A Comprehensive Survey on MIMO Visible Light Communication: Current Research, Machine Learning and Future Trends
Abstract
:1. Introduction
- Large bandwidth is unlicensed and free to use.
- VLC does not interfere with existing RF communication.
- No additional setup is required that the existing illumination system can be used for communication.
- The cost of implementing a VLC-based transmitter and receiver is less compared to the RF system.
- Illumination and Communication are possible at the same time.
- The health risk does not exist for humans apart from the flickering effect, which can be mitigated by using a modulation frequency of more than 200 Hz.
- As the receiver size is small, multipath fading can be mitigated.
1.1. Related Literature
1.2. Motivation and Contributions
- A complete systematic survey is provided for MIMO VLC-based studies available in the literature. We first describe the VLC working principle, different techniques of MIMO, and the channel model.
- We describe the existing works by grouping related works into a category and describing working methods and results.
- Machine learning approaches are also described for MIMO VLC approaches, and future directions are provided.
2. MIMO Communication Theory for VLC
2.1. VLC Working
2.2. VLC Channel Model
2.3. MIMO VLC
3. MIMO Communication Types
3.1. Repetition Coding
3.2. Spatial Modulation
3.2.1. Adaptive Spatial Modulation
3.2.2. Generalized Spatial Modulation
3.3. Spatial Multiplexing
4. MIMO Communication Study Categories
4.1. Precoder Design
4.2. Channel Estimation
4.3. Multi-User Massive MIMO
4.4. Angle Diversity of Receiver
4.5. NOMA-Based MIMO
4.6. Optical Camera Communication Using MIMO
4.7. Constellation Design
4.8. Underwater Communication
4.9. Vehicle-to-Vehicle Communication
4.10. Other MIMO VLC Studies
5. Machine Learning Based MIMO VLC
6. Future Trends in VLC MIMO Communication
- Machine learning-based algorithms are needed to be investigated on a large scale in different MIMO scenarios.
- To increase connectivity in IoT device, VLC MIMO [164] can help to increase bandwidth. However, new protocols need to be investigated for margins RF and VLC to use interchangeably.
- As different levels of illumination are required in indoor environments, more efficient techniques can be investigated for dimming control without compromising data rate.
- More efficient channel estimation techniques for NLOS communication can be investigated.
- Interference is a key issue in VLC, as multiple signals can cancel out each other. Efficient power allocation in the transmitter, beamforming, or time synchronization approach can be used to investigate the reduction of interference.
- High-speed communication is still a challenge in OCC. As mobile phone is widely used, high-speed camera communication is still a challenge to overcome.
- MIMO VLC can be a research topic in implementing metaverse.
- Blockchain is a cryptocurrency system that is popular nowadays. However, the features of blockchain can be utilized in wireless networking. Research can be done to integrate blockchain into MIMO VLC.
- MIMO VLC can support the enhancement of different near-user cloud-like services like cloud computing and EDGE computing.
- As VLC can be applied in different scenarios and the number of users can be varied, different protocols can be investigated for ease of operation.
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, X.; Ng, D.W.K.; Yu, W.; Larsson, E.G.; Al-Dhahir, N.; Schober, R. Massive Access for 5G and Beyond. IEEE J. Sel. Areas Commun. 2021, 39, 615–637. [Google Scholar] [CrossRef]
- Gui, G.; Liu, M.; Tang, F.; Kato, N.; Adachi, F. 6G: Opening new horizons for integration of comfort, security, and intelligence. IEEE Wirel. Commun. 2020, 27, 126–132. [Google Scholar] [CrossRef]
- Miramirkhani, F.; Karbalayghareh, M.; Zeydan, E.; Mitra, R. Enabling 5G indoor services for residential environment using VLC technology. Phys. Commun. 2022, 53, 101679. [Google Scholar] [CrossRef]
- Cisco, U. Cisco Annual Internet Report (2018–2023) White Paper; Cisco: San Jose, CA, USA, 2020. [Google Scholar]
- An, J.; Sejan, M.A.S.; Chung, W.Y. Fine particulate matter monitoring via a visible light communication in DCT-based optical OFDM. Opt. Express 2019, 27, 15062–15078. [Google Scholar] [CrossRef] [PubMed]
- Sejan, M.A.S.; Naik, R.P.; Lee, B.G.; Chung, W.Y. A Bandwidth Efficient Hybrid Multilevel Pulse Width Modulation for Visible Light Communication System: Experimental and Theoretical Evaluation. IEEE Open J. Commun. Soc. 2022, 3, 1991–2004. [Google Scholar] [CrossRef]
- Khan, L.U. Visible light communication: Applications, architecture, standardization and research challenges. Digit. Commun. Netw. 2017, 3, 78–88. [Google Scholar] [CrossRef] [Green Version]
- Rahaim, M.B.; Vegni, A.M.; Little, T.D. A hybrid radio frequency and broadcast visible light communication system. In Proceedings of the 2011 IEEE GLOBECOM Workshops (GC Wkshps), Houston, TX, USA, 5–9 December 2011; pp. 792–796. [Google Scholar]
- Gismalla, M.S.; Abdullah, M.F.L.; Ahmed, M.S.; Mabrouk, W.A.; Najib, A.F.; Saeid, E.; Supa’at, A.; Das, B. Design and analysis of different optical attocells deployment models for indoor visible light communication system. Int. J. Integr. Eng. 2021, 13, 253–264. [Google Scholar] [CrossRef]
- Rahaim, M.B.; Little, T.D. Toward practical integration of dual-use VLC within 5G networks. IEEE Wirel. Commun. 2015, 22, 97–103. [Google Scholar] [CrossRef]
- Jovicic, A.; Li, J.; Richardson, T. Visible light communication: Opportunities, challenges and the path to market. IEEE Commun. Mag. 2013, 51, 26–32. [Google Scholar] [CrossRef]
- Rahman, M.H.; Sejan, M.A.S.; Chung, W.Y. Multilateration Approach for Wide Range Visible Light Indoor Positioning System Using Mobile CMOS Image Sensor. Appl. Sci. 2021, 11, 7308. [Google Scholar] [CrossRef]
- Pathak, P.H.; Feng, X.; Hu, P.; Mohapatra, P. Visible Light Communication, Networking, and Sensing: A Survey, Potential and Challenges. IEEE Commun. Surv. Tutor. 2015, 17, 2047–2077. [Google Scholar] [CrossRef]
- Matheus, L.E.M.; Vieira, A.B.; Vieira, L.F.M.; Vieira, M.A.M.; Gnawali, O. Visible Light Communication: Concepts, Applications and Challenges. IEEE Commun. Surv. Tutor. 2019, 21, 3204–3237. [Google Scholar] [CrossRef]
- Sejan, M.A.S.; Chung, W.Y. Indoor fine particulate matter monitoring in a large area using bidirectional multihop VLC. IEEE Internet Things J. 2020, 8, 7214–7228. [Google Scholar] [CrossRef]
- Duman, T.M.; Ghrayeb, A. Coding for MIMO Communication Systems; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Larsson, E.G.; Edfors, O.; Tufvesson, F.; Marzetta, T.L. Massive MIMO for next generation wireless systems. IEEE Commun. Mag. 2014, 52, 186–195. [Google Scholar] [CrossRef] [Green Version]
- Mesleh, R.; Mehmood, R.; Elgala, H.; Haas, H. Indoor MIMO optical wireless communication using spatial modulation. In Proceedings of the 2010 IEEE International Conference on Communications, Cape Town, South Africa, 23–27 May 2010; pp. 1–5. [Google Scholar]
- Merdan, F.A.B.; Thiagarajah, S.P.; Dambul, K. Non-line of sight visible light communications: A technical and application based survey. Optik 2022, 259, 168982. [Google Scholar] [CrossRef]
- Xie, Y.; Ho, I.W.H.; Magsino, E.R. The modeling and cross-layer optimization of 802.11 p VANET unicast. IEEE Access 2017, 6, 171–186. [Google Scholar] [CrossRef]
- Ingason, T.; Liu, H. Line-of-Sight MIMO for Microwave Links-Adaptive Dual Polarized and Spatially Separated Systems. Master’s Thesis, Chalmers University of Technology, Gothenburg, Sweden, 2009. [Google Scholar]
- Furukawa, H.; Kamio, Y.; Sasaoka, H. Co-channel interference reduction method using CMA adaptive array antenna. In Proceedings of the PIMRC’96-7th International Symposium on Personal, Indoor, and Mobile Communications, Taipei, Taiwan, 18 October 1996; Volume 2, pp. 512–516. [Google Scholar]
- Hosney, M.; Selmy, H.A.; Srivastava, A.; Elsayed, K.M. Interference mitigation using angular diversity receiver with efficient channel estimation in MIMO VLC. IEEE Access 2020, 8, 54060–54073. [Google Scholar] [CrossRef]
- Sevincer, A.; Bhattarai, A.; Bilgi, M.; Yuksel, M.; Pala, N. LIGHTNETs: Smart LIGHTing and mobile optical wireless NETworks—A survey. IEEE Commun. Surv. Tutor. 2013, 15, 1620–1641. [Google Scholar] [CrossRef]
- Karunatilaka, D.; Zafar, F.; Kalavally, V.; Parthiban, R. LED based indoor visible light communications: State of the art. IEEE Commun. Surv. Tutor. 2015, 17, 1649–1678. [Google Scholar] [CrossRef]
- Ergul, O.; Dinc, E.; Akan, O.B. Communicate to illuminate: State-of-the-art and research challenges for visible light communications. Phys. Commun. 2015, 17, 72–85. [Google Scholar] [CrossRef]
- Rahman, M.H.; Sejan, M.A.S.; Kim, J.J.; Chung, W.Y. Reduced tilting effect of smartphone CMOS image sensor in visible light indoor positioning. Electronics 2020, 9, 1635. [Google Scholar] [CrossRef]
- Rahman, M.H.; Sejan, M.A.S. Performance Analysis of Indoor Positioning System Using Visible Light Based on Two-LEDs and Image Sensor for Different Handhold Situation of Mobile Phone. In Proceedings of the 2020 IEEE Region 10 Symposium (TENSYMP), Dhaka, Bangladesh, 5–7 June 2020; pp. 1515–1518. [Google Scholar] [CrossRef]
- Do, T.H.; Yoo, M. An in-depth survey of visible light communication based positioning systems. Sensors 2016, 16, 678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Căilean, A.M.; Dimian, M. Toward environmental-adaptive visible light communications receivers for automotive applications: A review. IEEE Sensors J. 2016, 16, 2803–2811. [Google Scholar] [CrossRef]
- Căilean, A.M.; Dimian, M. Current Challenges for Visible Light Communications Usage in Vehicle Applications: A Survey. IEEE Commun. Surv. Tutor. 2017, 19, 2681–2703. [Google Scholar] [CrossRef]
- Luo, J.; Fan, L.; Li, H. Indoor positioning systems based on visible light communication: State of the art. IEEE Commun. Surv. Tutor. 2017, 19, 2871–2893. [Google Scholar] [CrossRef]
- Rehman, S.U.; Ullah, S.; Chong, P.H.J.; Yongchareon, S.; Komosny, D. Visible light communication: A system perspective—Overview and challenges. Sensors 2019, 19, 1153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blinowski, G. Security of visible light communication systems—A survey. Phys. Commun. 2019, 34, 246–260. [Google Scholar] [CrossRef]
- Mapunda, G.A.; Ramogomana, R.; Marata, L.; Basutli, B.; Khan, A.S.; Chuma, J.M. Indoor visible light communication: A tutorial and survey. Wirel. Commun. Mob. Comput. 2020, 2020, 8881305. [Google Scholar] [CrossRef]
- Yahia, S.; Meraihi, Y.; Ramdane-Cherif, A.; Gabis, A.B.; Acheli, D.; Guan, H. A survey of channel modeling techniques for visible light communications. J. Netw. Comput. Appl. 2021, 194, 103206. [Google Scholar] [CrossRef]
- Oyewobi, S.S.; Djouani, K.; Kurien, A.M. Visible Light Communications for Internet of Things: Prospects and Approaches, Challenges, Solutions and Future Directions. Technologies 2022, 10, 28. [Google Scholar] [CrossRef]
- Geng, Z.; Khan, F.N.; Guan, X.; Dong, Y. Advances in Visible Light Communication Technologies and Applications. Photonics 2022, 9, 893. [Google Scholar] [CrossRef]
- Vappangi, S.; Mani, V. A survey on the integration of visible light communication with power line communication: Conception, applications and research challenges. Optik 2022, 266, 169582. [Google Scholar] [CrossRef]
- Ishikawa, N.; Sugiura, S.; Hanzo, L. 50 years of permutation, spatial and index modulation: From classic RF to visible light communications and data storage. IEEE Commun. Surv. Tutor. 2018, 20, 1905–1938. [Google Scholar] [CrossRef] [Green Version]
- Chataut, R.; Akl, R. Massive MIMO systems for 5G and beyond networks—overview, recent trends, challenges, and future research direction. Sensors 2020, 20, 2753. [Google Scholar] [CrossRef] [PubMed]
- Al-Ahmadi, S.; Maraqa, O.; Uysal, M.; Sait, S.M. Multi-user visible light communications: State-of-the-art and future directions. IEEE Access 2018, 6, 70555–70571. [Google Scholar] [CrossRef]
- Vishwaraj; Ali, L. Hybrid MIMO-OFDM system for 5G network using VLC—A review. In Proceedings of the 2019 IEEE International Conference on Electrical, Computer and Communication Technologies (ICECCT), Coimbatore, India, 20–22 February 2019; pp. 1–5. [Google Scholar]
- Azhar, A.H.; Tran, T.A.; O’Brien, D. A gigabit/s indoor wireless transmission using MIMO-OFDM visible-light communications. IEEE Photonics Technol. Lett. 2012, 25, 171–174. [Google Scholar] [CrossRef]
- Chang, C.H.; Li, C.Y.; Lu, H.H.; Lin, C.Y.; Chen, J.H.; Wan, Z.W.; Cheng, C.J. A 100-Gb/s multiple-input multiple-output visible laser light communication system. J. Light. Technol. 2014, 32, 4121–4127. [Google Scholar] [CrossRef]
- Wang, Y.; Chi, N. Indoor gigabit 2 ë 2 imaging multiple-input-multiple-output visible light communication. Chin. Opt. Lett. 2014, 12, 100603. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Chi, N. Demonstration of high-speed 2 × 2 non-imaging MIMO Nyquist single carrier visible light communication with frequency domain equalization. J. Light. Technol. 2014, 32, 2087–2093. [Google Scholar] [CrossRef]
- Shi, J.; Huang, X.; Wang, Y.; Tao, L.; Chi, N. Improved performance of a high speed 2 × 2 MIMO VLC network based on EGC-STBC. In Proceedings of the 2015 European Conference on Optical Communication (ECOC), Valencia, Spain, 27 September–1 October 2015; pp. 1–3. [Google Scholar]
- Zhan, Z.; Zhang, M.; Han, D.; Luo, P.; Tang, X.; Ghassemlooy, Z.; Lang, L. 1.2 Gbps non-imaging MIMO-OFDM scheme based VLC over indoor lighting LED arrangments. In Proceedings of the 2015 Opto-Electronics and Communications Conference (OECC), Shanghai, China, 28 June–2 July 2015; pp. 1–3. [Google Scholar]
- Li, J.; Xu, Y.; Shi, J.; Wang, Y.; Ji, X.; Ou, H.; Chi, N. A 2 × 2 imaging MIMO system based on LED visible light communications employing space balanced coding and integrated PIN array reception. Opt. Commun. 2016, 367, 214–218. [Google Scholar] [CrossRef] [Green Version]
- Hsu, C.W.; Chow, C.W.; Lu, I.C.; Liu, Y.L.; Yeh, C.H.; Liu, Y. High speed imaging 3 × 3 MIMO phosphor white-light LED based visible light communication system. IEEE Photonics J. 2016, 8, 1–6. [Google Scholar] [CrossRef]
- Lu, I.C.; Liu, Y.L.; Lai, C.H. High-speed 2 × 2 MIMO-OFDM visible light communication employing phosphorescent LED. In Proceedings of the 2016 Eighth International Conference on Ubiquitous and Future Networks (ICUFN), Vienna, Austria, 5–8 July 2016; pp. 222–224. [Google Scholar]
- Rajbhandari, S.; Jalajakumari, A.V.; Chun, H.; Faulkner, G.; Cameron, K.; Henderson, R.; Tsonev, D.; Haas, H.; Xie, E.; McKendry, J.J.; et al. A multigigabit per second integrated multiple-input multiple-output VLC demonstrator. J. Light. Technol. 2017, 35, 4358–4365. [Google Scholar] [CrossRef] [Green Version]
- Lu, I.C.; Lai, C.H.; Yeh, C.H.; Chen, J. 6.36 Gbit/s RGB LED-based WDM MIMO visible light communication system employing OFDM modulation. In Proceedings of the 2017 Optical Fiber Communication Conference, Los Angeles, CA, USA, 19–23 March 2017; p. W2A-39. [Google Scholar]
- Qiao, L.; Lu, X.; Liang, S.; Zhang, J.; Chi, N. Performance analysis of space multiplexing by superposed signal in multi-dimensional VLC system. Opt. Express 2018, 26, 19762–19772. [Google Scholar] [CrossRef] [PubMed]
- Werfli, K.; Chvojka, P.; Ghassemlooy, Z.; Hassan, N.B.; Zvanovec, S.; Burton, A.; Haigh, P.A.; Bhatnagar, M.R. Experimental demonstration of high-speed 4 × 4 imaging multi-CAP MIMO visible light communications. J. Light. Technol. 2018, 36, 1944–1951. [Google Scholar] [CrossRef] [Green Version]
- Hong, Y.; Chen, L.K.; Zhao, J. Performance-enhanced gigabit/s MIMO-OFDM visible light communications using CSI-free/dependent precoding techniques. Opt. Express 2019, 27, 12806–12816. [Google Scholar] [CrossRef] [PubMed]
- Shi, M.; Wang, C.; Li, G.; Liu, Y.; Wang, K.; Chi, N. A 5Gb/s 2 × 2 MIMO Real-time Visible Light Communication System based on silicon substrate LEDs. In Proceedings of the 2019 Global LIFI Congress (GLC), Paris, France, 12–13 June 2019; pp. 1–5. [Google Scholar]
- Yeh, C.H.; Weng, J.H.; Chow, C.W.; Luo, C.M.; Xie, Y.R.; Chen, C.J.; Wu, M.C. 1.7 to 2.3 Gbps OOK LED VLC transmission based on 4 × 4 color-polarization-multiplexing at extremely low illumination. IEEE Photonics J. 2019, 11, 1–6. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhu, Y.; Zhang, D.; Zhang, H. High-Speed visible light communication chipset based multi-color MIMO system. In Proceedings of the 2019 28th Wireless and Optical Communications Conference (WOCC), Beijing, China, 9–10 May 2019; pp. 1–5. [Google Scholar]
- Younus, S.H.; Al-Hameed, A.A.; Alhartomi, M.; Hussein, A.T. Massive MIMO For Indoor VLC Systems. In Proceedings of the 2020 22nd International Conference on Transparent Optical Networks (ICTON), Bari, Italy, 19–23 July 2020; pp. 1–6. [Google Scholar]
- Zou, P.; Zhao, Y.; Hu, F.; Chi, N. Enhanced performance of MIMO multi-branch hybrid neural network in single receiver MIMO visible light communication system. Opt. Express 2020, 28, 28017–28032. [Google Scholar] [CrossRef]
- Jia, J.; Zou, P.; Hu, F.; Zhao, Y.; Chi, N. Flexible Data Rate V2X Communication System beyond 1.84 Gb/s Based on MIMO VLC and Radar Integration. Appl. Sci. 2020, 10, 6636. [Google Scholar] [CrossRef]
- Wang, Z.; Han, S.; Chi, N. Performance enhancement based on machine learning scheme for space multiplexing 2 × 2 MIMO VLC system employing joint IQ independent component analysis. Opt. Commun. 2020, 458, 124733. [Google Scholar] [CrossRef]
- Li, G.; Niu, W.; Ha, Y.; Hu, F.; Wang, J.; Yu, X.; Jia, J.; Zou, P.; He, Z.; Yu, S.; et al. Position-Dependent MIMO Demultiplexing Strategy for High-Speed Visible Light Communication in Internet of Vehicles. IEEE Internet Things J. 2022, 9, 10833–10850. [Google Scholar] [CrossRef]
- Niu, W.; Xu, Z.; Xiao, W.; Liu, Y.; Hu, F.; Wang, G.; Zhang, J.; He, Z.; Yu, S.; Shi, J.; et al. Phosphor-free Golden Light LED Array for 5.4-Gbps Visible Light Communication using MIMO Tomlinson-Harashima Precoding. J. Light. Technol. 2022, 40, 5031–5040. [Google Scholar] [CrossRef]
- Sejan, M.A.S.; Chung, W.Y. Secure VLC for Wide-Area Indoor IoT Connectivity. IEEE Internet Things J. 2022, 10, 180–193. [Google Scholar] [CrossRef]
- Sejan, M.A.S.; Chung, W.Y. Lightweight multi-hop VLC using compression and data-dependent multiple pulse modulation. Opt. Express 2020, 28, 19531–19549. [Google Scholar] [CrossRef] [PubMed]
- Islim, M.S.; Haas, H. Modulation techniques for li-fi. ZTE Commun. 2019, 14, 29–40. [Google Scholar]
- Sejan, M.A.S.; Rahman, M.H.; Chung, W.Y. MPPM based bi-directional long range visible light communication for indoor particulate matter monitoring. In Proceedings of the 2020 IEEE 3rd International Conference on Computer and Communication Engineering Technology (CCET), Beijing, China, 14–16 August 2020; pp. 263–266. [Google Scholar]
- Komine, T.; Nakagawa, M. Fundamental analysis for visible-light communication system using LED lights. IEEE Trans. Consum. Electron. 2004, 50, 100–107. [Google Scholar] [CrossRef]
- Goldsmith, A. Wireless Communications; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Zeng, L.; O’Brien, D.C.; Le Minh, H.; Faulkner, G.E.; Lee, K.; Jung, D.; Oh, Y.; Won, E.T. High data rate multiple input multiple output (MIMO) optical wireless communications using white LED lighting. IEEE J. Sel. Areas Commun. 2009, 27, 1654–1662. [Google Scholar] [CrossRef]
- Chi, N. LED-Based Visible Light Communications; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Sejan, M.A.S.; Rahman, M.H.; Chung, W.Y. Optical OFDM Modulation in Multi-hop VLC for Long Distance Data Transmission Over 30 meters. In Proceedings of the 2020 IEEE Photonics Conference (IPC), Vancouver, BC, Canada, 28 September–1 October 2020; pp. 1–2. [Google Scholar]
- Fath, T.; Haas, H. Performance comparison of MIMO techniques for optical wireless communications in indoor environments. IEEE Trans. Commun. 2012, 61, 733–742. [Google Scholar] [CrossRef]
- Safari, M.; Uysal, M. Do we really need OSTBCs for free-space optical communication with direct detection? IEEE Trans. Wirel. Commun. 2008, 7, 4445–4448. [Google Scholar] [CrossRef]
- Dixit, V.; Kumar, A. Performance analysis of angular diversity receiver based MIMO–VLC system for imperfect CSI. J. Opt. 2021, 23, 085701. [Google Scholar] [CrossRef]
- Siddiqi, U.F.; Narmanlioglu, O.; Uysal, M.; Sait, S.M. Joint bit and power loading for adaptive MIMO OFDM VLC systems. Trans. Emerg. Telecommun. Technol. 2020, 31, e3850. [Google Scholar] [CrossRef]
- Tran, N.A.; Luong, D.A.; Thang, T.C.; Pham, A.T. Performance analysis of indoor MIMO visible light communication systems. In Proceedings of the 2014 IEEE Fifth International Conference on Communications and Electronics (ICCE), Danang, Vietnam, 30 July–1 August 2014; pp. 60–64. [Google Scholar]
- Chau, Y.A.; Yu, S.H. Space modulation on wireless fading channels. In Proceedings of the IEEE 54th Vehicular Technology Conference. VTC Fall 2001. Proceedings (Cat. No. 01CH37211), Atlantic City, NJ, USA, 7–11 October 2001; Volume 3, pp. 1668–1671. [Google Scholar]
- Mesleh, R.Y.; Haas, H.; Sinanovic, S.; Ahn, C.W.; Yun, S. Spatial modulation. IEEE Trans. Veh. Technol. 2008, 57, 2228–2241. [Google Scholar] [CrossRef]
- Mesleh, R.; Elgala, H.; Haas, H. Optical spatial modulation. J. Opt. Commun. Netw. 2011, 3, 234–244. [Google Scholar] [CrossRef]
- Yang, P.; Xiao, Y.; Yu, Y.; Li, S. Adaptive spatial modulation for wireless MIMO transmission systems. IEEE Commun. Lett. 2011, 15, 602–604. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhu, Y.J. Chromaticity-adaptive generalized spatial modulation for MIMO VLC with multi-color LEDs. IEEE Photonics J. 2019, 11, 1–12. [Google Scholar] [CrossRef]
- Wang, J.Y.; Ge, H.; Zhu, J.X.; Wang, J.B.; Dai, J.; Lin, M. Adaptive spatial modulation for visible light communications with an arbitrary number of transmitters. IEEE Access 2018, 6, 37108–37123. [Google Scholar] [CrossRef]
- Younis, A.; Serafimovski, N.; Mesleh, R.; Haas, H. Generalised spatial modulation. In Proceedings of the 2010 confterence Record of the Forty Fourth Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 7–10 November 2010; pp. 1498–1502. [Google Scholar]
- Alaka, S.; Narasimhan, T.L.; Chockalingam, A. Generalized spatial modulation in indoor wireless visible light communication. In Proceedings of the 2015 IEEE Global Communications Conference (GLOBECOM), San Diego, CA, USA, 6–10 December 2015; pp. 1–7. [Google Scholar]
- Kumar, C.R.; Jeyachitra, R. Power efficient generalized spatial modulation MIMO for indoor visible light communications. IEEE Photonics Technol. Lett. 2017, 29, 921–924. [Google Scholar] [CrossRef]
- Sun, H.; Zhang, Y.; Wang, F.; Zhang, J.; Shi, S. SVM Aided Signal Detection in Generalized Spatial Modulation VLC System. IEEE Access 2021, 9, 80360–80372. [Google Scholar] [CrossRef]
- Bolcskei, H. MIMO-OFDM wireless systems: Basics, perspectives, and challenges. IEEE Wirel. Commun. 2006, 13, 31–37. [Google Scholar]
- He, C.; Wang, T.Q.; Armstrong, J. Performance comparison between spatial multiplexing and spatial modulation in indoor MIMO visible light communication systems. In Proceedings of the 2016 IEEE International Conference on Communications (ICC), Kuala Lumpur, Malaysia, 22–27 May 2016; pp. 1–6. [Google Scholar]
- Butala, P.M.; Elgala, H.; Little, T.D. Performance of optical spatial modulation and spatial multiplexing with imaging receiver. In Proceedings of the 2014 IEEE Wireless Communications and Networking Conference (WCNC), Istanbul, Turkey, 6–9 April 2014; pp. 394–399. [Google Scholar]
- Guo, X.; Chi, N. Superposed 32QAM constellation design for 2 × 2 spatial multiplexing MIMO VLC systems. J. Light. Technol. 2019, 38, 1702–1711. [Google Scholar] [CrossRef]
- Zhai, Y.; Chi, H.; Tong, J.; Xi, J. Capacity maximized linear precoder design for spatial-multiplexing MIMO VLC systems. IEEE Access 2020, 8, 63901–63909. [Google Scholar] [CrossRef]
- Guo, X.; Yuan, Y.; Pan, C.; Xiao, J. Interleaved superposed-64QAM-constellation design for spatial multiplexing visible light communication systems. Opt. Express 2021, 29, 23341–23356. [Google Scholar] [CrossRef]
- Ying, K.; Qian, H.; Baxley, R.J.; Yao, S. Joint optimization of precoder and equalizer in MIMO VLC systems. IEEE J. Sel. Areas Commun. 2015, 33, 1949–1958. [Google Scholar] [CrossRef]
- Yang, H.; Chen, C.; Zhong, W.D.; Alphones, A. Joint precoder and equalizer design for multi-user multi-cell MIMO VLC systems. IEEE Trans. Veh. Technol. 2018, 67, 11354–11364. [Google Scholar] [CrossRef]
- Zhai, Y.; Tong, J.; Xi, J. Precoder design for MIMO visible light communications with decision-feedback receivers. IEEE Photonics Technol. Lett. 2019, 31, 521–524. [Google Scholar] [CrossRef]
- Subramani, P.; Rajendran, G.B.; Sengupta, J.; Pérez de Prado, R.; Divakarachari, P.B. A block bi-diagonalization-based pre-coding for indoor multiple-input-multiple-output-visible light communication system. Energies 2020, 13, 3466. [Google Scholar] [CrossRef]
- Wu, L.; Cheng, J.; Zhang, Z.; Dang, J.; Liu, H. Channel estimation for optical-OFDM-based multiuser MISO visible light communication. IEEE Photonics Technol. Lett. 2017, 29, 1727–1730. [Google Scholar] [CrossRef]
- He, X.; Song, R.; Zhu, W.P. Pilot allocation for sparse channel estimation in MIMO-OFDM systems. IEEE Trans. Circuits Syst. II Express Briefs 2013, 60, 612–616. [Google Scholar] [CrossRef]
- Lin, B.; Ghassemlooy, Z.; Xu, J.; Lai, Q.; Shen, X.; Tang, X. Experimental demonstration of compressive sensing-based channel estimation for MIMO-OFDM VLC. IEEE Wirel. Commun. Lett. 2020, 9, 1027–1030. [Google Scholar] [CrossRef]
- Ashok, D.; Chockalingam, A. Compact optimal pilot design for channel estimation in MIMO VLC systems. In Proceedings of the 2019 IEEE Wireless Communications and Networking Conference (WCNC), Marrakesh, Morocco, 15–18 April 2019; pp. 1–7. [Google Scholar]
- Alamir, A.; Esmaiel, H.; Hussein, H.S. Efficient Optical MIMO–OFDM Channel Estimation Based on Correntropy Compressive Sensing. Wirel. Pers. Commun. 2020, 115, 1955–1971. [Google Scholar] [CrossRef]
- Hong, Y.; Chen, J.; Wang, Z.; Yu, C. Performance of a precoding MIMO system for decentralized multiuser indoor visible light communications. IEEE Photonics J. 2013, 5, 7800211. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, Z.; Dai, L. Multiuser MIMO-OFDM for visible light communications. IEEE Photonics J. 2015, 7, 1–11. [Google Scholar] [CrossRef]
- Narmanlioglu, O.; Uysal, M. Limited feedback channel estimation for multi-user massive mimo visible light communications. In Proceedings of the ICC 2020-2020 IEEE International Conference on Communications (ICC), Dublin, Ireland, 7–11 June 2020; pp. 1–7. [Google Scholar]
- Chen, C.; Zhang, R.; Wen, W.; Liu, M.; Du, P.; Yang, Y.; Ruan, X. Hybrid 3DMA for multi-user MIMO-VLC. J. Opt. Commun. Netw. 2022, 14, 780–791. [Google Scholar] [CrossRef]
- Cai, K.; Jiang, M. Multi-user MIMO-OOFDM imaging VLC system with PD selection. In Proceedings of the 2016 IEEE 83rd Vehicular Technology Conference (VTC Spring), Nanjing, China, 15–18 May 2016; pp. 1–5. [Google Scholar]
- Beysens, J.; Galisteo, A.; Wang, Q.; Juara, D.; Giustiniano, D.; Pollin, S. DenseVLC: A cell-free massive MIMO system with distributed LEDs. In Proceedings of the 14th International Conference on Emerging Networking EXperiments and Technologies, Heraklion/Crete, Greece, 4–7 December 2018; pp. 320–332. [Google Scholar]
- Arfaoui, M.A.; Ghrayeb, A.; Assi, C.M. Secrecy performance of multi-user MISO VLC broadcast channels with confidential messages. IEEE Trans. Wirel. Commun. 2018, 17, 7789–7800. [Google Scholar] [CrossRef]
- Burton, A.; Ghassemlooy, Z.; Rajbhandari, S.; Liaw, S.K. Design and analysis of an angular-segmented full-mobility visible light communications receiver. Trans. Emerg. Telecommun. Technol. 2014, 25, 591–599. [Google Scholar] [CrossRef]
- Nuwanpriya, A.; Ho, S.W.; Chen, C.S. Indoor MIMO Visible Light Communications: Novel Angle Diversity Receivers for Mobile Users. IEEE J. Sel. Areas Commun. 2015, 33, 1780–1792. [Google Scholar] [CrossRef]
- Fahamuel, P.; Thompson, J.; Haas, H. Improved indoor VLC MIMO channel capacity using mobile receiver with angular diversity detectors. In Proceedings of the 2014 IEEE Global Communications Conference, Sydney, Australia, 10–14 June 2014; pp. 2060–2065. [Google Scholar]
- Rahman, M.H.; Sejan, M.A.S.; Yoo, S.G.; Kim, M.A.; You, Y.H.; Song, H.K. Multi-User Joint Detection Using Bi-Directional Deep Neural Network Framework in NOMA-OFDM System. Sensors 2022, 22, 6994. [Google Scholar] [CrossRef]
- Dai, L.; Wang, B.; Yuan, Y.; Han, S.; Chih-Lin, I.; Wang, Z. Non-orthogonal multiple access for 5G: Solutions, challenges, opportunities, and future research trends. IEEE Commun. Mag. 2015, 53, 74–81. [Google Scholar] [CrossRef]
- Lin, B.; Ghassemlooy, Z.; Tang, X.; Li, Y.; Zhang, M. Experimental demonstration of optical MIMO NOMA-VLC with single carrier transmission. Opt. Commun. 2017, 402, 52–55. [Google Scholar] [CrossRef]
- Shi, J.; Hong, Y.; He, J.; Deng, R.; Chen, L.K. Experimental demonstration of OQAM-OFDM based MIMO-NOMA over visible light communications. In Proceedings of the 2018 Optical Fiber Communication Conference. Optical Society of America, San Diego, CA, USA, 11–15 March 2018; p. M2K–3. [Google Scholar]
- Wang, H.; Wang, F.; Li, R. Enhancing power allocation efficiency of NOMA aided-MIMO downlink VLC networks. Opt. Commun. 2020, 454, 124497. [Google Scholar] [CrossRef]
- Liu, X.; Yu, H.; Zhu, Y.; Zhang, E. Power allocation algorithm of optical MIMO NOMA visible light communications. In Proceedings of the 2019 IEEE 9th International Conference on Electronics Information and Emergency Communication (ICEIEC), Beijing, China, 12–14 July 2019; pp. 1–5. [Google Scholar]
- Mishra, A.K.; Trivedi, A. Performance Analysis of MIMO-NOMA-Based Indoor Visible Light Communication in Single Reflection Environment. In Proceedings of the 2019 IEEE Conference on Information and Communication Technology, Allahabad, India, 6–8 December 2019; pp. 1–5. [Google Scholar]
- Raj, R.; Dixit, A. Performance evaluation of power allocation schemes for non-orthogonal multiple access in MIMO visible light communication links. In Proceedings of the 2020 International Conference on Signal Processing and Communications (SPCOM), Bangalore, India, 19–24 July 2020; pp. 1–5. [Google Scholar]
- Jha, M.K.; Kumar, N.; Lakshmi, Y. NOMA MIMO Visible Light Communication with ZF-SIC and MMSE-SIC. In Proceedings of the 2020 2nd PhD Colloquium on Ethically Driven Innovation and Technology for Society (PhD EDITS), Bangalore, India, 8 November 2020; pp. 1–2. [Google Scholar]
- Rajput, V.S.; Ashok, D.; Chockalingam, A. MU-MIMO NOMA with linear precoding techniques in indoor downlink VLC systems. In Proceedings of the 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring), Antwerp, Belgium, 25–28 May 2020; pp. 1–6. [Google Scholar]
- Dixit, V.; Kumar, A. Error analysis of L-PPM modulated MIMO based multi-user NOMA-VLC system with perfect and imperfect SIC. Appl. Opt. 2022, 61, 858–867. [Google Scholar] [CrossRef]
- Nguyen, T.; Islam, A.; Hossan, T.; Jang, Y.M. Current status and performance analysis of optical camera communication technologies for 5G networks. IEEE Access 2017, 5, 4574–4594. [Google Scholar] [CrossRef]
- Rahman, M.H.; Sejan, M.A.S.; Chung, W.Y. Long-Distance Real-Time Rolling Shutter Optical Camera Communication Using MFSK Modulation Technique. In Proceedings of the International Conference on Intelligent Human Computer Interaction, Kent, OH, USA, 20–22 December 2021; pp. 53–62. [Google Scholar]
- Chen, S.H.; Chow, C.W. Hierarchical scheme for detecting the rotating MIMO transmission of the in-door RGB-LED visible light wireless communications using mobile-phone camera. Opt. Commun. 2015, 335, 189–193. [Google Scholar] [CrossRef]
- Liu, Y.; He, W. Signal detection and identification in an optical camera communication system in moving state. In Proceedings of the 2021 2nd International Workshop on Electronic communication and Artificial Intelligence (IWECAI 2021), Nanjing, China, 12–14 March 2021; Volume 1873, p. 012015. [Google Scholar]
- Han, B.; Hranilovic, S. A fixed-scale pixelated MIMO visible light communication system. IEEE J. Sel. Areas Commun. 2017, 36, 203–211. [Google Scholar] [CrossRef]
- Teli, S.R.; Matus, V.; Zvanovec, S.; Perez-Jimenez, R.; Vitek, S.; Ghassemlooy, Z. The first study of mimo scheme within rolling-shutter based optical camera communications. In Proceedings of the 2020 12th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP), Porto, Portugal, 20–22 July 2020; pp. 1–5. [Google Scholar]
- Zhu, Y.J.; Liang, W.F.; Zhang, J.K.; Zhang, Y.Y. Space-collaborative constellation designs for MIMO indoor visible light communications. IEEE Photonics Technol. Lett. 2015, 27, 1667–1670. [Google Scholar]
- Guo, X.; Yuan, Y.; Zhao, Y.; Chi, N. Flipped superposed constellation design for MIMO visible-light communication systems. Opt. Express 2022, 30, 11588–11603. [Google Scholar] [CrossRef]
- Sun, X.; Kang, C.H.; Kong, M.; Alkhazragi, O.; Guo, Y.; Ouhssain, M.; Weng, Y.; Jones, B.H.; Ng, T.K.; Ooi, B.S. A review on practical considerations and solutions in underwater wireless optical communication. J. Light. Technol. 2020, 38, 421–431. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.; Lu, W.; Sun, B.; Hong, Y.; Qu, F.; Han, J.; Zhang, W.; Xu, J. Experimental demonstration of MIMO-OFDM underwater wireless optical communication. Opt. Commun. 2017, 403, 205–210. [Google Scholar] [CrossRef]
- Yilmaz, A.; Elamassie, M.; Uysal, M. Diversity gain analysis of underwater vertical MIMO VLC links in the presence of turbulence. In Proceedings of the 2019 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom), Sochi, Russia, 3–6 June 2019; pp. 1–6. [Google Scholar]
- Li, Y.; Qiu, H.; Chen, X.; Fu, J.; Musa, M.; Li, X. Spatial correlation analysis of imaging MIMO for underwater visible light communication. Opt. Commun. 2019, 443, 221–229. [Google Scholar] [CrossRef]
- AL-Deen, M.B.; Ali, M.A.A.; Saleh, Z.A. Improving the optical link for UVLC using MIMO technique. J. Opt. Commun. 2021. [Google Scholar] [CrossRef]
- Jamali, M.V.; Nabavi, P.; Salehi, J.A. MIMO underwater visible light communications: Comprehensive channel study, performance analysis, and multiple-symbol detection. IEEE Trans. Veh. Technol. 2018, 67, 8223–8237. [Google Scholar] [CrossRef]
- Mumtaz, S.; Aziz, A.A.; Masroor, K. On the Performance of MIMO-UVLC System over Turbulence-induced Fading Channels. In Proceedings of the 2022 International Conference on Artificial Intelligence for Smart Community, Online, 23–25 February 2022; pp. 373–383. [Google Scholar]
- Meucci, M.; Seminara, M.; Nawaz, T.; Caputo, S.; Mucchi, L.; Catani, J. Bidirectional Vehicle-to-Vehicle Communication System Based on VLC: Outdoor Tests and Performance Analysis. IEEE Trans. Intell. Transp. Syst. 2022, 23, 11465–11475. [Google Scholar] [CrossRef]
- Narmanlioglu, O.; Turan, B.; Ergen, S.C.; Uysal, M. Cooperative MIMO-OFDM based inter-vehicular visible light communication using brake lights. Comput. Commun. 2018, 120, 138–146. [Google Scholar] [CrossRef]
- Petrariu, A.I.; Lavric, A.; Coca, E. VLC for vehicular communications: A multiple input multiple output (MIMO) approach. In Proceedings of the 2018 International Conference on Development and Application Systems (DAS), Suceava, Romania, 24–26 May 2018; pp. 134–137. [Google Scholar]
- Yahia, S.; Meraihi, Y.; Refas, S.; Gabis, A.B.; Ramdane-Cherif, A.; Eldeeb, H.B. Performance study and analysis of MIMO visible light communication-based V2V systems. Opt. Quantum Electron. 2022, 54, 1–22. [Google Scholar] [CrossRef]
- Wang, T.Q.; Sekercioglu, Y.A.; Armstrong, J. Analysis of an optical wireless receiver using a hemispherical lens with application in MIMO visible light communications. J. Light. Technol. 2013, 31, 1744–1754. [Google Scholar] [CrossRef]
- Kumar, A.; Ghorai, S. Effect of multipath reflection on BER performance of indoor MIMO-VLC system. Opt. Quantum Electron. 2018, 50, 1–18. [Google Scholar] [CrossRef]
- Chen, C.; Yang, Y.; Deng, X.; Du, P.; Yang, H. Space division multiple access with distributed user grouping for multi-user MIMO-VLC systems. IEEE Open J. Commun. Soc. 2020, 1, 943–956. [Google Scholar] [CrossRef]
- Berenguer, P.W.; Schulz, D.; Hilt, J.; Hellwig, P.; Kleinpeter, G.; Fischer, J.K.; Jungnickel, V. Optical wireless MIMO experiments in an industrial environment. IEEE J. Sel. Areas Commun. 2017, 36, 185–193. [Google Scholar] [CrossRef]
- Bober, K.L.; Mana, S.M.; Hinrichs, M.; Kouhini, S.M.; Kottke, C.; Schulz, D.; Schmidt, C.; Freund, R.; Jungnickel, V. Distributed multiuser mimo for lifi in industrial wireless applications. J. Light. Technol. 2021, 39, 3420–3433. [Google Scholar] [CrossRef]
- Butala, P.M.; Elgala, H.; Little, T.D. SVD-VLC: A novel capacity maximizing VLC MIMO system architecture under illumination constraints. In Proceedings of the 2013 IEEE Globecom Workshops (GC Wkshps), Atlanta, GA, USA, 9–13 December 2013; pp. 1087–1092. [Google Scholar]
- Nguyen, V.H.; Thieu, M.D.; Nguyen, H.; Jang, Y.M. Design and Implementation of the MIMO–COOK Scheme Using an Image Sensor for Long-Range Communication. Sensors 2020, 20, 2258. [Google Scholar] [CrossRef]
- Le Tran, M.; Kim, S. Effective Receiver Design for MIMO Visible Light Communication with Quadrichromatic LEDs. Electronics 2019, 8, 1383. [Google Scholar] [CrossRef] [Green Version]
- Hussein, H.S.; Hagag, M.; Farrag, M. Extended spatial-index LED modulation for optical MIMO-OFDM wireless communication. Electronics 2020, 9, 168. [Google Scholar] [CrossRef] [Green Version]
- Bai, R.; Jang, R.; Tan, J.; Quan, J. Performance comparison of VLC MIMO techniques considering indoor illuminance with inclined LEDs. In Proceedings of the 2016 IEEE International Conference on Wireless for Space and Extreme Environments (WiSEE), Aachen, Germany, 26–28 September 2016; pp. 105–110. [Google Scholar]
- Huang, N.; Wang, X.; Chen, M. Transceiver design for MIMO VLC systems with integer-forcing receivers. IEEE J. Sel. Areas Commun. 2017, 36, 66–77. [Google Scholar] [CrossRef]
- Wei, L.; Zhang, H.; Song, J. Experimental demonstration of a cubic-receiver-based MIMO visible light communication system. IEEE Photonics J. 2016, 9, 1–7. [Google Scholar] [CrossRef]
- Burton, A.; Le Minh, H.; Ghassemlooy, Z.; Bentley, E.; Botella, C. Experimental Demonstration of 50-Mb/s Visible Light Communications Using 4x4 MIMO. IEEE Photonics Technol. Lett. 2014, 26, 945–948. [Google Scholar] [CrossRef]
- Sejan, M.A.S.; Chung, W.Y. Performance Analysis of a Long-Range MIMO VLC System for Indoor IoT. IEEE Internet Things J. 2022; under review. [Google Scholar]
- Li, S.; Huang, B.; Xu, Z. Experimental MIMO VLC systems using tricolor LED transmitters and receivers. In Proceedings of the 2017 IEEE Globecom Workshops (GC Wkshps), Singapore, 4–8 December 2017; pp. 1–6. [Google Scholar]
- Jung, H.; Kim, S.M. Experimental Demonstration of 3 × 3 MIMO LED-to-LED Communication Using RGB Colors. Sensors 2021, 21, 4921. [Google Scholar] [CrossRef]
- Turan, B.; Narmanlioglu, O.; Ergen, S.C.; Uysal, M. Broadcasting brake lights with MIMO-OFDM based vehicular VLC. In Proceedings of the 2016 IEEE Vehicular Networking Conference (VNC), Columbus, OH, USA, 8–10 December 2016; pp. 1–7. [Google Scholar]
- Omura, N.; Higashi, A.; Yabuuchi, J.; Iwamatsu, T.; Oshiba, S. Experimental demonstration of ofdm based wdm-mimo visible light communication system. In Proceedings of the 2018 Asia-Pacific Microwave Conference (APMC), Kyoto, Japan, 6–9 November 2018; pp. 872–874. [Google Scholar]
- Sejan, M.A.S.; Chung, W.Y. MIMO Based Indoor Visible Light Communication for Internet of Things via Data Encryption. In Proceedings of the 2021 IEEE 7th World Forum on Internet of Things (WF-IoT), New Orleans, LA, USA, 14 June–31 July 2021; pp. 113–117. [Google Scholar]
- Jesuthasan, F.H.; Rohitkumar, H.; Shah, P.; Trestian, R. Implementation and performance evaluation of a MIMO-VLC system for data transmissions. In Proceedings of the 2019 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB), Jeju, Republic of Korea, 5–7 June 2019; pp. 1–6. [Google Scholar]
- Guo, X.; Wang, C.; Wang, W. Experimental Demonstration of Zadoff–Chu Matrix Transform Precoding for MIMO-OFDM Visible Light Communications. Adv. Condens. Matter Phys. 2020. [Google Scholar] [CrossRef]
- Kim, S.M.; Jeon, J.B. Experimental demonstration of 4 × 4 MIMO wireless visible light communication using a commercial CCD image sensor. J. Inf. Commun. Converg. Eng. 2012, 10, 220–224. [Google Scholar] [CrossRef] [Green Version]
- Hsu, C.W.; Lu, I.C.; Liu, Y.L.; Yeh, C.H.; Chow, C.W. Demonstration of high speed imaging 3×3 MIMO-OFDM visible light communication system. In Proceedings of the 2016 IEEE Photonics Conference (IPC), Waikoloa, HI, USA, 2–6 October 2016; pp. 729–730. [Google Scholar] [CrossRef]
- Mana, S.M.; Jungnickel, V.; Bober, K.L.; Hellwig, P.; Hilt, J.; Schulz, D.; Paraskevopoulos, A.; Freund, R.; Hirmanova, K.; Janca, R.; et al. Distributed Multiuser MIMO for LiFi: Experiments in an Operating Room. J. Light. Technol. 2021, 39, 5730–5743. [Google Scholar] [CrossRef]
- Burton, A.; Chvojka, P.; Haigh, P.A.; Ghassemlooy, Z.; Zvanovec, S. Optical Filter-Less WDM for Visible Light Communications Using Defocused MIMO. Electronics 2021, 10, 1065. [Google Scholar] [CrossRef]
- Kowalczyk, M. 2 × 2 MIMO VLC optical transmission system based on LEDs in a double role. Acta Phys. Pol. A 2016, 130, 41–44. [Google Scholar] [CrossRef]
- Chi, N.; Zhao, Y.; Shi, M.; Zou, P.; Lu, X. Gaussian kernel-aided deep neural network equalizer utilized in underwater PAM8 visible light communication system. Opt. Express 2018, 26, 26700–26712. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Qiao, L.; Zhou, Y.; Yu, W.; Chi, N. An IQ-Time 3-dimensional post-equalization algorithm based on DBSCAN of machine learning in CAP VLC system. Opt. Commun. 2019, 430, 299–303. [Google Scholar] [CrossRef]
- Lu, X.; Zhou, Y.; Qiao, L.; Yu, W.; Liang, S.; Zhao, M.; Zhao, Y.; Lu, C.; Chi, N. Amplitude jitter compensation of PAM-8 VLC system employing time-amplitude two-dimensional re-estimation base on density clustering of machine learning. Phys. Scr. 2019, 94, 055506. [Google Scholar] [CrossRef]
- Qiao, L.; Liang, S.; Lu, X.; Chi, N. Distortion compensation with clustering algorithm in a MISO VLC system. Opt. Commun. 2019, 443, 250–254. [Google Scholar] [CrossRef]
- Niu, W.; Ha, Y.; Chi, N. Novel phase estimation scheme based on support vector machine for multiband-CAP visible light communication system. In Proceedings of the Asia Communications and Photonics Conference. Optica Publishing Group, Hangzhou, China, 26–29 October 2018; p. Su3D–5. [Google Scholar]
- Wu, X.; Chi, N. The phase estimation of geometric shaping 8-QAM modulations based on K-means clustering in underwater visible light communication. Opt. Commun. 2019, 444, 147–153. [Google Scholar] [CrossRef]
- Rajbhandari, S.; Chun, H.; Faulkner, G.; Haas, H.; Xie, E.; McKendry, J.J.; Herrnsdorf, J.; Gu, E.; Dawson, M.D.; O’Brien, D. Neural network-based joint spatial and temporal equalization for MIMO-VLC system. IEEE Photonics Technol. Lett. 2019, 31, 821–824. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Zou, P.; He, Z.; Li, Z.; Chi, N. Low spatial complexity adaptive artificial neural network post-equalization algorithms in MIMO visible light communication systems. Opt. Express 2021, 29, 32728–32738. [Google Scholar] [CrossRef]
- Gao, D.; Guo, Q. Extreme learning machine-based receiver for MIMO LED communications. Digit. Signal Process. 2019, 95, 102594. [Google Scholar] [CrossRef] [Green Version]
- Hao, L.; Li, C.; Wang, D. Quantitative analysis of the stacked autoencoder method in MIMO-ACO-OFDM VLC systems. Light. Res. Technol. 2021, 53, 54–73. [Google Scholar] [CrossRef]
- Khadr, M.H.; Walter, I.; Elgala, H.; Muhaidat, S. Machine learning-based massive augmented spatial modulation (ASM) for IoT VLC systems. IEEE Commun. Lett. 2020, 25, 494–498. [Google Scholar] [CrossRef]
- Khalid, A.; Asif, H.M.; Mumtaz, S.; Al Otaibi, S.; Konstantin, K. Design of MIMO-visible light communication transceiver using maximum rank distance codes. IEEE Access 2019, 7, 89128–89140. [Google Scholar] [CrossRef]
- Sejan, M.A.S.; Rahman, M.H.; Shin, B.S.; Oh, J.H.; You, Y.H.; Song, H.K. Machine Learning for Intelligent-Reflecting-Surface-Based Wireless Communication towards 6G: A Review. Sensors 2022, 22, 5405. [Google Scholar] [CrossRef] [PubMed]
- Sejan, M.A.S.; Rahman, M.H.; Song, H.K. Demod-CNN: A Robust Deep Learning Approach for Intelligent Reflecting Surface-Assisted Multiuser MIMO Communication. Sensors 2022, 22, 5971. [Google Scholar] [CrossRef] [PubMed]
Ref. | MIMO Types Description | MIMO Theoretical Analysis | MIMO Experimental Analysis | Machine Learning Approaches in MIMO | Future Challenges MIMO |
---|---|---|---|---|---|
[13] | ✓ | × | × | × | ✓ |
[40] | ✓ | ✓ | × | × | ✓ |
[41] | ✓ | × | × | × | × |
[42] | ✓ | × | × | ✓ | ✓ |
[43] | ✓ | × | × | × | ✓ |
This study | ✓ | ✓ | ✓ | ✓ | ✓ |
Ref. | Antenna | Data Rate | Distance | Year | Contributions |
---|---|---|---|---|---|
[44] | 1 Gbps | 1.2 m | 2013 | Indoor communication with LEDs | |
[45] | 100 Gbps | 5 m | 2014 | Mutiuser MIMO communication with 8 channels | |
[46] | 1.5 and 1.25 Gbps | 0.75 cm | 2014 | imaging MIMO system with RGB LEDs | |
[47] | 500 Mbps | 40 cm | 2014 | non-imaging 4-QAM with Nyquist single carrier | |
[48] | 1.8 Gbps | 1.65 m | 2015 | equal gain combining method applied | |
[49] | 1.2 Gbps | 1 m | 2015 | Rectangular and linear receiver arrangement applied | |
[50] | 1.4 Gbps | 2.5 m | 2016 | space balance coding with RGB LEDs | |
[51] | 1 Gbps | 1 m | 2016 | imaging MIMO with OFDM | |
[52] | 1 Gbps | 0.6 m | 2016 | pre-equalizer to extend bandwidth | |
[53] | 7.48 Gbps | 0.5–1 m | 2017 | imaging MIMO | |
[54] | 6.34 Gbps | 1–3 m | 2017 | RGB-LED based wavelength division multiplexing | |
[55] | 1.5 Gbps | 1.3 m | 2018 | detection algorithm using the successive interference cancellation (SIC) and the look-up table | |
[56] | 249 Mbps | 4.5 m | 2018 | multi-band carrierless amplitude and phase modulation | |
[57] | 1.6 Gbps | 1 m | 2019 | BER improvement | |
[58] | 5 Gbps | 2 m | 2019 | 64QAM-DMT modulation | |
[59] | 2.3–1.7 Gbps | 1–4 m | 2019 | color-polarization multiplexing method | |
[60] | 1 Gbps | indoor | 2019 | Multi-color MIMO VLC | |
[61] | 14,400 × 400 | 4 Gbps | 2 m | 2020 | Massive MIMO using space division multiple access for supporting multiple users |
[62] | 2.1 Gbps | 1.2 m | 2020 | single receiver MIMO VLC with neural network | |
[63] | 1.8484 Gbps | up to 5 m | 2020 | Probabilistic shaping bitloading MIMO | |
[64] | 750 Mbps | 1.3 m | 2020 | machine learning based MIMO detection scheme | |
[65] | 3.08 Gbps, 336 Mbps (daytime) and 362 Mbps (nighttime) | 2 m and 100 m | 2021 | MIMO vehicular communication using VLC | |
[66] | 5.4 Gbps | 1.5 m | 2022 | CAP-16 QAM system based on a Si-substrate golden light LED array |
Ref. | Antenna | Modulation | Distance |
---|---|---|---|
[152] | 2 × 1 | COOK | 20 m |
[157] | 4 × 4 | OFDM | 0.1 m |
[50] | 2 × 2 | QAM-OFDM | 2.5 m |
[158] | 2 × 2 | OOK | 2 m |
[118] | 2 × 2 | 4-QAM | 0.35 m |
[56] | 4 × 4 | M-QAM | 2.5 m |
[159] | 2 × 2 and 4 × 4 | PPM, OOK, PWM & MPPM | 1–21 m |
[44] | 4 × 9 | OFDM | 1 m |
[160] | 2 × 2 | OOK | 0.1m |
[130] | 2 × 2 and 2 × 1 | OOK | 6–14 m |
[118] | 2 × 2 | NOMA (QAM) | 0.15–0.35 m |
[161] | 3 × 3 | DCO-OFDM | 0.1 m |
[94] | 2 × 2 | 4-QAM and 8-QAM | 1.1 m |
[162] | 3 × 3 | 4-QAM and 2-PSK | 20 m |
[163] | 3 × 3 | WDM | 2 m |
[164] | 2 × 2 | OOK and MPPM | 15 m |
[56] | 4 × 4 | M-QAM | 4.5 m |
[165] | 2 × 2 | OOK | 6 m |
[166] | 2 × 2 | OFDM | 0.8 m |
[167] | 4 × 4 | OOK | 10 m |
[168] | 3 × 3 | OFDM | 1 m |
[51] | 3 × 3 | OFDM | 1 m |
[58] | 2 × 2 | 64-QAM | 2 m |
[169] | 4 × 6 | TDMA and SDMA | variable distance |
[114] | 4 × 4 | 2-PAM | 3 m |
[149] | 8 × 6 | 16-QAM | 5 m |
[170] | 3 × 3 | OOK-NRZ | 0.75 m |
[171] | 2 × 2 | OOK | 0.25 m |
[64] | 2 × 2 | QPSK and 16-QAM | 1.3 m |
[66] | 2 × 2 | 16-QAM | 1.5 m |
[148] | 2 × 2 | BPSK | 1.2 m |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sejan, M.A.S.; Rahman, M.H.; Aziz, M.A.; Kim, D.-S.; You, Y.-H.; Song, H.-K. A Comprehensive Survey on MIMO Visible Light Communication: Current Research, Machine Learning and Future Trends. Sensors 2023, 23, 739. https://doi.org/10.3390/s23020739
Sejan MAS, Rahman MH, Aziz MA, Kim D-S, You Y-H, Song H-K. A Comprehensive Survey on MIMO Visible Light Communication: Current Research, Machine Learning and Future Trends. Sensors. 2023; 23(2):739. https://doi.org/10.3390/s23020739
Chicago/Turabian StyleSejan, Mohammad Abrar Shakil, Md Habibur Rahman, Md Abdul Aziz, Dong-Sun Kim, Young-Hwan You, and Hyoung-Kyu Song. 2023. "A Comprehensive Survey on MIMO Visible Light Communication: Current Research, Machine Learning and Future Trends" Sensors 23, no. 2: 739. https://doi.org/10.3390/s23020739
APA StyleSejan, M. A. S., Rahman, M. H., Aziz, M. A., Kim, D. -S., You, Y. -H., & Song, H. -K. (2023). A Comprehensive Survey on MIMO Visible Light Communication: Current Research, Machine Learning and Future Trends. Sensors, 23(2), 739. https://doi.org/10.3390/s23020739