of biomass/biofuel burning to organic aerosols and particulate matter in Tanzania, East Africa, based on analyses of ionic species, organic and elemental carbon, levoglucosan and mannosan. Atmos. Chem. Phys. 2013, 13, 10325–10338. [Google Scholar] [CrossRef] [Green Version]
- Zhu, C.; Kawamura, K.; Kunwar, B. Effect of biomass burning over the western North Pacific Rim: Wintertime maxima of anhydrosugars in ambient aerosols from Okinawa. Atmos. Chem. Phys. 2015, 15, 1959–1973. [Google Scholar] [CrossRef]
- Jaffe, D. Long-range transport of Siberian biomass burning emissions and impact on surface ozone in western North America. Geophys. Res. Lett. 2004, 31, L16106. [Google Scholar] [CrossRef] [Green Version]
- Lavoué, D.; Liousse, C.; Cachier, H.; Stocks, B.J.; Goldammer, J.G. Modeling of carbonaceous particles emitted by boreal and temperate wildfires at northern latitudes. J. Geophys. Res. Atmos. 2000, 105, 26871–26890. [Google Scholar] [CrossRef] [Green Version]
- Meng, Y.; Deng, Y.; Shi, P. Mapping Forest Wildfire Risk of the World. In World Atlas of Natural Disaster Risk; Springer: Berlin/Heidelberg, Germany, 2015; pp. 261–275. [Google Scholar]
- Wooster, M.J. Boreal forest fires burn less intensely in Russia than in North America. Geophys. Res. Lett. 2004, 31, L20505. [Google Scholar] [CrossRef] [Green Version]
- Angelstam, P.; Bufetov, N.S.; Clark, J. Fire in Boreal Ecosystems of Eurasia: First Results of the Bor Forest Island Fire Experiment, Fire Research Campaign Asia-North (FIRESCAN). Available online: https://www.osti.gov/biblio/6592989 (accessed on 8 September 2022).
- Kasischke, E.S.; Bruhwiler, L.P. Emissions of carbon dioxide, carbon monoxide, and methane from boreal forest fires in 1998. J. Geophys. Res. 2002, 108, FFR-2.1–FFR-2.14. [Google Scholar] [CrossRef] [Green Version]
- Stocks, B.J.; Fosberg, M.A.; Lynham, T.J.; Mearns, L.; Wotton, B.M.; Yang, Q.; Jin, J.Z.; Lawrence, K.; Hartley, G.R.; Mason, J.A.; et al. Climate change and forest fire potential in Russian and Canadian boreal forests. Clim. Chang. 1998, 38, 1–13. [Google Scholar] [CrossRef]
- Tanimoto, H.; Kajii, Y.; Hirokawa, J.; Akimoto, H.; Minko, N.P. The atmospheric impact of boreal forest fires in far eastern Siberia on the seasonal variation of carbon monoxide: Observations at Rishiri, A northern remote island in Japan. Geophys. Res. Lett. 2000, 27, 4073–4076. [Google Scholar] [CrossRef]
- Forster, C.; Wandinger, U.; Wotawa, G.; James, P.; Mattis, I.; Althausen, D.; Simmonds, P.; O’Doherty, S.; Jennings, S.G.; Kleefeld, C.; et al. Transport of boreal forest fire emissions from Canada to Europe. J. Geophys. Res. Atmos. 2001, 106, 22887–22906. [Google Scholar] [CrossRef]
- Hsu, N.C.; Herman, J.R.; Gleason, J.F.; Torres, O.; Seftor, C.J. Satellite detection of smoke aerosols over a snow/ice surface by TOMS. Geophys. Res. Lett. 1999, 26, 1165–1168. [Google Scholar] [CrossRef] [Green Version]
- Laing, J.R.; Jaffe, D.A.; Hee, J.R. Physical and optical properties of aged biomass burning aerosol from wildfires in Siberia and the Western USA at the Mt. Bachelor Observatory. Atmos. Chem. Phys. 2016, 16, 15185–15197. [Google Scholar] [CrossRef] [Green Version]
- Baylon, P.; Jaffe, D.A.; de Gouw, J.; Warneke, C. Influence of Long-Range Transport of Siberian Biomass Burning at the Mt. Bachelor Observatory during the Spring of 2015. Aerosol Air Qual. Res. 2017, 17, 2751–2761. [Google Scholar] [CrossRef] [Green Version]
- Bertschi, I.T.; Jaffe, D.A. Long-range transport of ozone, carbon monoxide, and aerosols tol the NE Pacific troposphere during the summer of 2003: Observations of smoke plumes from Asian boreal fires. J. Geophys. Res. 2005, 110, D05303. [Google Scholar] [CrossRef]
- Jeong, J.I.; Park, R.J.; Youn, D. Effects of Siberian forest fires on air quality in East Asia during May 2003 and its climate implication. Atmos. Environ. 2008, 42, 8910–8922. [Google Scholar] [CrossRef]
- Kato, S.; Pochanart, P.; Hirokawa, J.; Kajii, Y.; Akimoto, H.; Ozaki, Y.; Obi, K.; Katsuno, T.; Streets, D.G.; Minko, N.P. The influence of Siberian forest fires on carbon monoxide concentrations at Happo, Japan. Atmos. Environ. 2002, 36, 385–390. [Google Scholar] [CrossRef]
- Lee, K.H.; Kim, J.E.; Kim, Y.J.; Kim, J.; Hoyningen-Huene, W.V. Impact of the Smoke Aerosol from Russian Forest Fires on the Atmospheric Environment over Korea during May 2003. Atmos. Environ. 2005, 39, 85–99. [Google Scholar] [CrossRef]
- Teakles, A.D.; So, R.; Ainslie, B.; Nissen, R.; Schiller, C.; Vingarzan, R.; McKendry, I.; Macdonald, A.M.; Jaffe, D.A.; Bertram, A.K.; et al. Impacts of the July 2012 Siberian fire plume on air quality in the Pacific Northwest. Atmos. Chem. Phys. 2017, 17, 2593–2611. [Google Scholar] [CrossRef] [Green Version]
- Jung, J.; Lyu, Y.; Lee, M.; Hwang, T.; Lee, S.; Oh, S. Impact of Siberian forest fires on the atmosphere over the Korean Peninsula during summer 2014. Atmos. Chem. Phys. 2016, 16, 6757–6770. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Xia, X.; Song, J.; Wu, Y.; Zhang, X.; Zhang, R. A Case Study of Long-Range Transport of Smoke Aerosols from Eastern Siberia to Northeast China in July 2014. Aerosol Air Qual. Res. 2017, 17, 965–974. [Google Scholar] [CrossRef]
- Giglio, L.; Csiszar, I.; Justice, C.O. Global distribution and seasonality of active fires as observed with the Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) sensors. J. Geophys. Res. Biogeosciences 2006, 111, G02016. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Justice, C.; Flynn, L.; Kendall, J.; Prins, E.; Giglio, L.; Ward, D.E.; Menzel, P.; Setzer, A. Potential global fire monitoring from EOS-MODIS. J. Geophys. Res. 1998, 103, 32215–32238. [Google Scholar] [CrossRef]
- Friedl, M.A.; McIver, D.K.; Hodges, J.C.F.; Zhang, X.Y.; Muchoney, D.; Strahler, A.H.; Woodcock, C.E.; Gopal, S.; Schneider, A.; Cooper, A.; et al. Global land cover mapping from MODIS: Algorithms and early results. Remote Sens. Environ. 2002, 83, 287–302. [Google Scholar] [CrossRef]
- Sulla-Menashe, D.; Friedl, M.A. User guide to Collection 6 MODIS land cover (MCD12Q1 and MCD12C1) product. 2018. Available online: https://lpdaac.usgs.gov/documents/101/MCD12_User_Guide_V6.pdf (accessed on 6 August 2022).
- Susskind, J.; Barnet, C.D.; Blaisdell, J.M.; Einaudi, F. Retrieval of Atmospheric and Surface Parameters from AIRS/AMSU/HSB Data Under Cloudy Conditions. IEEE Trans. Geosci. Remote Sens. 2003, 41, 390–409. [Google Scholar] [CrossRef]
- Winker, D.M.; Pelon, J.; Coakley, J.A.; Ackerman, S.A.; Charlson, R.J.; Colarco, P.R.; Flamant, P.; Fu, Q.; Hoff, R.M.; Kittaka, C.; et al. The CALIPSO Mission: A global 3D veiw of aerosols and clouds. Bull. Am. Meteorol. Soc. 2010, 91, 1211–1230. [Google Scholar] [CrossRef]
- Vaughan, M.; Young, S.; Winker, D.; Powell, K.; Omar, A.; Liu, Z.; Hu, Y.; Hostetler, C. Fully automated analysis of space-based lidar data: An overview of the CALIPSO retrieval algorithms and data products. Laser Radar Tech. Atmos. Sens. 2004, 5575, 16–30. [Google Scholar]
- Torres, O.; Tanskanen, A.; Veihelmann, B.; Ahn, C.; Braak, R.; Bhartia, P.K.; Veefkind, P.; Levelt, P. Aerosols and surface UV products from Ozone Monitoring Instrument observations: An overview. J. Geophys. Res. 2007, 112, D24S47. [Google Scholar] [CrossRef] [Green Version]
- Torres, O.; Bhartia, P.K.; Jethva, H.; Ahn, C. Impact of the ozone monitoring instrument row anomaly on the long-term record of aerosol products. Atmos. Meas. Tech. 2018, 11, 2701–2715. [Google Scholar] [CrossRef] [Green Version]
- Hsu, N.C.; Herman, J.R.; Torres, O.; Holben, B.N.; Tanre, D.; Eck, T.F.; Smirnov, A.; Chatenet, B.; Lavenu, F. Comparisons of the TOMS aerosol index with Sun-photometer aerosol optical thickness: Results and applications. J. Geophys. Res. Atmos. 1999, 104, 6269–6279. [Google Scholar] [CrossRef]
- Sun, L.; Yang, L.; Xia, X.; Wang, D.; Zhang, T. Climatological Aspects of Active Fires in Northeastern China and Their Relationship to Land Cover. Remote Sens. 2022, 14, 2316. [Google Scholar] [CrossRef]
- Fromm, M.D.; Servranckx, R. Transport of forest fire smoke above the tropopause by supercell convection. Geophys. Res. Lett. 2003, 30, 1542. [Google Scholar] [CrossRef]
- Bond, T.C.; Doherty, S.J.; Fahey, D.W.; Forster, P.M.; Berntsen, T.; DeAngelo, B.J.; Flanner, M.G.; Ghan, S.; Kärcher, B.; Koch, D.; et al. Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res. Atmos. 2013, 118, 5380–5552. [Google Scholar] [CrossRef]
- Zhao, C.; Peng, L.; Tie, X.; Lin, Y.; Li, C.; Zheng, X.; Fang, Y. A High CO Episode of Long-Range Transport Detected by MOPITT. Water Air Soil Pollut. 2006, 178, 207–216. [Google Scholar] [CrossRef]
- Li, Y.; Liu, J.; Han, H.; Zhao, T.; Zhang, X.; Zhuang, B.; Wang, T.; Chen, H.; Wu, Y.; Li, M. Collective impacts of biomass burning and synoptic weather on surface PM2.5 and CO in Northeast China. Atmos. Environ. 2019, 213, 64–80. [Google Scholar] [CrossRef]
- Torres, O.; Chen, Z.; Jethva, H.; Ahn, C.; Freitas, S.R.; Bhartia, P.K. OMI and MODIS observations of the anomalous 2008-2009 Southern Hemisphere biomass burning seasons. Atmos. Chem. Phys. 2010, 10, 3505–3513. [Google Scholar]
- Omar, A.H.; Winker, D.M.; Vaughan, M.A.; Hu, Y.; Trepte, C.R.; Ferrare, R.A.; Lee, K.-P.; Hostetler, C.A.; Kittaka, C.; Rogers, R.R.; et al. The CALIPSO Automated Aerosol Classification and Lidar Ratio Selection Algorithm. J. Atmos. Ocean. Technol. 2009, 26, 1994–2014. [Google Scholar] [CrossRef]
- Li, X.; Hu, X.; Shi, S.; Shen, L.; Luan, L.; Ma, Y. Spatiotemporal Variations and Regional Transport of Air Pollutants in Two Urban Agglomerations in Northeast China Plain. Chin. Geogr. Sci. 2019, 29, 917–933. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Zhang, S.; Tong, Q.; Zhang, X.; Zhao, H.; Ma, S.; Xiu, A.; He, Y. Regional Characteristics and Causes of Haze Events in Northeast China. Chin. Geogr. Sci. 2018, 28, 836–850. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Zhao, H.; Wu, Y. Characteristics of Particulate Matter during Haze and Fog (Pollution) Episodes over Northeast China, Autumn 2013. Aerosol Air Qual. Res. 2015, 15, 853–864. [Google Scholar]
- Zhao, H.; Che, H.; Zhang, L.; Gui, K.; Ma, Y.; Wang, Y.; Wang, H.; Zheng, Y.; Zhang, X. How aerosol transport from the North China plain contributes to air quality in northeast China. Sci. Total Environ. 2020, 738, 139555. [Google Scholar] [CrossRef]
- Wotawa, G.; Novelli, P.C.; Trainer, M.; Granier, C. Inter-annual variability of summertime CO concentrations in the Northern Hemisphere explained by boreal forest fires in North America and Russia. Geophys. Res. Lett. 2001, 28, 4575–4578. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, L.; Yang, L.; Wang, D.; Zhang, T. Influence of the Long-Range Transport of Siberian Biomass Burnings on Air Quality in Northeast China in June 2017. Sensors 2023, 23, 682. https://doi.org/10.3390/s23020682
Sun L, Yang L, Wang D, Zhang T. Influence of the Long-Range Transport of Siberian Biomass Burnings on Air Quality in Northeast China in June 2017. Sensors. 2023; 23(2):682. https://doi.org/10.3390/s23020682
Chicago/Turabian StyleSun, Li, Lei Yang, Dongdong Wang, and Tiening Zhang. 2023. "Influence of the Long-Range Transport of Siberian Biomass Burnings on Air Quality in Northeast China in June 2017" Sensors 23, no. 2: 682. https://doi.org/10.3390/s23020682
APA StyleSun, L., Yang, L., Wang, D., & Zhang, T. (2023). Influence of the Long-Range Transport of Siberian Biomass Burnings on Air Quality in Northeast China in June 2017. Sensors, 23(2), 682. https://doi.org/10.3390/s23020682