Health-Related Telemonitoring Parameters/Signals of Older Adults: An Umbrella Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Eligibility Criteria
2.2. Search Strategy
2.3. Data Collection and Analysis
2.3.1. Selection Process and Data Extraction
2.3.2. Methodological Quality Assessment
3. Results
3.1. Searched Databases by the Studies
3.2. General Characterization of the Studies: Country Origin, Included Types of Study, and Their Methodological Quality
3.3. Characteristics of the Studies’ Participants
3.4. Health-Related Biological Signals and Body Regions
3.5. Sensor Types for Biological Signals Measurement
3.6. Psychometric Properties
3.7. Environmental Signals
3.7.1. Sensor Types Used to Measure the Environmental Signals
3.7.2. Location of the Measurement of the Environmental Signals
3.7.3. Psychometric Properties of Sensors Used to Measure the Environmental Signals
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Correction Statement
Abbreviations
BT | body temperature |
HR | heart rate |
RR | respiratory rate |
BP | blood pressure |
StO2 | pulse oxygenation |
BG | blood glucose |
PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analyses |
JF and JM | reviewers |
ASP | reviewer consulted in case of doubt |
AMSTAR | Assessing the Methodological Quality of Systematic Reviews 2.0 |
OBS | observational |
USA | United States of America |
UK | United Kingdom |
RCT | randomized control trial |
nRCT | non-randomized control trial |
CSS | cross-sectional |
CC | case control |
CO | cross over |
PRO | prospective |
CS | case series |
* | development of a monitoring system |
n | number of studies |
- | not reported |
PA | physical activity |
ECG | echocardiography |
IT | information technology |
AF | atrial fibrillation |
CGM | continuous glucose monitoring |
RPM | remote patient monitoring |
F | free-living |
C | controlled |
H | hospitalized |
CHD | coronary heart disease |
COPD | chronic obstructive pulmonary disease |
SD | standard deviation |
SB | sedentary behavior |
METs | metabolic equivalent of task |
cpm | counts per minute |
VA | vertical axis |
VM | vertical magnitude |
bpm | beats per minute |
GPS | global positioning system |
IMUs | inertial motion units |
FEV1 | first second of forced expiration |
ICC | intraclass coefficient correlation |
r | coefficient correlation |
Phy | physiological monitoring |
Fx | functional monitoring |
Em | emergency detection |
SaSe | safety/security monitoring |
TV | television |
Appendix A. Search String by Database
Pubmed OLDER ADULTS (“aged”[MeSH Terms] OR “aged”[Title/Abstract] OR “elder*”[Title/Abstract] OR “aged, 80 and over”[MeSH Terms] OR “older adult*”[Title/Abstract] OR “older person*”[Title/Abstract] OR “centenarian*”[Title/Abstract] OR “nonagenarian*”[Title/Abstract] OR “octogenarian*”[Title/Abstract]) BIOLOGICAL AND ENVIRONMENTAL SIGNALS (“Vital Signals”[MeSH Terms] OR vital[Title/Abstract] OR “vital sign*”[Title/Abstract] OR “vital function*”[Title/Abstract] OR “vital parameter*”[Title/Abstract] OR “biological sign*” [Title/Abstract] OR “physical activity”[Title/Abstract] OR “sedentary behavior”[MeSH Terms] OR “sedentary behavior”[Title/Abstract] OR “cardiorespiratory fitness”[MeSH Terms] OR “cardiorespiratory fitness”[Title/Abstract] OR “electrocardiography”[MeSH Terms] OR “electrocardiography”[Title/Abstract] OR “blood glucose”[MeSH Terms] OR “blood glucose”[Title/Abstract] OR “galvanic skin response”[MeSH Terms] OR “galvanic skin response”[Title/Abstract] OR “oximetry”[MeSH Terms] OR “oximetry”[Title/Abstract] OR “Humidity”[MeSH Terms] OR “humidity”[Title/Abstract] OR “Temperature”[MeSH Terms] OR “temperature”[Title/Abstract] OR “lighting”[MeSH Terms] OR “lighting”[Title/Abstract]) TELEMONITORING (“wearable electronic devices”[MeSH Terms] OR “wearable electronic devices” [Title/Abstract] OR “wearable devices”[Title/Abstract] OR “wearable technology”[Title/Abstract] OR “sensor”[Title/Abstract] OR “device*”[Title/Abstract] OR “wearable”[Title/Abstract] OR Internet of Things[MeSH Terms] OR “Internet of Things”[Title/Abstract] OR “Remote continuous monitoring”[Title/Abstract] OR “wireless device”[Title/Abstract] OR “patch”[Title/Abstract] OR “appliance”[Title/Abstract] OR “portable”[Title/Abstract] OR “Monitoring, Physiologic”[MeSH Terms] OR “Monitoring, Physiologic”[Title/Abstract] OR “tracker*”[Title/Abstract] OR “Environmental Monitoring”[MeSH Terms] OR “Environmental Monitoring” [Title/Abstract] OR “Environmental Quality” [Title/Abstract]) STUDY DESIGN “Review”[Publication Type] OR “Review” [Title/Abstract] OR “review literature as topic”[MeSH Terms] OR “Systematic review”[Publication Type] OR “Systematic reviews as topic”[MeSH Terms] OR “systematic review”[Title/Abstract] OR “Meta-Analysis”[Publication Type] OR “Meta analysis as Topic”[MeSH Terms] OR “Meta analysis”[Title/Abstract] OR “Meta-analysis as Topic”[MeSH Terms] |
COCHRANE DATABASE OF SYSTEMATIC REVIEWS Search Hits #1MeSH descriptor: [Aged] explode all trees 215061 #2”elder*”:ti,ab,kw 60362 #3MeSH descriptor: [Aged, 80 and over] explode all trees 54685 #4”older adult*”:ti,ab,kw 983 #5”older person*”:ti,ab,kw 142 #6”centenarian*”:ti,ab,kw 6 #7”nonagenarian*”:ti,ab,kw 5 #8”octogenarian*”:ti,ab,kw 31 #9#1 OR #2 OR #3 OR #4 OR #5 OR #6 OR #7 OR #8 259899 #10MeSH descriptor: [Vital Signals] explode all trees 37510 #11”vital”:ti,ab,kw 28486 #12”vital sign*”:ti,ab,kw 4493 #13”vital function*”:ti,ab,kw 9 #14”vital parameter*”:ti,ab,kw 11 #15”biological sign*”:ti,ab,kw 1 #16”physical activity”:ti,ab,kw 34481 #17”sedentary behavior”:ti,ab,kw 2372 #18”cardiorespiratory fitness”:ti,ab,kw 2297 #19MeSH descriptor: [Sedentary Behavior] explode all trees 1240 #20MeSH descriptor: [Cardiorespiratory Fitness] explode all trees 345 #21MeSH descriptor: [Electrocardiography] explode all trees 8928 #22”Electrocardiography”:ti,ab,kw 12256 #23MeSH descriptor: [Blood Glucose] explode all trees 16796 #24”blood glucose”:ti,ab,kw 32059 #25”galvanic skin response”:ti,ab,kw 782 #26MeSH descriptor: [Galvanic Skin Response] explode all trees 659 #27MeSH descriptor: [Oximetry] explode all trees 1049 #28”oximetry”:ti,ab,kw 4106 #29MeSH descriptor: [Humidity] explode all trees 549 #30humidity:ti,ab,kw 1753 #31MeSH descriptor: [Temperature] explode all trees 4530 #32”temperature”:ti,ab,kw 22891 #33MeSH descriptor: [Lighting] explode all trees 240 #34”lighting”:ti,ab,kw 820 #35#10 OR #11 OR #12 OR #13 OR #14 OR #15 OR #16 OR #17 OR #18 OR #19 #20 OR #21 OR #22 OR #23 OR #24 OR #25 OR #26 OR #27 OR #28 OR #29 OR #30 OR #31 OR #32 OR #33 OR #34 158303 #36MeSH descriptor: [Wearable Electronic Devices] explode all trees 521 #37”wearable electronic devices”:ti,ab,kw 109 #38”wearable technology”:ti,ab,kw 102 #39”sensor”:ti,ab,kw 3640 #40”device*”:ti,ab,kw 47770 #41”wearable”:ti,ab,kw 1430 #42MeSH descriptor: [Internet of Things] explode all trees 1 #43”Internet of Things”:ti,ab,kw 46 #44”Remote continuous monitoring”:ti,ab,kw 3 #45”wireless device”:ti,ab,kw 27 #46”patch”:ti,ab,kw 6815 #47”appliance”:ti,ab,kw 2083 #48”portable”:ti,ab,kw 3418 #49”sensor”:ti,ab,kw 3640 #50MeSH descriptor: [Monitoring, Physiologic] explode all trees 12705 #51”Monitoring, Physiologic”:ti,ab,kw 2321 #52”tracker*”:ti,ab,kw 872 #53MeSH descriptor: [Environmental Monitoring] explode all trees 280 #54”Environmental Monitoring”:ti,ab,kw 230 #55Environmental Quality:ti,ab,kw 2862 #56#36 OR #37 OR #38 OR #39 OR #40 OR #41 OR #42 OR #43 OR #44 OR #45 OR #46 OR #47 OR #48 OR #49 OR #50 OR #51 OR #52 OR #53 OR #54 OR #55 76944 #57 #9 AND #35 AND #56 with Cochrane Library publication date from Jan 2016 to present, in Cochrane Reviews 19 |
WEB OF SCIENCE TS=Topic Searches for topic terms in the following fields within a record. Title Abstract Author Keywords Keywords Plus® OLDER ADULTS TS=(“aged” OR “elder*” OR “older adult*” OR “older person*” OR “centenarian*” OR “nonagenarian*” OR “octogenarian*”) BIOLOGICAL AND ENVIRONMENTAL SIGNALS TS=(“vital” OR “vital sign*” OR “vital function*” OR “vital parameter*” OR “biological sign*” OR “physical activity” OR “sedentary behavior” OR “cardiorespiratory fitness” OR “electrocardiography” OR “blood glucose” OR “galvanic skin response” OR “oximetry” OR “humidity” OR “temperature” OR “lighting”) TELEMONITORING TS=(“wearable electronic devices” OR “wearable devices” OR “wearable technology” OR “sensor” OR “device*” OR “wearable” OR “Internet of Things” OR “Remote continuous monitoring” OR “wireless device” OR “patch” OR “appliance” OR “portable” OR “sensor” OR “Monitoring, Physiologic” OR “tracker*” OR “Environmental Monitoring” OR “Environmental Quality”) STUDY DESIGN TS=(“Review” OR “systematic review”[Title/Abstract] OR “Meta analysis” String Final (((TS=((“aged” OR “elder*” OR “older adult*” OR “older person*” OR “centenarian*” OR “nonagenarian*” OR “octogenarian*”))) AND TS=((“vital” OR “vital sign*” OR “vital function*” OR “vital parameter*” OR “biological sign*” OR “physical activity” OR “sedentary behavior” OR “cardiorespiratory fitness” OR “electrocardiography” OR “blood glucose” OR “galvanic skin response” OR “oximetry” OR “humidity” OR “temperature” OR “lighting”))) AND TS=((“wearable electronic devices” OR “wearable devices” OR “wearable technology” OR “sensor” OR “device*” OR “wearable” OR “Internet of Things” OR “Remote continuous monitoring” OR “wireless device” OR “patch” OR “appliance” OR “portable” OR “sensor” OR “Monitoring, Physiologic” OR “tracker*” OR “Environmental Monitoring” OR “Environmental Quality”))) AND TS=((“Review” OR “systematic review”[Title/Abstract] OR “Meta analysis”)) |
JBI DATABASE OF SYSTEMATIC REVIEWS AND IMPLEMENTATION REPORTS Population aged.sh. or aged.ab. or elder*.ab. or (aged, 80 and over).sh. or older adult*.ab. or older person*.ab. or centenarian*.ab. or nonagenarian*.ab. or octogenerian*.ab. or aged.ti. or elder*.ti. or older adult*.ti. or older person*.ti. or centenarian*.ti. or nonagenerian*.ti. or octagenerian*.ti. Signals “Vital signals”.sh. or Vital.ti. or Vital.ab. or “Vital sign*”.ti. or “Vital sign*”.ab. or Vital function*.ti. or Vital funciton*.ab. or Vital parameter*.ti. or Vital parameter*.ti. or Biological sign*.ti. or Biological sign*.ab. or Physical activity.ti. or Physical activity.ab. or Sedentary Behavior.sh. or Sedentary Behavior.ti. or Cardiorespiratory fitness.sh. or Cardiorespiratory fitness.ti. or blood glucose.sh. or blood glucose.ti. or galvanic skin response.sh. or galvanic skin response.ti. or oximetry.sh. or humidity.sh. or temperature.sh. or temperature.ti. or lighting.sh. or lighting.ti. or Sedentary Behavior.ab. or eletrocardiography.sh. or eletrocardiography.ti. or eletrocardiography.ab. or oximetry.ti. or oximetry.ab. or Cardiorespiratory fitness.ab. or blood glucose.ab. or galvanic skin response.ab. or humidity.ti. or humidity.ab. or temperature.ab. or lighting.ab Telemonitoring wearable electronic devices.sh. or wearable electronic devices.ti. or wearable electronic devices.ab. or wearable devices.ti. or wearable devices.ab. or wearable technology.ti. or wearable technology.ab. or sensor.ti. or sensor.ab. or device*.ti. or device*.ab. or wearable.ti. or wearable.ab. or internet of things.sh. or internet of things.ti. or internet of things.ab. or remote continuous monitoring.ti. or remote continuous monitoring.ab. or wireless device.ti. or wireless device.ab. or patch.ti. or patch.ab. or appliance.ti. or appliance.ab. or portable.ti. or portable.ab. or Monitoring, physiologic.sh. or Monitoring, physiologic.ab. or Monitoring, physiologic.ti. or tracker*.ti. or tracker*.ab. or environmental monitoring.sh. or environmental monitoring.ab. or environmental monitoring.ab. or environmental quality.ab. or environmental quality.ti. Publication type review.pt. or review.ti. or review.ab. or review literature as topic.sh. or systematic review.pt. or systematic reviews as topic.sh. or systematic review.ab. or systematic review.ti. or meta-analysis.pt. or meta-analysis as topic.ab. or meta-analysis as topic.sh. or meta-analysis as topic.ti (aged.sh. or aged.ab. or elder*.ab. or (aged, 80 and over).sh. or older adult*.ab. or older person*.ab. or centenarian*.ab. or nonagenarian*.ab. or octogenerian*.ab. or aged.ti. or elder*.ti. or older adult*.ti. or older person*.ti. or centenarian*.ti. or nonagenerian*.ti. or octagenerian*.ti.) AND (“Vital signals”.sh. or Vital.ti. or Vital.ab. or “Vital sign*”.ti. or “Vital sign*”.ab. or Vital function*.ti. or Vital funciton*.ab. or Vital parameter*.ti. or Vital parameter*.ti. or Biological sign*.ti. or Biological sign*.ab. or Physical activity.ti. or Physical activity.ab. or Sedentary Behavior.sh. or Sedentary Behavior.ti. or Cardiorespiratory fitness.sh. or Cardiorespiratory fitness.ti. or blood glucose.sh. or blood glucose.ti. or galvanic skin response.sh. or galvanic skin response.ti. or oximetry.sh. or humidity.sh. or temperature.sh. or temperature.ti. or lighting.sh. or lighting.ti. or Sedentary Behavior.ab. or eletrocardiography.sh. or eletrocardiography.ti. or eletrocardiography.ab. or oximetry.ti. or oximetry.ab. or Cardiorespiratory fitness.ab. or blood glucose.ab. or galvanic skin response.ab. or humidity.ti. or humidity.ab. or temperature.ab. or lighting.ab.) AND (wearable electronic devices.sh. or wearable electronic devices.ti. or wearable electronic devices.ab. or wearable devices.ti. or wearable devices.ab. or wearable technology.ti. or wearable technology.ab. or sensor.ti. or sensor.ab. or device*.ti. or device*.ab. or wearable.ti. or wearable.ab. or internet of things.sh. or internet of things.ti. or internet of things.ab. or remote continuous monitoring.ti. or remote continuous monitoring.ab. or wireless device.ti. or wireless device.ab. or patch.ti. or patch.ab. or appliance.ti. or appliance.ab. or portable.ti. or portable.ab. or Monitoring, physiologic.sh. or Monitoring, physiologic.ab. or Monitoring, physiologic.ti. or tracker*.ti. or tracker*.ab. or environmental monitoring.sh. or environmental monitoring.ab. or environmental monitoring.ab. or environmental quality.ab. or environmental quality.ti. |
References
- Chandrasekaran, R.; Katthula, V.; Moustakas, E. Too Old for Technology? Use of Wearable Healthcare Devices by Older Adults and Their Willingness to Share Health Data with Providers. Health Inform. J. 2021, 27, 14604582211058073. [Google Scholar] [CrossRef] [PubMed]
- Maric, B.; Kaan, A.; Ignaszewski, A.; Lear, S.A. A Systematic Review of Telemonitoring Technologies in Heart Failure. Eur. J. Heart Fail. 2009, 11, 506–517. [Google Scholar] [CrossRef]
- Takahashi, P.Y.; Pecina, J.L.; Upatising, B.; Chaudhry, R.; Shah, N.D.; Van Houten, H.; Cha, S.; Croghan, I.; Naessens, J.M.; Hanson, G.J. A Randomized Controlled Trial of Telemonitoring in Older Adults with Multiple Health Issues to Prevent Hospitalizations and Emergency Department Visits. Arch. Intern. Med. 2012, 172, 773–779. [Google Scholar] [CrossRef] [PubMed]
- Ometov, A.; Shubina, V.; Klus, L.; Skibińska, J.; Saafi, S.; Pascacio, P.; Flueratoru, L.; Gaibor, D.Q.; Chukhno, N.; Chukhno, O.; et al. A Survey on Wearable Technology: History, State-of-the-Art and Current Challenges. Comput. Netw. 2021, 193, 108074. [Google Scholar] [CrossRef]
- Mansouri, S. The Development of the Vital Signs Tele-Monitoring System for the Elderly by Using ‘UML’ Language and the Interoperability Standard ‘Continua’. Open Bioinform. J. 2020, 13, 92–105. [Google Scholar] [CrossRef]
- Loureiro, A.; Ferreira, A.; Figueiredo, J.; Simões, H. Qualidade Do Ar Interior Em Lares de Idosos e Seus Efeitos Na Saúde Dos Trabalhadores. Rev. Port. Saúde Ocup. 2017, 3, 82–100. [Google Scholar] [CrossRef]
- Kivimäki, T.; Stolt, M.; Charalambous, A.; Suhonen, R. Safety of Older People at Home: An Integrative Literature Review. Int. J. Older People Nurs. 2020, 15, e12285. [Google Scholar] [CrossRef]
- Szanton, S.L.; Roth, J.; Nkimbeng, M.; Savage, J.; Klimmek, R. Improving Unsafe Environments to Support Aging Independence with Limited Resources. Nurs. Clin. N. Am. 2014, 49, 133–145. [Google Scholar] [CrossRef]
- Kerr, J.; Rosenberg, D.; Frank, L. The Role of the Built Environment in Healthy Aging: Community Design, Physical Activity, and Health among Older Adults. J. Plan. Lit. 2012, 27, 43–60. [Google Scholar] [CrossRef]
- van den Berg, N.; Schumann, M.; Kraft, K.; Hoffmann, W. Telemedicine and Telecare for Older Patients—A Systematic Review. Maturitas 2012, 73, 94–114. [Google Scholar] [CrossRef]
- Leenen, J.P.L.; Leerentveld, C.; van Dijk, J.D.; van Westreenen, H.L.; Schoonhoven, L.; Patijn, G.A. Current Evidence for Continuous Vital Signs Monitoring by Wearable Wireless Devices in Hospitalized Adults: Systematic Review. J. Med Internet Res. 2020, 22, e18636. [Google Scholar] [CrossRef] [PubMed]
- Chester, J.G.; Rudolph, J.L. Vital Signs in Older Patients: Age-Related Changes. J. Am. Med. Dir. Assoc. 2011, 12, 337–343. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Yang, Z.; Dong, T. A Review of Wearable Technologies for Elderly Care That Can Accurately Track Indoor Position, Recognize Physical Activities and Monitor Vital Signs in Real Time. Sensors 2017, 17, 341. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Aromataris, E.; Fernandez, R.; Godfrey, C.M.; Holly, C.; Khalil, H.; Tungpunkom, P. Summarizing Systematic Reviews: Methodological Development, Conduct and Reporting of an Umbrella Review Approach. Int. J. Evid.-Based Healthc. 2015, 13, 132–140. [Google Scholar] [CrossRef] [PubMed]
- Shea, B.J.; Reeves, B.C.; Wells, G.; Thuku, M.; Hamel, C.; Moran, J.; Moher, D.; Tugwell, P.; Welch, V.; Kristjansson, E.; et al. AMSTAR 2: A Critical Appraisal Tool for Systematic Reviews That Include Randomised or Non-Randomised Studies of Healthcare Interventions, or Both. BMJ 2017, 358, j4008. [Google Scholar] [CrossRef]
- Lim, S.E.R.; Ibrahim, K.; Sayer, A.A.; Roberts, H.C. Assessment of Physical Activity of Hospitalised Older Adults: A Systematic Review. J. Nutr. Health Aging 2018, 22, 377–386. [Google Scholar] [CrossRef]
- Dasenbrock, L.; Heinks, A.; Schwenk, M.; Bauer, J.M. Technology-Based Measurements for Screening, Monitoring and Preventing Frailty. Z. Gerontol. Geriatr. 2016, 49, 581–595. [Google Scholar] [CrossRef]
- Kristoffersson, A.; Lindén, M. A Systematic Review on the Use of Wearable Body Sensors for Health Monitoring: A Qualitative Synthesis. Sensors 2020, 20, 1502. [Google Scholar] [CrossRef]
- Moore, K.; O’Shea, E.; Kenny, L.; Barton, J.; Tedesco, S.; Sica, M.; Crowe, C.; Alamäki, A.; Condell, J.; Nordström, A.; et al. Older Adults’ Experiences with Using Wearable Devices: Qualitative Systematic Review and Meta-Synthesis. JMIR mHealth uHealth 2021, 9, e23832. [Google Scholar] [CrossRef]
- Clark, C.E.; McDonagh, S.T.J.; McManus, R.J. Accuracy of Automated Blood Pressure Measurements in the Presence of Atrial Fibrillation: Systematic Review and Meta-Analysis. J. Hum. Hypertens. 2019, 33, 352–364. [Google Scholar] [CrossRef]
- Mattishent, K.; Loke, Y.K. Detection of Asymptomatic Drug-Induced Hypoglycemia Using Continuous Glucose Monitoring in Older People—Systematic Review. J. Diabetes Complicat. 2018, 32, 805–812. [Google Scholar] [CrossRef] [PubMed]
- Vavasour, G.; Giggins, O.M.; Doyle, J.; Kelly, D. How Wearable Sensors Have Been Utilised to Evaluate Frailty in Older Adults: A Systematic Review. J. Neuroeng. Rehabil. 2021, 18, 112. [Google Scholar] [CrossRef]
- Wang, J.; Spicher, N.; Warnecke, J.M.; Haghi, M.; Schwartze, J.; Deserno, T.M. Unobtrusive Health Monitoring in Private Spaces: The Smart Home. Sensors 2021, 21, 864. [Google Scholar] [CrossRef] [PubMed]
- Bezold, J.; Krell-Roesch, J.; Eckert, T.; Jekauc, D.; Woll, A. Sensor-Based Fall Risk Assessment in Older Adults with or without Cognitive Impairment: A Systematic Review. Eur. Rev. Aging Phys. Act. 2021, 18, 15. [Google Scholar] [CrossRef] [PubMed]
- Prasitlumkum, N.; Cheungpasitporn, W.; Chokesuwattanaskul, A.; Thangjui, S.; Thongprayoon, C.; Bathini, T.; Vallabhajosyula, S.; Kanitsoraphan, C.; Leesutipornchai, T.; Chokesuwattanaskul, R. Diagnostic Accuracy of Smart Gadgets/Wearable Devices in Detecting Atrial Fibrillation: A Systematic Review and Meta-Analysis. Arch. Cardiovasc. Dis. 2021, 114, 4–16. [Google Scholar] [CrossRef]
- Olson, M.; Lockhart, T. Predicting Fall Risk Through Automatic Wearable Monitoring. Int. J. Progn. Health Manag. 2021, 12, 1–15. [Google Scholar] [CrossRef]
- Vegesna, A.; Tran, M.; Angelaccio, M.; Arcona, S. Remote Patient Monitoring via Non-Invasive Digital Technologies: A Systematic Review. Telemed. e-Health 2017, 23, 3–17. [Google Scholar] [CrossRef]
- Feehan, L.M.; Geldman, J.; Sayre, E.C.; Park, C.; Ezzat, A.M.; Yoo, Y.; Hamilton, C.B.; Li, L.C. Accuracy of Fitbit Devices: Systematic Review and Narrative Syntheses of Quantitative Data. JMIR mHealth uHealth 2018, 6, e10527. [Google Scholar] [CrossRef]
- Straiton, N.; Alharbi, M.; Bauman, A.; Neubeck, L.; Gullick, J.; Bhindi, R.; Gallagher, R. The Validity and Reliability of Consumer-Grade Activity Trackers in Older, Community-Dwelling Adults: A Systematic Review. Maturitas 2018, 112, 85–93. [Google Scholar] [CrossRef]
- Alharbi, M.; Straiton, N.; Smith, S.; Neubeck, L.; Gallagher, R. Data Management and Wearables in Older Adults: A Systematic Review. Maturitas 2019, 124, 100–110. [Google Scholar] [CrossRef]
- Heesch, K.C.; Hill, R.L.; Aguilar-Farias, N.; van Uffelen, J.G.Z.; Pavey, T. Validity of Objective Methods for Measuring Sedentary Behaviour in Older Adults: A Systematic Review. Int. J. Behav. Nutr. Phys. Act. 2018, 15, 119. [Google Scholar] [CrossRef]
- Khan, A.; Raza, Q.; Ansari, B.; Farhad, A. Impact of Activity Monitors on Quantification of Physical Activity-A Systematic Review & Meta-Analysis. Indo Am. J. Pharm. Sci. 2019, 6, 3400–3411. [Google Scholar]
- Revathi, K.; Samydurai, A.; Saravana Kumar, N.; Keerthana, K. Health Trackers in Current Market: A Systematic Review, Trends and Challenges; Health Trackers in Current Market: A Systematic Review, Trends and Challenges. In Proceedings of the 2019 5th International Conference on Advanced Computing & Communication Systems (ICACCS), Coimbatore, India, 15–16 March 2019. [Google Scholar]
- Creighton, H. Europe’s Ageing Demography; International Longevity Centre: London, UK, 2014. [Google Scholar]
- Eurostat. Ageing Europe—Looking at the Lives of Older People in the EU; Eurostat: Luxembourg, 2020; ISBN 978-92-76-21520-2. [Google Scholar]
- Courtin, E.; Knapp, M. Social Isolation, Loneliness and Health in Old Age: A Scoping Review. Health Soc. Care Community 2017, 25, 799–812. [Google Scholar] [CrossRef] [PubMed]
- United Nations. Agenda 2030 Para o Desenvolvimento Sustentável; United Nations: New York, NY, USA, 2015. [Google Scholar]
- Nossa, P.N. Aging, Financing, and Innovation in the Health Care System: A Necessary Discussion to Maintain the Right to Health. Saude E Soc. 2020, 29, 1–14. [Google Scholar] [CrossRef]
- Carvalho, I.A.; Epping-Jordan, J.A.; Pot, A.M.; Kelley, E.; Toro, N.; Thiyagarajan, J.A.; Beard, J.R. Organizing Integrated Health-Care Services to Meet Older People’s Needs. Bull. World Health Organ. 2017, 95, 756–763. [Google Scholar] [CrossRef] [PubMed]
- Nações Unidas-Brasil. Quatro Em Cada Cinco Países Investem Menos de 1% Do PIB Em Pesquisa Científica; UNESCO: Paris, France, 2021. [Google Scholar]
- Bramer, W.M.; Rethlefsen, M.L.; Kleijnen, J.; Franco, O.H. Optimal Database Combinations for Literature Searches in Systematic Reviews: A Prospective Exploratory Study. Syst. Rev. 2017, 6, 245. [Google Scholar] [CrossRef] [PubMed]
- Santana, C.; Raymundo, T.; Santana, M.; Silva, D.; Elui, V.; Marques, P. The Use of Health-Monitoring Devices by Elderly in the Household. Rev. Bras. Geriatr. Gerontol. 2014, 17, 383–393. [Google Scholar] [CrossRef]
- Teixeira, C.C.; Boaventura, R.P.; Souza, A.C.S.; Paranaguá, T.T.d.B.; Bezerra, A.L.Q.; Bachion, M.M.; Brasil, V.V. Vital Signs Measurement: An Indicator of Safe Care Delivered to Elderly Patients. Texto E Contexto Enferm. 2015, 24, 1071–1078. [Google Scholar] [CrossRef]
- Wolf, L. How Normal Are “Normal Vital Signs”? Effective Triage of the Older Patient. J. Emerg. Nurs. 2007, 33, 587–589. [Google Scholar] [CrossRef]
- Batla, A.; Stamelou, M.; Edwards, M.J.; Pareés, I.; Saifee, T.A.; Fox, Z.; Bhatia, K.P. Functional Movement Disorders Are Not Uncommon in the Elderly. Mov. Disord. 2013, 28, 540–543. [Google Scholar] [CrossRef] [PubMed]
- Lins-Filho, O.d.L.; Braga, M.M.; de Lima, T.M.; Ferreira, D.K.d.S. Low Level of Physical Activity and Sedentary Behaviour in Elderly: A Systematic Review of the Parameters. Rev. Bras. Cineantropometria Desempenho Hum. 2020, 22, 1–12. [Google Scholar] [CrossRef]
- Soares-Miranda, L.; Sattelmair, J.; Chaves, P.; Duncan, G.E.; Siscovick, D.S.; Stein, P.K.; Mozaffarian, D. Physical Activity and Heart Rate Variability in Older Adults: The Cardiovascular Health Study. Circulation 2014, 129, 2100–2110. [Google Scholar] [CrossRef] [PubMed]
- Takayama, A.; Nagamine, T.; Kotani, K. Aging Is Independently Associated with an Increasing Normal Respiratory Rate among an Older Adult Population in a Clinical Setting: A Cross-Sectional Study. Geriatr. Gerontol. Int. 2019, 19, 1179–1183. [Google Scholar] [CrossRef]
- Phillips, B.; Ancoli-Israel, S. Sleep Disorders in the Elderly. Sleep Med. 2001, 2, 99–114. [Google Scholar] [CrossRef] [PubMed]
- Korol, D.; Gold, P. Glucose, Memory, and Aging. Am. J. Clin. Nutr. 1998, 67, 764S–771S. [Google Scholar] [CrossRef] [PubMed]
- Keogh, A.; Argent, R.; Anderson, A.; Caulfield, B.; Johnston, W. Assessing the Usability of Wearable Devices to Measure Gait and Physical Activity in Chronic Conditions: A Systematic Review. J. Neuroeng. Rehabil. 2021, 18, 138. [Google Scholar] [CrossRef]
- Souza, A.C.d.; Alexandre, N.M.C.; de Guirardello, E.B. Psychometric Properties in Instruments Evaluation of Reliability and Validity. Epidemiol. Serv. Saúde 2017, 26, 649–659. [Google Scholar] [CrossRef]
- Evenson, K.R.; Goto, M.M.; Furberg, R.D. Systematic Review of the Validity and Reliability of Consumer-Wearable Activity Trackers. Int. J. Behav. Nutr. Phys. Act. 2015, 12, 159. [Google Scholar] [CrossRef]
- Mahloko, L.; Adebesin, F. A Systematic Literature Review of the Factors That Influence the Accuracy of Consumer Wearable Health Device Data. In Proceedings of the e-Business, e-Services and e-Society, Skukuza, South Africa, 6–8 April 2020; Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Springer: Berlin/Heidelberg, Germany, 2020; Volume 12067 LNCS, pp. 96–107. [Google Scholar]
- Lockwood, C.; Conroy-Hiller, T.; Bn, R.N.; Gradcertunivteachlearn, D.; Page, T. Vital Signs. JBI Rep. 2004, 2, 207–230. [Google Scholar] [CrossRef]
- Iqbal, S.M.A.; Mahgoub, I.; Du, E.; Leavitt, M.A.; Asghar, W. Advances in Healthcare Wearable Devices. NPJ Flex. Electron. 2021, 5, 9. [Google Scholar] [CrossRef]
- Vallati, C.; Virdis, A.; Gesi, M.; Carbonaro, N.; Tognetti, A. EPhysio: A Wearables-Enabled Platform for the Remote Management of Musculoskeletal Diseases. Sensors 2019, 19, 2. [Google Scholar] [CrossRef]
- Johansson, D.; Malmgren, K.; Alt Murphy, M. Wearable Sensors for Clinical Applications in Epilepsy, Parkinson’s Disease, and Stroke: A Mixed-Methods Systematic Review. J. Neurol. 2018, 265, 1740–1752. [Google Scholar] [CrossRef]
- Pevnick, J.M.; Birkeland, K.; Zimmer, R.; Elad, Y.; Kedan, I. Wearable Technology for Cardiology: An Update and Framework for the Future. Trends Cardiovasc. Med. 2018, 28, 144–150. [Google Scholar] [CrossRef] [PubMed]
- Farivar, S.; Abouzahra, M.; Ghasemaghaei, M. Wearable Device Adoption among Older Adults: A Mixed-Methods Study. Int. J. Inf. Manag. 2020, 55, 102209. [Google Scholar] [CrossRef] [PubMed]
- Olmedo-Aguirre, J.O.; Reyes-Campos, J.; Alor-Hernández, G.; Machorro-Cano, I.; Rodríguez-Mazahua, L.; Sánchez-Cervantes, J.L. Remote Healthcare for Elderly People Using Wearables: A Review. Biosensors 2022, 12, 73. [Google Scholar] [CrossRef] [PubMed]
- Brodie, M.A.D.; Coppens, M.J.M.; Lord, S.R.; Lovell, N.H.; Gschwind, Y.J.; Redmond, S.J.; del Rosario, M.B.; Wang, K.; Sturnieks, D.L.; Persiani, M.; et al. Wearable Pendant Device Monitoring Using New Wavelet-Based Methods Shows Daily Life and Laboratory Gaits Are Different. Med. Biol. Eng. Comput. 2016, 54, 663–674. [Google Scholar] [CrossRef]
- Domingos, C.; Picó-Pérez, M.; Magalhães, R.; Moreira, M.; Sousa, N.; Pêgo, J.M.; Santos, N.C. Free-Living Physical Activity Measured with a Wearable Device Is Associated With Larger Hippocampus Volume and Greater Functional Connectivity in Healthy Older Adults: An Observational, Cross-Sectional Study in Northern Portugal. Front. Aging Neurosci. 2021, 13, 729060. [Google Scholar] [CrossRef] [PubMed]
Authors and Year Published | City, Country | Aim: To Review the: | Studies Included in the Review | Databases Searched | ||
---|---|---|---|---|---|---|
n | Type | Continent/Countries | ||||
Straiton et al. (2018) [30] | Sidney, Australia | Validity and reliability of consumer-grade activity trackers in community-dwelling older adults. | 7 | OBS | Europe, Australia, USA, Canada | MEDLINE, CINAHL, COCHRANE, Central Register of Controlled Clinical Trials |
Lim et al. (2018) [17] | Wessex, UK | Measures of hospitalized older adults’ physical activity. | 18 | RCT, nRCT | USA, Norway, Australia, Denmark, France, Israel | MEDLINE, EMBASE, CINAHL, AMED |
Feehan et al. (2018) [29] | Richmond, Canada | Accuracy of Fitbit activity trackers in controlled and free-living settings. | 67 | - | North America, Western Europe, South Asia, and Australia | PubMed, EMBASE, CINAHL, SPORTDiscus, Google Scholar |
Khan et al. (2020) [33] | Ziauddin, Pakistan | PA monitors among the sedentary population. | 16 | RCT | - | PubMed, Google Scholar, Google, MEDLINE, Cochrane Library |
Prasitlumkum et al. (2021) [26] | California, USA | Accuracy of an atrial fibrillation diagnosis by smart gadgets/wearable devices. | 21 | OBS | Norway, Netherlands, Finland, UK, USA, Hong Kong, Belgium, Germany, Italy | MEDLINE, EMBASE, Cochrane |
Alharbi et al. (2019) [31] | Sydney, Australia | PA, ECG, and vital signals from wearable sensors among older adults. | 20 | - | Italy, USA, Canada, Australia, Germany, Denmark, Japan, Netherlands | CINAHL, MEDLINE, PubMed, |
Dasenbrock et al. (2016) [18] | Oldenburg, Germany | Potential of IT and sensor technology to assess the functionality and mobility of pre-frail and frail older adults. | 28 | CSS * | - | PubMed, Cochrane Library |
Kristoffersson and Lindén (2020) [19] | Västerås, Sweden | Use of wearable body sensors for health monitoring. | 73 | OBS, CSS, CC, CO | Africa, Australia, Austria, Belgium, Brazil, Canada, China, Colombia, Estonia, France, Germany, Greece, India, Ireland, Italy, Japan, Jordan, Korea, Macedonia, Portugal, Saudi Arabia, Slovenia, South Africa, Spain, Sweden, Switzerland, Taiwan, Netherlands, Tunisia, UK, United Arab Emirates, USA | Web of Science Core Collection, MEDLINE, Scopus, ScienceDirect, Academic Search Elite, ACM Digital Library, IEEE Xplore |
Moore et al. (2021) [20] | Cork, Ireland | User experience and acceptance after a multi-day trial with a wearable device. | 20 | - | Western countries | CINAHL, APA PsycINFO, PubMed, EMBASE |
Clark et al. (2019) [21] | Devon, UK | Accuracy of automated devices for measuring BP, with or without AF detection. | 13 | RCT, OBS | Pacific Northwest, Slovakia, Padua, Canada, England, Poland, Norway, Lithuania, Greece, Scotland, Western General, Spain | MEDLINE, EMBASE |
Mattishent and Loke (2018) [22] | Norwich, UK | Use of CGM in older patients. | 9 | RCT, OBS | USA, Japan, Germany, Canada, Netherlands | SCI Web of Science, Ovid SP, MEDLINE, EMBASE |
Vavasour et al. (2021) [23] | Dundalk, Ireland | Methods of using wearable sensors to assess frailty in older adults. | 29 | OBS | - | Medline, Science Direct, Scopus, CINAHL |
Wang et al. (2021) [24] | Germany | Current sensor technology for unobtrusive in-home monitoring | 55 | OBS | - | ACM Digital Lib, IEEE Xplore, PubMed, Scopus |
Olson and Lockhart (2021) [27] | Arizona, USA | Use of wearable sensors to predict fall risk. | 54 | PRO | - | PubMed |
Heesch et al. (2018) [32] | Brisbane, Australia | Validity and reliability of accelerometers for the assessment of sedentary behavior in older adults. | 15 | RCT, OBS | USA, Switzerland, Canada, Australia, Norway, Germany, UK | EMBASE, PubMed, EBSCOhost |
Bezold et al. (2021) [25] | Karlsruhe, Germany | Current research on wearable sensors for fall risk assessment in older adults with or without cognitive impairment. | 28 | CSS mixed design | - | PubMed, Scopus, Web of Science |
Vegesn et al. (2017) [28] | Philadelphia, USA | Key trends associated with RPM via noninvasive digital technologies. | 62 | RCT, OBS, CS | France, USA, Italy, China, Australia, Spain, Denmark, Canada, Taiwan, Germany, Korea, Switzerland, Australia | EMBASE, Ovid, MEDLINE |
Revathi et al. (2019) [34] | Chennai, India | Medical equipment widely used in the hospital. | 39 | - | - | Scopus journals and a survey report by WHO on telecommunication and information technology |
Authors of the Review (Year) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | Overall Quality |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Straiton et al. (2018) [30] | Yes | Partial Yes | No | Yes | Yes | - | No | Yes | Yes | Yes | Not Applicable | Not Applicable | Yes | Yes | No | Yes | Moderate |
Lim et al. (2018) [17] | Yes | Yes | No | Yes | Yes | Yes | No | Yes | Yes | Yes | Not Applicable | Not Applicable | Yes | Yes | Yes | Yes | Moderate |
Feehan et al. (2018) [29] | Yes | Yes | Yes | Yes | Yes | Yes | No | Yes | Yes | Yes | Not Applicable | Not Applicable | Yes | Yes | Yes | Yes | High |
Khan et al. (2020) [33] | No | Partial Yes | No | No | Yes | No | No | No | Yes | No | No | Not Applicable | No | Yes | Yes | No | Low |
Prasitlumkum et al. (2021) [26] | Yes | Yes | No | Yes | Yes | No | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Moderate |
Alharbi et al. (2019) [31] | Yes | Yes | No | Yes | Yes | No | No | Yes | No | Yes | Not Applicable | Not Applicable | No | Yes | No | Yes | Low |
Dasenbrock et al. (2016) [18] | Yes | Yes | No | Yes | Yes | No | Yes | Yes | No | No | Not Applicable | Not Applicable | No | Yes | No | Yes | Low |
Kristoffersson and Lindén (2020) [19] | Yes | Yes | No | Yes | No | No | Yes | Yes | No | No | Not Applicable | Not Applicable | No | No | No | Yes | Low |
Moore et al. (2021) [20] | Yes | Yes | Yes | Yes | Yes | Yes | Yes | No | No | Yes | Not Applicable | Not Applicable | No | Yes | No | Yes | Low |
Clark et al. (2019) [21] | Yes | Yes | Yes | Yes | Yes | Yes | Yes | No | Yes | Yes | Yes | Yes | Yes | Yes | No | Yes | High |
Mattishent and Loke (2018) [22] | Yes | Yes | Yes | Yes | Yes | Yes | Yes | No | Yes | Yes | Not Applicable | Not Applicable | Yes | Yes | Yes | Yes | High |
Vavasour et al. (2021) [23] | Yes | Yes | Yes | Yes | No | No | Yes | Yes | Yes | Yes | Not Applicable | Not Applicable | No | Yes | No | Yes | Moderate |
Wang et al. (2021) [24] | Yes | Yes | Yes | Yes | Yes | Yes | No | Yes | No | Yes | Not Applicable | Not Applicable | No | No | No | Yes | Low |
Olson and Lockhart (2021) [27] | No | Yes | Yes | Yes | No | No | Yes | No | No | No | Not Applicable | Not Applicable | No | No | No | No | Low |
Heesch et al. (2018) [32] | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | No | Yes | Not Applicable | Not Applicable | No | Yes | No | Yes | High |
Bezold et al. (2021) [25] | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | No | Yes | Not Applicable | Not Applicable | No | No | No | Yes | Moderate |
Vegesna et al. (2017) [28] | Yes | Yes | Yes | Yes | Yes | No | No | Yes | Yes | Yes | Not Applicable | Not Applicable | No | No | No | Yes | Low |
Revathi et al. (2019) [34] | No | Yes | No | Yes | No | No | No | No | No | Yes | Not Applicable | Not Applicable | No | No | No | Yes | Critically Low |
Authors of the Review (Year) | n | Number of Older Adults | Age (Years) (Mean ± Standard Deviation or Range) | Health Condition (Healthy/Pathology) | Community-Dwelling/Institutionalized Older Adults |
---|---|---|---|---|---|
Straiton et al. (2018) [30] | 7 | 290 | 70.2 ± 4.8 | CHD, COPD, Absence of Specific Disease-Based Criteria | F, C, H |
Lim et al. (2018) [17] | 18 | - | - | Neurologic Diseases | F, C, H |
Feehan et al. (2018) [29] | 67 | 2441 | 21–84 | Healthy, Chronic Diseases, Mobility Limitations | F, C |
Khan et al. (2020) [33] | 16 | 2542 | >18 | Sedentary | F |
Prasitlumkum et al. (2021) [26] | 21 | 17,131 | 73.7 ± 9.1 | Healthy, Cardiovascular Diseases, Metabolic Diseases | F, C, H |
Alharbi et al. (2019) [31] | 20 | 3741 | 69 ± not revealed | High Risk of Cardiovascular Disease, Chronic Obstructive Pulmonary Disease, Cardiac Patients, Postoperative Surgical Patients | F, C |
Dasenbrock et al. (2016) [18] | 28 | 1917 | 21–90 | Frail, Pre-Frail, or Robust | F, H |
Kristoffersson and Lindén (2020) [19] | 73 | 1628 | >16 | Healthy, Respiratory Diseases, Cardiovascular Diseases, Metabolic Diseases, Neurological Diseases | F, C |
Moore et al. (2021) [20] | 20 | 349 | 51–94 | Healthy, Previous Breast Cancer, Obesity, Resolving Heart Failure, Parkinson’s Disease, Alzheimer and Dementia, Walking Aids | F, H |
Clark et al. (2019) [21] | 13 | - | 68–83 | Atrial Fibrillation, Hypertension and Normotension | F, C, H |
Mattishent and Loke (2018) [22] | 9 | 989 | 70 | Diabetes | F |
Vavasour et al. (2021) [23] | 29 | 7491 | 18–90 | - | F, C, H |
Wang et al. (2021) [24] | 55 | >843 | >20 | Heart Disease, Healthy, Hearing Impairment, Walking, Abnormalities, Alzheimer’s Disease, Mild Cognitive, Impairment, Cognitive Problem/Difficulties, Parkinson’s Disease, Risk of Cognitive Difficulties, Type II Diabetes, Stroke Survivors | F |
Olson and Lockhart (2021) [27] | 54 | 5–300 | - | Non-Frail/Non-Fallers, Parkinson’s Disease Fallers, Dementia Fallers, Stroke Fallers, Diabetes Fallers, Cardiac Patients Frail | F, C |
Heesch et al. (2018) [32] | 15 | >11,173 | 61–78 | Healthy | F, C |
Bezold et al. (2021) [25] | 28 | 2896 | 68–86 Control: 21–35 | Dementia, Fallers and Non-Fallers | F, H |
Vegesna et al. (2017) [28] | 62 | 8348 | Over 20 | Respiratory Diseases, Weight Management, Metabolic Diseases, Cardiovascular Diseases, Cancer, Neurological, Psychological, Sleep Disorders, Substance Abuse | F |
Revathi et al. (2019) [34] | 39 | - | - | - | - |
Category | Biological Signal | Health Status Information of the Biological Signal (Clinical Meaning) | Cutoffs | Device Placement | Author (Year) |
---|---|---|---|---|---|
Movement related variables | METs by steps | Level of PA and SB of participants | PA: Light = 1.1–2.9 METs Moderate = 3.0–5.9 METs Vigorous ≥ 6.0 METs | Ankle | Lim (2018) [17] Straiton (2018) [30] Feehan (2018) [29] Alharbi (2019) [31] Moore (2021) [20] |
Waist | Straiton (2018) [30] Feehan (2018) [29] Alharbi (2019) [31] Moore (2021) [20] | ||||
Wrist | Straiton (2018) [30] Feehan (2018) [29] Alharbi (2019) [31] Vavasour (2021) [23] | ||||
Thigh | Lim (2018) [17] Feehan (2018) [29] Alharbi (2019) [31] | ||||
Sternum | Feehan (2018) [29] Vavasour (2021) [23] | ||||
Chest | |||||
Torso | |||||
Bra | |||||
Upper arm | |||||
Lumbar Spine | Vavasour (2021) [23] | ||||
Not reported by the authors | Kristoffersson (2020) [19] Olson (2021) [27] Revathi (2019) [34] | ||||
Movement variables | METs by cpm | Level of PA and/or SB of participants | SB: <1.5 METs, <100 cpm PA: Light: 1.5–3.0 METs, 100–1040 cpm Moderate: ≥3.0 METs, 1041–1951 cpm Vigorous: >1052 cpm | Waist | Lim (2018) [17], Alharbi (2019) [31], Dasenbrock (2016) [18], Vavasour (2021) [23] |
Wrist | Khan (2020) [33] Alharbi (2019) [31] Moore (2021) [20] | ||||
Foot | Dasenbrock (2016) [18] Khan (2020) [33] | ||||
Hip | Khan (2020) [33] Vavasour (2021) [23] | ||||
Thigh | Khan (2020) [33] | ||||
Lower Back | |||||
Chest | |||||
- | Kristoffersson (2020) [19] | ||||
Posture | Body organization | - | Thigh | Lim (2018) [17] | |
Chest | |||||
Energy expenditure (kcal/kg/day) | Level of PA and/or SB of participants | Light PA: <6.2 kcal/kg/day for men <7.13 kcal/kg/day for women | Hip | Feehan (2018) [29] Vavasour (2021) [23] | |
Waist | Feehan (2018) [29] Bezold (2021) [25] | ||||
Wrist | Feehan (2018) [29] Alharbi (2019) [31] Bezold (2021) [25] | ||||
Straiton (2018) [30] | |||||
Torso | Feehan (2018) [29] | ||||
Lower Back | Bezold (2021) [25] | ||||
Upper Legs, Chest, Foot | |||||
Movement Variables | METs by cpm ECG intervals | Level of PA and/or SB of participants Fall risk Frailty | SB: VA < 100 cpm VM < 200 cpm. Sedentary activities 1-s (<1 to <10 in increments of 1 count/s) 15-s (<1 to <100 in increments of 5 counts/15 s) 60-s (<1 to <400 in increments of 25 cpm) Sedentary time: <1.5 METs <100 cpm <270 kcal/week for women <383 kcal/week for men PA Light: 1.5–3.0 METs, 100–1040 cpm Moderate: ≥3.0 METs, 1041–1951 cpm Vigorous: >1052 cpm A cutoff value of 1.58 m/s gait speed discriminates between HIGH RISK OF FALL and LOW RISK OF FALL. Fallers had lower average R-R intervals (time between R waves of the ECG), lower variability in R-R duration, and increased power in the low frequency component of the heart wave during continuous monitoring. “Frail: longer transition duration, decreased smoothness of transition pattern and dynamic of trunk movement Frail: acceleration and balance parameters in the 10 m extended timed get up and go test” | - | Vavasour (2021) [23] Olson (2021) [27] Bezold (2021) [25] Dasenbrock (2016) [18] Heesch (2018) [32] |
Cardiovascular Variables | Cardiac Rhythm | Early detection of AF | Incidence of newly diagnosed AF defined as ≥30 s of AF or flutter detected by tracker. Each AF episode defined as presence of ≥30 s of continuous AF during monitoring. | Fingertip | Prasitlumkum (2021) [26] |
Wrist | Prasitlumkum (2021) [26] | ||||
Chest | Prasitlumkum (2021) [26] Alharbi (2019) [31] | ||||
Facial | Prasitlumkum (2021) [26] | ||||
Fingertip | Prasitlumkum (2021) [26] | ||||
Arm | Clark (2019) [21] | ||||
HR/Pulse/Heart Rate Variability | - | Bradycardia (HR < 50 bpm) Tachycardia (HR > 100 bpm) | Wrist | Alharbi (2019) [31] | |
Chest/ Thorax | Alharbi (2019) [31] Vegesna (2017) [28] | ||||
Arm | Vegesna (2017) [28] | ||||
- | Olson (2021) [27] | ||||
Revathi (2019) [34] | |||||
Kristoffersson (2020) [19] | |||||
ECG | - | - | Chest | Alharbi (2019) [31] | |
- | Kristoffersson (2020) [19] | ||||
RR | - | Bradypnea (RR < 12 bpm) Tachypnea (RR > 20 bpm) | Chest | Alharbi (2019) [31] | |
- | Kristoffersson (2020) [19] | ||||
Chest | Vegesna (2017) [28] | ||||
BP | - | - | - | Kristoffersson (2020) [19] | |
Arm | Clark (2019) [21] | ||||
- | Revathi (2019) [34] | ||||
Other biological signal variables | EMG | - | - | Waist, Arm, and Leg | Dasenbrock (2016) [18] |
GPS | - | - | Waist | Dasenbrock (2016) [18] | |
Foot | |||||
BT | - | - | - | Kristoffersson (2020) [19] | |
Arm | Vegesna (2017) [28] | ||||
Chest | |||||
- | Revathi (2019) [34] | ||||
SpO2 | - | - | - | Kristoffersson (2020) [19] | |
Arm | Vegesna (2017) [28] | ||||
Chest | |||||
- | Revathi (2019) [34] | ||||
Accelerometry | Fall risk detection | A faller was defined as a person having at least one fall over a certain period of time, usually the past or prospective 12 months. | Torso | Moore (2021) [20] | |
- | Olson (2021) [27] | ||||
Sleep | - | Wrist | Feehan (2018) [29] | ||
- | Kristoffersson (2020) [19] | ||||
- | Revathi (2019) [34] | ||||
Stress | - | - | Kristoffersson (2020) [19] | ||
Glucose levels | - | - | Mattishent (2018) [22] | ||
Arm | Vegesna (2017) [28] | ||||
Chest | |||||
Revathi (2019) [34] | |||||
Weight | - | - | - | Vegesna (2017) [28] |
Authors (year) | Sensor Type |
---|---|
Straiton et al. (2018) [30] | Consumer-grade activity trackers |
Lim et al. (2018) [17] | Accelerometer |
Feehan et al. (2018) [29] | Accelerometer |
Khan et al. (2020) [33] | Accelerometer |
Prasitlumkum et al. (2021) [26] | ECG sensor |
Alharbi et al. (2019) [31] | Accelerometer, consumer-grade activity tracker, pedometer |
Dasenbrock et al. (2016) [18] | Cameras, force platforms and foot switch, triaxial accelerometers, gyroscope, pressure sensors, pedometers, grip ball, motion sensors, bed sensors, stove sensors |
Kristoffersson and Lindén (2020) [19] | Accelerometer, electrocardiography sensor, pressure sensor |
Moore et al. (2021) [20] | Accelerometer, pedometer, motion sensor |
Clark et al. (2019) [21] | Sphygmomanometer, oximeter |
Mattishent and Loke (2018) [22] | Continuous glucose monitor |
Vavasour et al. (2021) [23] | IMUs |
Wang et al. (2021) [24] | Accelerometer, pressure sensor, contact sensor, ECG sensor, gas/dust sensor, camera, ultrasonic sensor, water flow sensor |
Olson and Lockhart (2021) [27] | IMUs, barometer, pressure insoles, ECG sensor, respiratory monitor |
Heesch et al. (2018) [32] | Accelerometer, temperature sensor, ambient light sensor |
Bezold et al. (2021) [25] | Sensor-based balance, IMUs |
Vegesna et al. (2017) [28] | Spirometry, optical sensor, ECG sensor, oximeter, sphygmomanometer and FEV1 monitors, IMUs, pedometer |
Revathi et al. (2019) [34] | IMUs, optical, photoConductive, piezo-electric based, pressure, radar, radiofrequency, sonar, surface, electromyography, thermistor, thermoelectric effects, ultrasonic, photoplethysmography |
Biological Signal | Local | Psychometric Properties | Sensor Type | Author (Year) | |
---|---|---|---|---|---|
Validity | Reliability | ||||
Steps | Ankle | r = 0.76 | ICC = 0.99 | Accelerometer | Lim (2018) [17] |
- | Percentage error < 10% at 0.4–0.9 m/s | Consumer-grade activity trackers | Straiton (2018) [30] | ||
Waist | r = 0.90 | ICC = 0.60–0.96 | Consumer-grade activity trackers Triaxial accelerometers | Straiton (2018) [30] Dasenbrok (2016) [18] | |
Percentage error < 10% at 0.8–0.9 m/s | |||||
Wrist | r = 0.96 | ICC = 0.15 | Consumer-grade activity trackers | Straiton (2018) [30] | |
Thigh | - | Limits of agreement = −2.01 to 16.54 Absolute percent error = 40.31 | Accelerometer | Lim (2018) [17] | |
Torso | Percentage error < −10.6% | Accelerometer | Feehan (2018) [29] | ||
Daily activity time | Wrist | r = 0.25 | Percentage error < −8.6% | Consumer-grade activity trackers | Straiton (2018) [30] Feehan (2018) [29] |
Ankle | - | Percentage error < 2.9% | Accelerometer | Feehan (2018) [29] | |
PA level | Waist | r = 0.780 | Percentage error = 10% | Accelerometer | Lim (2018) [17] |
Wrist | r = 0.965 | - | Accelerometer | Khan (2020) [33] | |
Foot | r = 0.955 | ||||
Hip | r = 0.978 | ||||
Thigh | r = 0.971 | ||||
Lower Back | r = 0.968 | ||||
Chest | r = 0.969 | ||||
Posture | Thigh | - | Limits of agreement = −2.01 to 16.54 Absolute percent error = 40.31 | Accelerometer | Lim (2018) [17] |
Sleep | Wrist | - | Percentage error < −8.6% | Accelerometer | Feehan (2018) [29] |
Energy expenditure | Wrist | - | Percentage error < −8.6% | Accelerometer | Feehan (2018) [29] |
r = 0.74 | - | Consumer-grade activity trackers | Straiton (2018) [30] | ||
Torso | - | Percentage error < −10.6% | Accelerometer | Feehan (2018) [29] | |
Cardiac Rhythm | Fingertip | - | Accuracy—94.0–97.4 Sensitivity—87.0–100.0 Specificity—84.9–98.8 | ECG sensor | Prasitlumkum (2021) [26] |
Wrist | - | Accuracy—89.2–99.2 Sensitivity—75.0–93.7 Specificity—84.0–98.2 | |||
Chest | - | Accuracy—95.7 Sensitivity—95.3 Specificity—96.0 | |||
Facial | - | Accuracy—95.4 Sensitivity—94.7 Specificity—95.8 | |||
Fingertip | - | Accuracy—92.0–96.1 Sensitivity—93.1–95.6 Specificity—90.9–96.6 | |||
Movement (free-living activities | Waist | - | ICC: 0.80–5 days ICC: 0.95–21 days | Accelerometer | Heesch (2018) [32] |
Hip | - | ICC: 0.74 (0.65, 0.80) Sensitivity: 61–92% Specificity: 43–91% | |||
Wrist | - | Sensitivity: 78–82% Specificity: 70–78% | |||
Thigh | - | Sensitivity: 99.3–99.9% Specificity: 99.2–99.7% |
Functions | |||||
---|---|---|---|---|---|
Phy Fx Em SaSe | |||||
Data | |||||
Physiology Body temperature, BP, Body mass, ECG, HR, RR | Behavior Activity level, Computer usage, Gait parameters, Phone usage, Presence, Time spent on activities, Out of home, Walking speed | Environment Gas concentration, Humidity, Temperature, Sound | |||
Locations | |||||
Electrical appliances Coffee machine, Computer, Fridge, Stove/oven, Lamp, Microwave oven, Television (TV), Phone, Radio, Water kettle | Static facilities Floor (specific area), Wall (specific), Window, Sink, Toilet, Chair/sofa/couch, Bed, Door, Shelf/cabinet/drawer | Rooms Living room, Kitchen, Bedroom, Bathroom, Hallway, Study room | |||
Unobtrusive Sensors | |||||
Acoustic Microphone Ultrasonic sensor | Air-related Gas/dust sensor Humidity sensor Thermometer | Mechanical Accelerometer Bed sensor Scale Pressure sensor Vibration sensor | Electromagnetic Contact sensor Electrocardiography sensor Power meter Radar | Optical PIR motion sensor Infrared camera Video camera Depth camera | Unclassified Water flow sensor Computer monitoring (software) Phone monitor |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Félix, J.; Moreira, J.; Santos, R.; Kontio, E.; Pinheiro, A.R.; Sousa, A.S.P. Health-Related Telemonitoring Parameters/Signals of Older Adults: An Umbrella Review. Sensors 2023, 23, 796. https://doi.org/10.3390/s23020796
Félix J, Moreira J, Santos R, Kontio E, Pinheiro AR, Sousa ASP. Health-Related Telemonitoring Parameters/Signals of Older Adults: An Umbrella Review. Sensors. 2023; 23(2):796. https://doi.org/10.3390/s23020796
Chicago/Turabian StyleFélix, José, Juliana Moreira, Rubim Santos, Elina Kontio, Ana Rita Pinheiro, and Andreia S. P. Sousa. 2023. "Health-Related Telemonitoring Parameters/Signals of Older Adults: An Umbrella Review" Sensors 23, no. 2: 796. https://doi.org/10.3390/s23020796
APA StyleFélix, J., Moreira, J., Santos, R., Kontio, E., Pinheiro, A. R., & Sousa, A. S. P. (2023). Health-Related Telemonitoring Parameters/Signals of Older Adults: An Umbrella Review. Sensors, 23(2), 796. https://doi.org/10.3390/s23020796