A Quantum Annealing Bat Algorithm for Node Localization in Wireless Sensor Networks
Abstract
:1. Introduction
- A quantum annealing bat algorithm that incorporates quantum evolutionary strategies and simulated degenerate evolutionary mechanisms is proposed as a framework for the bat algorithm.
- The convergent evolutionary strategies of tournament and natural selection are used to approach the optimum to balance the local and global search mechanisms, and QABA’s performance is verified with 22 basis test functions.
- A 2D localization model and a localization algorithm are developed, and the performance of the algorithm is verified by node localization problems.
- A 3D localization model and localization algorithm are developed, and the performance of the algorithm is verified by node localization problems.
2. Related Works
3. Our Proposed QABA Scheme
3.1. Improved QABA
3.1.1. Quantum Evolution Strategy
3.1.2. Metropolis Sampling Guidelines
3.1.3. Assisted Convergence Evolutionary Strategy
Algorithm 1: Pseudo-code for the QABA algorithm |
Input: A, r, f, dimensionality D, α, γ, population size N, gen, initial temperature T, temperature decay coefficient α1. |
Output: Global optimal position bestX, global optimal fitness value bestY. 1: Distribute the population X, calculate the fitness value Y, and determine bestX and bestY. 2: for t = 1:gen 3: Update X using tournaments and natural selection, and update bestX and bestY. 4: for i = N 5: Update the population according to Equations (1), (3), (12) and (13) and determine the local optimal position pbesX0 and the fitness value pbestY0. 6: Update X with a quantum evolutionary strategy and determine pbestX1 and pbestY1. 7: If pbestY0 < pbestY1 8: Update pbestX and pbestY by taking the smaller one. 9: end if 10: Update pbestX and pbestY with the Metropolis criterion. 11: if pbestX <= Y(i) && rand (0,1) < A(i) 12: Update X(i), Y(i), A(i) and r(i). 13: if pbestY < bestY 14: Update bestX and bestY. 15: end if 16: end if 17: end for 18: Perform annealing operation. 19: end for |
3.2. Two-Dimensional Spatial Node Localization Algorithm
Algorithm 2: Pseudo-code for the QABA-2D algorithm |
Input: Communication radius R, AN, UN, noise variance VR, number of range repetitions PN, other parameters in the QABA algorithm. |
Output: Minimum mean error besterr. 1: Random distribution of the locations of ANs and UNs. 2: for i = 1:UN 3: Add noise to the distance and measure PN times, and take the mean value of distance d1 × AN after removing the extreme values. 4: Arrange d1 × AN and determine the number BN of ANs less than R. 5: if BN ≥ 3 6: Select all ANs that satisfy the condition, otherwise select the three ANs closest to the UNs. 7: end if 8: Use QABA to calculate Equations (14) and (15), and obtain the minimum error. 9: end for |
3.3. Three-Dimensional Spatial Node Localization Algorithm
Algorithm 3: Pseudo-code for the QABA-3D algorithm |
Input: R, AN, UN, noise variance VR, other parameters in QABA. |
Output: Minimum mean error besterr. 1: Random distribution of the locations of ANs and UNs. 2: for i = 1:UN 3: while Sabc == 0 4: Calculate the distance dua between UNs and all ANs, and select the three smallest ANs. 5: Calculate the area of the triangle Sabc according to Equations (16) and (17). 6: Calculate the volume Vabc of the space tetrahedron according to Equations (18)–(21). 7: Calculate the height dh of the tetrahedron according to Equation (22). 8: If the three anchor nodes are not co-linear, jump out of the loop. 9: end while 10: Add noise interference to the high dh of the tetrahedron. 11: Use the Pythagorean theorem to find the distance from the vertical foot O’ to the three ANs. 12: Use QABA to solve Equations (23) and (26). 13: Correct the position of UNs with Equations (24) and (25). 14: Update the positioning error again. 15: end for |
4. Simulation Results and Analysis
4.1. Test Functions Simulation Results and Analysis
4.2. Simulation Analysis of 2D Spatial Positioning in WSNs
4.2.1. Positioning Effect and Analysis of QABA and BA
4.2.2. Effect of Communication Radius on Positioning Accuracy
4.2.3. Effect of ANs Number on Positioning Accuracy
4.2.4. The Effect of Different Levels of Interference on Positioning Accuracy
4.3. Simulation Analysis of 3D Spatial Positioning in WSNs
4.3.1. QABA-3D and BA-3D Positioning Effect and Analysis
4.3.2. Effect of Different Number of ANs on Positioning Accuracy
4.3.3. The Effect of Different Levels of Noise on Positioning Accuracy
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Capella, J.; Campelo, J.; Bonastre, A.; Ors, R. A Reference Model for Monitoring IoT WSN-Based Applications. Sensors 2016, 16, 1816. [Google Scholar] [CrossRef] [Green Version]
- Strumberger, I.; Minovic, M.; Tuba, M.; Bacanin, N. Performance of Elephant Herding Optimization and Tree Growth Algorithm Adapted for Node Localization in Wireless Sensor Networks. Sensors 2019, 19, 2515. [Google Scholar] [CrossRef] [Green Version]
- Deng, Z.; Tang, S.; Deng, X.; Yin, L.; Liu, J. A Novel Location Source Optimization Algorithm for Low Anchor Node Density Wireless Sensor Networks. Sensors 2021, 21, 1890. [Google Scholar] [CrossRef] [PubMed]
- Cheikhrouhou, O.; M. Bhatti, G.; Alroobaea, R. A Hybrid DV-Hop Algorithm Using RSSI for Localization in Large-Scale Wireless Sensor Networks. Sensors 2018, 18, 1469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Feng, L. Research on Wireless Sensor Network Security Location Based on Received Signal Strength Indicator Sybil Attack. Discret. Dyn. Nat. Soc. 2020, 2020, 1–9. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, Z.; Zhang, S.; Yang, H. Three-Dimensional Localization Algorithm of WSN Nodes Based on RSSI-TOA and Single Mobile Anchor Node. J. Electr. Comput. Eng. 2019, 2019, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Li, X.-X.; Ding, Y.-M.; Xu, J.-P.; Liu, Z.-X. An improved DV-Hop localization algorithm for wireless sensor networks. In Proceedings of the 2018 13th IEEE Conference on Industrial Electronics and Applications (ICIEA), Wuhan, China, 31 May–2 June 2018; pp. 1831–1836. [Google Scholar]
- Kaur, A.; Kumar, P.; Gupta, G.P. A weighted centroid localization algorithm for randomly deployed wireless sensor networks. J. King Saud Univ.-Comput. Inf. Sci. 2019, 31, 82–91. [Google Scholar] [CrossRef]
- Jia, Y.-F.; Zhang, K.-X.; Zhao, L.-Q. Improved DV-Hop Location Algorithm Based on Mobile Anchor Node and Modified Hop Count for Wireless Sensor Network. J. Electr. Comput. Eng. 2020, 2020, 1–9. [Google Scholar] [CrossRef]
- Yan, X.; Sun, L.; Zhou, J.; Song, A. DV-hop localisation algorithm based on optimal weighted least square in irregular areas. Electron. Lett. 2018, 54, 1243–1245. [Google Scholar] [CrossRef]
- Dong, Q.; Xu, X. A Novel Weighted Centroid Localization Algorithm Based on RSSI for an Outdoor Environment. J. Commun. 2014, 9, 279–285. [Google Scholar] [CrossRef]
- Shah, S.-B.; Zhe, C.; Yin, F.; Khan, I.-U.; Begum, S.; Faheem, M.; Khan, F.A. 3D weighted centroid algorithm & RSSI ranging model strategy for node localization in WSN based on smart devices. Sustain. Cities Soc. 2018, 39, 298–308. [Google Scholar]
- Chuku, N.; Nasipuri, A. RSSI-Based Localization Schemes for Wireless Sensor Networks Using Outlier Detection. J. Sens. Actuator Netw. 2021, 10, 10. [Google Scholar] [CrossRef]
- Haseeb, K.; Ud Din, I.; Almogren, A.; Islam, N. An Energy Efficient and Secure IoT-Based WSN Framework: An Application to Smart Agriculture. Sensors 2020, 20, 2081. [Google Scholar] [CrossRef]
- Xue, D.; Huang, W. Smart Agriculture Wireless Sensor Routing Protocol and Node Location Algorithm Based on Internet of Things Technology. IEEE Sens. J. 2021, 21, 24967–24973. [Google Scholar] [CrossRef]
- Sun, W.; Lu, W.; Li, Q.; Chen, L.; Mu, D.; Yuan, X. WNN-LQE: Wavelet-Neural-Network-Based Link Quality Estimation for Smart Grid WSNs. IEEE Access 2017, 5, 12788–12797. [Google Scholar] [CrossRef]
- Naji, N.; Abid, M.R.; Benhaddou, D.; Krami, N. Context-Aware Wireless Sensor Networks for Smart Building. Information 2020, 11, 530. [Google Scholar] [CrossRef]
- Perumal, P.S.; Uthariaraj, V.R.; Christo, V.R.E. Intelligent UAV-Assisted Localisation to Conserve Battery Energy in Military Sensor Networks. Def. Sci. J. 2014, 64, 557–563. [Google Scholar] [CrossRef] [Green Version]
- Safia, A.A.; Aghbari, Z.A.; Kamel, I. Distributed Environmental Event Monitoring using Mobile Wireless Sensor Network. Procedia Comput. Sci. 2019, 155, 335–342. [Google Scholar] [CrossRef]
- Velasquez, W. Sensor Network Simulator Prototype With Real-Time Environmental Data Monitoring to Build Smart Application. IEEE Access 2021, 9, 144530–144539. [Google Scholar] [CrossRef]
- Liu, S.; Shi, Y.; Feng, M. Routing design and experimental analysis of wireless sensor monitoring network for mine environment. J. Comp. Meth. Sci. Eng. 2020, 20, 609–620. [Google Scholar] [CrossRef]
- Adu-Manu, K.S.; Katsriku, F.A.; Abdulai, J.; Engmann, F. Smart River Monitoring Using Wireless Sensor Networks. Wirel. Commun. Mob. Comput. 2020, 2020, 1–19. [Google Scholar] [CrossRef]
- Phoemphon, S.; So-In, C.; Leelathakul, N. Improved distance estimation with node selection localization and particle swarm optimization for obstacle-aware wireless sensor networks. Expert Syst. Appl. 2021, 175, 114773. [Google Scholar] [CrossRef]
- Huang, B.; Xie, L.; Yang, Z. TDOA-Based Source Localization With Distance-Dependent Noises. IEEE Trans. Wirel. Commun. 2015, 14, 468–480. [Google Scholar] [CrossRef]
- Liu, N.; Pan, J.; Wang, J.; Nguyen, T. An Adaptation Multi-Group Quasi-Affine Transformation Evolutionary Algorithm for Global Optimization and Its Application in Node Localization in Wireless Sensor Networks. Sensors 2019, 19, 4112. [Google Scholar] [CrossRef] [Green Version]
- Pan, J.; Fan, F.; Chu, S.; Du, Z.; Zhao, H. A Node Location Method in Wireless Sensor Networks Based on a Hybrid Optimization Algorithm. Wirel. Commun. Mob. Comput. 2020, 2020, 1–14. [Google Scholar] [CrossRef]
- Gou, P.; He, B.; Yu, Z. A Node Location Algorithm Based on Improved Whale Optimization in Wireless Sensor Networks. Wirel. Commun. Mob. Comput. 2021, 2021, 7523938. [Google Scholar] [CrossRef]
- Singh, P.; Mittal, N.; Singh, P. A novel hybrid range-free approach to locate sensor nodes in 3D WSN using GWO-FA algorithm. Telecommun. Syst. 2022, 80, 303–323. [Google Scholar] [CrossRef]
- Liu, W.; Li, P.; Ye, Z.; Yang, S. A Node Deployment Optimization Method of Wireless Sensor Network Based on Firefly Algorithm. In Proceedings of the 2021 IEEE 4th International Conference on Advanced Information and Communication Technologies (AICT), Lviv, Ukraine, 21–25 September 2021; pp. 167–170. [Google Scholar]
- Meng, Y.; Zhi, Q.; Zhang, Q.; Lin, E. A Two-Stage Wireless Sensor Grey Wolf Optimization Node Location Algorithm Based on K-Value Collinearity. Math. Probl. Eng. 2020, 2020, 1–10. [Google Scholar] [CrossRef]
- Fan, X.; Wen, X.; Jiang, S. Research on path planning and location optimization of quantum wireless sensor networks. J. Comput. 2020, 31, 324–330. [Google Scholar]
- Kargar Barzi, A.; Mahani, A. Obstacle-resistant hybrid localisation algorithm. IET Wirel. Sens. Syst. 2020, 10, 242–252. [Google Scholar] [CrossRef]
- Vanheel, F.; Verhaevert, J.; Laermans, E.; Moerman, I.; Demeester, P. Pseudo-3D RSSI-based WSN localization algorithm using linear regression. Wirel. Commun. Mob. Comput. 2015, 15, 1342–1354. [Google Scholar] [CrossRef] [Green Version]
- Raguraman, P.; Ramasundaram, M.; Balakrishnan, V. Localization in wireless sensor networks: A dimension based pruning approach in 3D environments. Appl. Soft Comput. 2018, 68, 219–232. [Google Scholar] [CrossRef]
- Kumar, A.; Khosla, A.; Saini, J.S.; Sidhu, S.S. Range-free 3D node localization in anisotropic wireless sensor networks. Appl. Soft Comput. 2015, 34, 438–448. [Google Scholar] [CrossRef]
- Sharma, G.; Kumar, A. Improved range-free localization for three-dimensional wireless sensor networks using genetic algorithm. Comput. Electr. Eng. 2018, 72, 808–827. [Google Scholar] [CrossRef]
- Deng, T.; Tang, X.; Wu, Z.; Liu, X.; Wei, W.; Zeng, Z. An improved DECPSOHDV-Hop algorithm for node location of WSN in Cyber–Physical–Social-System. Comput. Commun. 2022, 191, 349–359. [Google Scholar] [CrossRef]
- Kamei, D.; Wakamiya, N. Analysis of LSM-based event detection in impulse-based wireless sensor networks. In Proceedings of the 2018 International Symposium on Nonlinear Theory and Its Applications (NOLTA 2018), Tarragona, Spain, 2–6 September 2018; pp. 460–463. [Google Scholar]
- Huang, Q.-Y.; Liu, X.-H. Three-dimensional Ranging Localization Algorithm for Sensor Network Nodes Basedon Linear Least Squares Estimation. Comput. Eng. 2016, 42, 11–15. [Google Scholar]
- Chai, Q.; Zheng, J.W. Rotated Black Hole: A New Heuristic Optimization for Reducing Localization Error of WSN in 3D Terrain. Wirel. Commun. Mob. Comput. 2021, 2021, 1–13. [Google Scholar] [CrossRef]
- Stojkoska, B.R.; Saeed, N. Robust localisation algorithm for large scale 3D wireless sensor networks. Int. J. Ad Hoc Ubiquitous Comput. 2016, 23, 82. [Google Scholar] [CrossRef]
- Singh, P.; Khosla, A.; Kumar, A.; Khosla, M. 3D localization of moving target nodes using single anchor node in anisotropic wireless sensor networks. AEU Int. J. Electron. Commun. 2017, 82, 543–552. [Google Scholar] [CrossRef]
- Díez-González, J.; Verde, P.; Ferrero-Guillén, R.; Álvarez, R.; Pérez, H. Hybrid Memetic Algorithm for the Node Location Problem in Local Positioning Systems. Sensors 2020, 20, 5475. [Google Scholar] [CrossRef]
- Manjarres, D.; Del Ser, J.; Gil-Lopez, S.; Vecchio, M.; Landa-Torres, I.; Lopez-Valcarce, R. A novel heuristic approach for distance- and connectivity-based multihop node localization in wireless sensor networks. Soft Comput. 2013, 17, 17–28. [Google Scholar] [CrossRef]
- Yang, X.-S. A new metaheuristic bat-inspired algorithm. In Nature Inspired Cooperative Strategies for Optimization (NICSO 2010); Springer: Berlin, Germany, 2010; Volume 284, pp. 65–74. [Google Scholar]
- Shi, Y.-H.; Eberhart, R. A modified particle swarm optimizer. In Proceedings of the 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360), Anchorage, AK, USA, 4–9 May 1998. [Google Scholar]
- Golberg, D.E. Genetic algorithms in search, optimization, and machine learning. Addion Wesley 1989, 1989, 36. [Google Scholar]
- Storn, R.; Price, K. Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 1997, 11, 341–359. [Google Scholar] [CrossRef]
- Mirjalili, S. SCA: A sine cosine algorithm for solving optimization problems. Knowl.-Based Syst. 2016, 96, 120–133. [Google Scholar] [CrossRef]
- Huang, J.; Ma, Y. Bat Algorithm Based on an Integration Strategy and Gaussian Distribution. Math. Probl. Eng. 2020, 2020, 9495281. [Google Scholar] [CrossRef]
- Zhao, Q.-J.; Li, J.; Yu, J.-Y.; Ji, H.-Y. Bat Optimization Algorithm Based on Dynamically Adaptive Weight and Cauchy Mutation. ComputerScience 2019, 46, 89–92. [Google Scholar]
- Chen, M.-R.; Huang, Y.-Y.; Zeng, G.-Q.; Lu, K.-D.; Yang, L.-Q. An improved bat algorithm hybridized with extremal optimization and Boltzmann selection. Expert Syst. Appl. 2021, 175, 114812. [Google Scholar] [CrossRef]
- Mashwani, W.K.; Mehmood, I.; Abu, B.M.; Koçcak, I.; Gritli, H. A Modified Bat Algorithm for Solving Large-Scale Bound Constrained Global Optimization Problems. Math. Probl. Eng. 2021, 2021, 6636918. [Google Scholar] [CrossRef]
- Suping, L. Bat Algorithm Used for Multilevel Image Thresholding Segmentation. World Sci. Res. J. 2020, 6, 19–22. [Google Scholar]
- Saji, Y.; Barkatou, M. A discrete bat algorithm based on Lévy flights for Euclidean traveling salesman problem. Expert Syst. Appl. 2021, 172, 114639. [Google Scholar] [CrossRef]
- Liu, L.; Luo, S.; Guo, F.; Tan, S. Multi-point shortest path planning based on an Improved Discrete Bat Algorithm. Appl. Soft Comput. 2020, 95, 106498. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Qiao, Y.; Pan, J.S.; Chu, S.C.; Chang, K.C.; Xue, X.; Dao, T.K. A hybridized parallel bats algorithm for combinatorial problem of traveling salesman. J. Intell. Fuzzy Syst. 2020, 38, 5811–5820. [Google Scholar] [CrossRef]
- Jaemin, K.; Younghwan, Y. Sensor Node Activation Using Bat Algorithm for Connected Target Coverage in WSNs. Sensors 2020, 20, 3733. [Google Scholar]
- Li, W.-M.; Geng, J.; Wang, S.-M.; Hong, W.-C. Hybrid Chaotic Quantum Bat Algorithm with SVR in Electric Load Forecasting. Energies 2017, 10, 2180. [Google Scholar] [CrossRef] [Green Version]
- Navid, R.; Mehdi, R. An improved quantum evolutionary algorithm based on invasive weed optimization. Indian J. Sci. Res. 2014, 4, 413–422. [Google Scholar]
- He, X.; Ding, W.; Yang, X. Bat algorithm based on simulated annealing and Gaussian perturbations. Neural Comput. Appl. 2014, 25, 459–468. [Google Scholar] [CrossRef]
- Dimitris, B.; John, T. Simulated annealing. Stat. Sci. 1993, 8, 10–15. [Google Scholar]
- Huang, X.; Zeng, X.; Han, R. Dynamic Inertia Weight Binary Bat Algorithm with Neighborhood Search. Comput. Intell. Neurosci. 2017, 2017, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akram, P.S.; Ramana, T.V. Mobile aided improved trilateral localization by adopting random way point pattern. ARPN J. Eng. Appl. Sci. 2017, 12, 6080–6086. [Google Scholar]
- Goyal, S.; Patterh, M.S. Modified Bat Algorithm for Localization of Wireless Sensor Network. Wirel. Pers. Commun. 2016, 86, 657–670. [Google Scholar] [CrossRef]
- Li, Z.-W.; Wang, L.-J. Population Distribution-based Self-adaptive Differential Evolution Algorithm. Comp. Sci. 2020, 47, 180–185. [Google Scholar]
- Surjanovic, S.; Bingham, D. Virtual Library of Simulation Experiments: Test Functions and Datasets. 2013. Available online: http://www.sfu.ca/~ssurjano (accessed on 31 December 2022).
- Zhou, Z.-Y.; Sun, Z.-Q. Research and Application of Improved Quantum-Behaved Bat Algorithm. Comp. Eng. D 2019, 40, 84–91. [Google Scholar]
- Li, Z.-J. Improved Bat Algorithm Based on Grouping Evolution and Hybrid Optimization. Math. Pr. Th. 2020, 50, 141–149. [Google Scholar]
- Zhao, Z.-G.; Zeng, M.; Mo, H.-m.; Li, Z.-M.; Wen, T. Cooperatively Intelligent Hybrid Bat and Differential Evolution Algorithm. Comp. Eng. D 2020, 41, 402–410. [Google Scholar]
- Zhao, Z.-G.; Lin, Y.-J.; Yi, Z.-Y. A Mean Particle Swarm Optimization Algorithm Based on Adaptive Inertia Weight. Comp. Eng. Sci. 2016, 38, 501–506. [Google Scholar]
- Álvarez, R.; Díez-González, J.; Verde, P.; Ferrero-Guillén, R.; Perez, H. Combined sensor selection and node location optimization for reducing the localization uncertainties in wireless sensor networks. Ad Hoc Netw. 2023, 139, 103036. [Google Scholar] [CrossRef]
No. | Function | Dim. | Parameter Range | Optimum |
---|---|---|---|---|
F1 | Sphere Function | 10 | [−100,100] | 0 |
F2 | Sumsquares Function | 10 | [−10,10] | 0 |
F3 | Schwefel’s Problem 2.22 | 10 | [−10,10] | 0 |
F4 | Table Function | 10 | [−100,100] | 0 |
F5 | Step Function | 10 | [−100,100] | 0 |
F6 | Zakharov Function | 10 | [−5,10] | 0 |
F7 | Rosenbrock Function | 10 | [−5,10] | 0 |
F8 | Dixon-Price Function | 10 | [−10,10] | 0 |
F9 | Sum of Different Powers Function | 10 | [−1,1] | 0 |
F10 | Trid Function | 10 | [−100,100] | −210 |
F11 | Griewank Function | 10 | [−600,600] | 0 |
F12 | Ackley Function | 10 | [−30,30] | 0 |
F13 | Alpine Function | 10 | [−10,10] | 0 |
F14 | Rastrigin Function | 10 | [−5.12,5.12] | 0 |
F15 | Penalized 1 Function | 10 | [−50,50] | 0 |
F16 | Penalized 2 Function | 10 | [−50,50] | 0 |
F17 | Levy Function | 10 | [−10,10] | 0 |
F18 | Michalewicz Function | 10 | [0,π] | −9.6602 |
F19 | Goldstein-Price Function | 2 | [−2,2] | 3 |
F20 | Shubert Function | 2 | [−10,10] | −186.7309 |
F21 | Hartmann 3-D Function | 3 | [0,10] | −3.8628 |
F22 | Six-Hump Camel Function | 2 | [−3,3], [−2,2] | −1.0316 |
No. | QABA (OV) | IQBA (OV) | LMBA (OV) | BADE (OV) | MAWPSO (OV) | DE (OV) | SCA (OV) | BA (OV) |
---|---|---|---|---|---|---|---|---|
F1 | 0.000 | 2.658 × 10−137(−) | 7.060 × 10−29(−) | 4.777 × 10−35(−) | 2.475 × 10−74(−) | 1.024 × 10−7(−) | 1.411 × 10−9(−) | 2.912 × 10−1(−) |
F2 | 0.000 | 9.882 × 10−148(−) | 8.600 × 10−29(−) | 2.089 × 10−38(−) | 6.502 × 10−73(−) | 5.326 × 10−7(−) | 7.317 × 10−8(−) | 1.617 × 100(−) |
F3 | 0.000 | 1.843 × 10−78(−) | 1.743 × 10−15(−) | 4.767 × 10−21(−) | 1.407 × 10−36(−) | 3.070 × 10−4(−) | 8.113 × 10−5(−) | 1.116 × 100(−) |
F4 | 0.000 | 5.902 × 10−145(−) | 1.203 × 10−27(−) | 9.829 × 10−37(−) | 2.553 × 10−71(−) | 4.500 × 10−7(−) | 2.961 × 10−8(−) | 2.077 × 100(−) |
F5 | 2.982 × 10−19 | 3.813 × 10−3(−) | 1.046 × 10−6(−) | 3.920 × 10−2(−) | 4.424 × 10−2(−) | 1.150 × 10−7(−) | 1.830 × 10−1(−) | 4.111 × 10−1(−) |
F6 | 0.000 | 2.767 × 10−151(−) | 9.811 × 10−29(−) | 5.401 × 10−32(−) | 6.410 × 10−74(−) | 1.078 × 102(−) | 2.010 × 10−3(−) | 6.230 × 10−1(−) |
F7 | 1.816 × 10−6 | 8.898 × 100(−) | 3.176 × 10−1(−) | 8.716 × 100(−) | 8.650 × 100(−) | 3.748 × 100(−) | 7.494 × 100(−) | 2.914 × 101(−) |
F8 | 6.322 × 10−2 | 2.426 × 10−1(=) | 2.263 × 10−1(=) | 6.667 × 10−1(=) | 6.733 × 10−1(=) | 1.999 × 10−1(=) | 6.668 × 10−1(=) | 2.342 × 100(=) |
F9 | 0.000 | 6.107 × 10−157(−) | 3.394 × 10−21(−) | 2.748 × 10−40(−) | 2.088 × 10−106(−) | 8.898 × 10−16(−) | 1.362 × 10−18(−) | 1.142 × 10−2(−) |
F10 | −188.7238 | −94.6994(−) | −113.6475(−) | −104.1850(−) | −185.4728(=) | −169.9349(=) | −121.8359(−) | −169.2080(=) |
F11 | 0.000 | 0.000(=) | 0.000(=) | 0.000(=) | 0.000(=) | 1.057 × 10−3(−) | 1.191 × 10−6(−) | 3.485 × 10−2(−) |
F12 | 8.882 × 10−16 | 8.882 × 10−16(=) | 8.882 × 10−16(=) | 8.882 × 10−16(=) | 8.882 × 10−16(=) | 4.984 × 10−4(−) | 1.577 × 10−4(−) | 1.835 × 100(−) |
F13 | 0.000 | 5.506 × 10−70(−) | 7.231 × 10−14(−) | 1.271 × 10−19(−) | 1.571 × 10−37(−) | 1.382 × 10−3(−) | 6.960 × 10−6(−) | 2.632 × 10−1(−) |
F14 | 0.000 | 0.000(=) | 0.000(=) | 3.330 × 100(−) | 0.000(=) | 7.544 × 10−1(−) | 1.006 × 10−4(−) | 2.700 × 101(−) |
F15 | 1.571 × 10−32 | 1.935 × 10−2(−) | 1.010 × 10−6(−) | 5.611 × 10−4(−) | 3.327 × 10−3(−) | 4.763 × 10−9(−) | 1.642 × 10−2(−) | 5.778 × 10−3(−) |
F16 | 1.350 × 10−32 | 3.403 × 10−4(−) | 1.183 × 10−6(−) | 1.938 × 10−2(−) | 2.381 × 10−2(−) | 5.039 × 10−8(−) | 1.500 × 10−1(−) | 5.929 × 10−2(−) |
F17 | 2.004 × 10−23 | 5.680 × 10−3(−) | 8.969 × 10−10(−) | 1.089 × 10−1(−) | 9.429 × 10−2(−) | 1.436 × 10−7(−) | 2.350 × 10−1(−) | 1.466 × 10−1(−) |
F18 | −7.7682 | −5.7369(=) | −4.4415(=) | −5.5666(=) | −5.3906(=) | −8.3623(=) | −3.6644(=) | −5.2025(=) |
F19 | 3.0000 | 3.0009(=) | 3.0000(=) | 3.0000(=) | 3.0000(=) | 3.0000(=) | 3.0000(=) | 3.0034(=) |
F20 | −186.7309 | −186.3490(=) | −186.7309(=) | −186.7309(=) | −186.7309(=) | −186.7309(=) | −186.7109(=) | −186.7272(=) |
F21 | −3.8627 | −3.8039(=) | −3.8540(=) | −3.8628(=) | −3.8627(=) | −3.8628(=) | −3.8615(=) | −3.8566(=) |
F22 | −1.0316 | −1.0136(=) | −1.0316(=) | −1.0316(=) | −1.0316(=) | −1.0316(=) | −1.0316(=) | −1.0316(=) |
No. | QABA (AV/SD) | IQBA (AV/SD) | LMBA (AV/SD) | BADE (AV/SD) | MAWPSO (AV/SD) | DE (AV/SD) | SCA (AV/SD) | BA (AV/SD) |
---|---|---|---|---|---|---|---|---|
F1 | 0.000/0.000 | 2.743 × 10−31/1.480 × 10−30(−) | 4.584 × 10−10/1.570 × 10−9(−) | 8.720 × 10−11/4.154 × 10−10(−) | 6.714 × 10−69/1.927 × 10−68(−) | 5.711 × 10−7/4.067 × 10−7(−) | 9.423 × 10−5/3.783 × 10−4(−) | 9.552 × 10−1/4.532 × 10−1(−) |
F2 | 0.000/0.000 | 1.977 × 10−41/1.060 × 10−40(−) | 4.704 × 10−9/1.950 × 10−8(−) | 7.812 × 10−11/2.978 × 10−10(−) | 2.796 × 10−68/4.605 × 10−68(−) | 2.477 × 10−6/1.360 × 10−6(−) | 1.198 × 10−4/2.805 × 10−4(−) | 5.836 × 100/2.121 × 100(−) |
F3 | 1.301 × 10−309/0.000 | 5.869 × 10−28/3.160 × 10−27(−) | 2.406 × 10−5/5.680 × 10−5(−) | 1.226 × 10−7/3.977 × 10−7(−) | 5.030 × 10−34/1.205 × 10−33(−) | 6.179 × 10−4/2.489 × 10−4(−) | 1.136 × 10−3/1.742 × 10−3(−) | 2.393 × 100/5.264 × 10−1(−) |
F4 | 0.000/0.000 | 1.576 × 10−47/8.490 × 10−47(−) | 9.507 × 10−5/2.190 × 10−4(−) | 2.507 × 10−12/1.067 × 10−11(−) | 1.489 × 10−63/8.017 × 10−63(−) | 3.517 × 10−6/2.347 × 10−6(−) | 3.506 × 10−5/6.369 × 10−5(−) | 8.168 × 100/5.222 × 100(−) |
F5 | 2.819 × 10−9/4.534 × 10−9 | 4.323 × 10−1/4.601 × 10−1(−) | 8.421 × 10−3/1.396 × 10−2(−) | 4.551 × 10−1/2.892 × 10−1(−) | 1.661 × 10−1/1.174 × 10−1(−) | 4.880 × 10−7/2.534 × 10−7(−) | 5.476 × 10−1/1.866 × 10−1(−) | 1.340 × 100/6.187 × 10−1(−) |
F6 | 0.000/0.000 | 1.533 × 10−64/8.250 × 10−64(−) | 1.785 × 10−8/5.157 × 10−8(−) | 7.955 × 10−9/3.032 × 10−8(−) | 1.976 × 10−67/1.010 × 10−66(−) | 2.589 × 102/7.898 × 101(−) | 1.395 × 10−1/2.224 × 10−1(−) | 2.302 × 100/1.370 × 100(−) |
F7 | 1.026 × 10−4/1.957 × 10−4 | 8.911 × 100/5.513 × 10−3(−) | 8.131 × 100/2.113 × 100(−) | 8.927 × 100/4.513 × 10−2(−) | 8.880 × 100/8.114 × 10−2(−) | 2.323 × 101/1.317 × 101(−) | 8.658 × 100/1.636 × 100(−) | 1.008 × 102/4.561 × 101(−) |
F8 | 1.791 × 10−1/5.924 × 10−2 | 3.626 × 10−1/1.604 × 10−1(=) | 2.748 × 10−1/4.146 × 10−2(=) | 9.245 × 10−1/9.194 × 10−2(=) | 7.256 × 10−1/5.103 × 10−2(=) | 1.179 × 100/1.861 × 100(=) | 7.717 × 10−1/3.806 × 10−1(=) | 9.981 × 100/6.783 × 100(=) |
F9 | 0.000/0.000 | 1.992 × 10−54/1.070 × 10−53(−) | 2.817 × 10−9/1.172 × 10−8(−) | 3.252 × 10−18/1.746 × 10−17(−) | 4.951 × 10−100/1.473 × 10−99(−) | 8.163 × 10−12/1.818 × 10−11(−) | 7.740 × 10−7/4.136 × 10−6(−) | 2.295 × 10−1/2.039 × 10−1(−) |
F10 | −146.5176/1.435 × 101 | −80.9237/8.899 × 100(−) | −94.1017/5.741 × 100(−) | −36.3750/2.365 × 101(−) | −133.8308/3.389 × 101(−) | −149.5293/1.344 × 101(=) | −103.4097/9.065 × 100(−) | −118.8001/2.131 × 101(−) |
F11 | 0.000/0.000 | 0.000/0.000(=) | 6.655 × 10−11/1.719 × 10−10(−) | 5.361 × 10−13/2.592 × 10−12(−) | 0.000/0.000(=) | 2.484 × 10−2/1.632 × 10−2(−) | 1.328 × 10−1/1.347 × 10−1(−) | 1.207 × 10−1/4.767 × 10−2(−) |
F12 | 8.882 × 10−16/0.000 | 8.882 × 10−16/0.000(=) | 3.260 × 10−5/9.776 × 10−5(−) | 2.810 × 10−1/7.249 × 10−1(−) | 3.849 × 10−15/1.324 × 10−15(=) | 1.096 × 10−3/3.228 × 10−4(−) | 5.621 × 10−3/1.062 × 10−2(−) | 2.727 × 100/4.061 × 10−1(−) |
F13 | 1.785 × 10−306/0.000 | 6.224 × 10−19/2.650 × 10−18(−) | 5.990 × 10−5/2.306 × 10−4(−) | 3.797 × 10−3/4.400 × 10−3(−) | 2.495 × 10−4/1.343 × 10−3(−) | 3.305 × 10−3/1.167 × 10−3(−) | 3.449 × 10−3/3.368 × 10−3(−) | 9.019 × 10−1/4.235 × 10−1(−) |
F14 | 0.000/0.000 | 0.000/0.000(=) | 1.047 × 10−5/5.512 × 10−5(−) | 3.051 × 101/1.320 × 101(−) | 2.003 × 101/1.089 × 101(−) | 2.381 × 100/1.000 × 100(−) | 8.960 × 100/1.191 × 101(−) | 5.209 × 101/1.025 × 101(−) |
F15 | 2.269 × 10−19/1.220 × 10−18 | 1.384 × 10−1/8.445 × 10−2(−) | 4.299 × 10−3/5.766 × 10−3(−) | 1.935 × 10−2/2.142 × 10−2(−) | 2.848 × 10−2/2.751 × 10−2(−) | 2.525 × 10−8/2.233 × 10−8(−) | 4.023 × 10−2/2.016 × 10−2(−) | 3.643 × 10−2/2.248 × 10−2(−) |
F16 | 7.400 × 10−16/3.980 × 10−15 | 2.712 × 10−1/2.117 × 10−1(−) | 5.277 × 10−2/7.577 × 10−2(−) | 3.315 × 10−1/7.577 × 10−2(−) | 1.620 × 10−1/1.078 × 10−1(−) | 5.761 × 10−7/8.659 × 10−7(−) | 3.632 × 10−1/9.188 × 10−2(−) | 2.373 × 10−1/8.140 × 10−2(−) |
F17 | 4.284 × 10−8/1.030 × 10−7 | 5.167 × 10−1/3.457 × 10−1(−) | 1.985 × 10−2/2.812 × 10−2(−) | 4.691 × 10−1/1.901 × 10−1(−) | 2.793 × 10−1/9.907 × 10−2(−) | 5.615 × 10−7/3.630 × 10−7(−) | 4.730 × 10−1/1.124 × 10−1(−) | 4.286 × 10−1/1.629 × 10−1(−) |
F18 | −5.7820/1.101 × 100 | −2.5298/7.607 × 10−1(=) | −3.6944/5.159 × 10−1(=) | −3.6952/9.096 × 10−1(=) | −3.6069/7.455 × 10−1(=) | −7.7391/2.998 × 10−1(=) | −3.2484/2.458 × 10−1(=) | −3.5756/6.495 × 10−1(=) |
F19 | 3.0093/3.135 × 10−2 | 22.4502/2.025 × 101(−) | 11.6056/1.236 × 101(−) | 12.0056/2.124 × 101(−) | 3.9032/4.846 × 100(=) | 3.0034/1.829 × 10−2(=) | 3.0011/2.397 × 10−3(=) | 5.2367/6.072 × 100(=) |
F20 | −186.7307/5.618 × 10−4 | −142.4349/4.594 × 101(−) | −186.2162/9.798 × 10−1(=) | −164.2457/3.054 × 101(=) | −183.0969/1.925 × 101(=) | −186.7268/7.362 × 10−3(=) | −185.7394/1.058 × 100(=) | −179.5836/1.088 × 101(=) |
F21 | −3.8615/1.097 × 10−3 | −2.5718/8.506 × 10−1(=) | −3.4375/3.661 × 10−1(=) | −3.5619/4.712 × 10−1(=) | −3.8166/7.504 × 10−2(=) | −3.8628/5.099 × 10−10(=) | −3.8284/2.767 × 10−2(=) | −3.4144/4.684 × 10−1(=) |
F22 | −1.0316/1.970 × 10−7 | −0.9460/1.001 × 10−1(=) | −1.0316/1.384 × 10−4(=) | −1.0068/9.946 × 10−2(=) | −1.0316/5.019 × 10−5(=) | −1.0316/6.906 × 10−15(=) | −1.0315/1.411 × 10−4(=) | −1.0260/1.215 × 10−2(=) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, S.; Zhu, J.; Lv, C. A Quantum Annealing Bat Algorithm for Node Localization in Wireless Sensor Networks. Sensors 2023, 23, 782. https://doi.org/10.3390/s23020782
Yu S, Zhu J, Lv C. A Quantum Annealing Bat Algorithm for Node Localization in Wireless Sensor Networks. Sensors. 2023; 23(2):782. https://doi.org/10.3390/s23020782
Chicago/Turabian StyleYu, Shujie, Jianping Zhu, and Chunfeng Lv. 2023. "A Quantum Annealing Bat Algorithm for Node Localization in Wireless Sensor Networks" Sensors 23, no. 2: 782. https://doi.org/10.3390/s23020782
APA StyleYu, S., Zhu, J., & Lv, C. (2023). A Quantum Annealing Bat Algorithm for Node Localization in Wireless Sensor Networks. Sensors, 23(2), 782. https://doi.org/10.3390/s23020782