Low-Complexity Beamforming Design for a Cooperative Reconfigurable Intelligent Surface-Aided Cell-Free Network
Abstract
:1. Introduction
1.1. Related Works
1.2. Contribution
- At first, we formulate the network capacity as well as energy efficiency maximization problem for the cooperative RIS-aided CF MIMO framework under the limitations of power as well as per element hardware constraints.
- We propose a computationally efficient iterative stochastic optimization-based particle swarm optimization (PSO) method to solve the capacity maximization problem. We adopt PSO to optimize the passive beamformer at the RISs and apply a nulling algorithm at the BSs to realize the objective of the proposed problem. Specifically, the PSO algorithm is based on the number of possible solutions, and these solutions are then optimized to obtain a better solution among all possible solutions.
- In the end, the proposed solution is evaluated using several numerical computations, and the results indicate that the performance of the proposed solution is almost the same as that of the existing solution for both scenarios (spectral and energy efficiency) but at significantly low complexity.
1.3. Organization and Notations
2. System Model and Problem Formulation
2.1. System Model
2.2. Transmitter
2.3. Receiver
2.4. Problem Formulation
3. Passive Beamforming Design
3.1. PSO-Based Passive (RIS) Beamformer
Algorithm 1 Passive beamforming design based on PSO. |
Input: Channel matrices , , ; Total no. of iterations I; Swarms/Particles size S; Number of B BSs; Number of R RISs; Output: Phase 1:
|
3.2. Computational Complexity
4. Simulation Results and Channel Model
4.1. Simulation Configurations
4.2. Channel Model
4.3. Spectral Efficiency Performance of Cooperative Network
4.4. Impact of Spectral Efficiency Performance on Different Transmit Power Ranges
4.5. Evaluation of Spectral Efficiency: Single-Antenna vs. Multi-Antenna Users
4.6. Extension to the Energy Efficiency Case
5. Discussion
6. Conclusions and Future Works
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Karakayali, M.; Foschini, G.; Valenzuela, R. Network coordination for spectrally efficient communications in cellular systems. IEEE Wirel. Commun. 2006, 13, 56–61. [Google Scholar] [CrossRef]
- Lozano, A.; Heath, R.W.; Andrews, J.G. Fundamental Limits of Cooperation. IEEE Trans. Inf. Theory 2013, 59, 5213–5226. [Google Scholar] [CrossRef] [Green Version]
- Ngo, H.Q.; Tran, L.N.; Duong, T.Q.; Matthaiou, M.; Larsson, E.G. On the Total Energy Efficiency of Cell-Free Massive MIMO. IEEE Trans. Green Commun. Netw. 2018, 2, 25–39. [Google Scholar] [CrossRef] [Green Version]
- Nayebi, E.; Ashikhmin, A.; Marzetta, T.L.; Yang, H. Cell-Free Massive MIMO systems. In Proceedings of the 2015 49th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 8–11 November 2015; pp. 695–699. [Google Scholar] [CrossRef]
- Mosleh, S.; Almosa, H.; Perrins, E.; Liu, L. Downlink Resource Allocation in Cell-Free Massive MIMO Systems. In Proceedings of the 2019 International Conference on Computing, Networking and Communications (ICNC), Honolulu, HI, USA, 18–21 February 2019; pp. 883–887. [Google Scholar] [CrossRef]
- Al-Eryani, Y.; Hossain, E. Self-Organizing mmWave MIMO Cell-Free Networks With Hybrid Beamforming: A Hierarchical DRL-Based Design. IEEE Trans. Commun. 2022, 70, 3169–3185. [Google Scholar] [CrossRef]
- He, Y.; Shen, M.; Zeng, F.; Zheng, H.; Wang, R.; Zhang, M.; Liu, X. Energy Efficient Power Allocation for Cell-Free mmWave Massive MIMO With Hybrid Precoder. IEEE Commun. Lett. 2022, 26, 394–398. [Google Scholar] [CrossRef]
- Han, T.; Zhao, D. On the Performance of FDD Cell-Free Massive MIMO with Compressed Sensing Channel Estimation. In Proceedings of the 2021 IEEE 21st International Conference on Communication Technology (ICCT), Tianjin, China, 13–16 October 2021; pp. 238–242. [Google Scholar] [CrossRef]
- Basar, E.; Di Renzo, M.; De Rosny, J.; Debbah, M.; Alouini, M.S.; Zhang, R. Wireless Communications Through Reconfigurable Intelligent Surfaces. IEEE Access 2019, 7, 116753–116773. [Google Scholar] [CrossRef]
- Zhang, S.; Li, M.; Jian, M.; Zhao, Y.; Gao, F. AIRIS: Artificial intelligence enhanced signal processing in reconfigurable intelligent surface communications. China Commun. 2021, 18, 158–171. [Google Scholar] [CrossRef]
- Shin, B.S.; Oh, J.H.; You, Y.H.; Hwang, D.D.; Song, H.K. Limited Channel Feedback Scheme for Reconfigurable Intelligent Surface Assisted MU-MIMO Wireless Communication Systems. IEEE Access 2022, 10, 50288–50297. [Google Scholar] [CrossRef]
- Di Renzo, M.; Zappone, A.; Debbah, M.; Alouini, M.S.; Yuen, C.; De Rosny, J.; Tretyakov, S. Smart radio environments empowered by reconfigurable intelligent surfaces: How it works, state of research, and the road ahead. IEEE J. Sel. Areas Commun. 2020, 38, 2450–2525. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, R. Weighted sum power maximization for intelligent reflecting surface aided SWIPT. IEEE Wirel. Commun. Lett. 2019, 9, 586–590. [Google Scholar] [CrossRef] [Green Version]
- Cui, M.; Zhang, G.; Zhang, R. Secure wireless communication via intelligent reflecting surface. IEEE Wirel. Commun. Lett. 2019, 8, 1410–1414. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Liang, Y.C.; Pei, Y.; Guo, H. Intelligent reflecting surface: A programmable wireless environment for physical layer security. IEEE Access 2019, 7, 82599–82612. [Google Scholar] [CrossRef]
- Shen, H.; Xu, W.; Gong, S.; He, Z.; Zhao, C. Secrecy rate maximization for intelligent reflecting surface assisted multi-antenna communications. IEEE Commun. Lett. 2019, 23, 1488–1492. [Google Scholar] [CrossRef] [Green Version]
- Tan, X.; Sun, Z.; Jornet, J.M.; Pados, D. Increasing indoor spectrum sharing capacity using smart reflect-array. In Proceedings of the 2016 IEEE International Conference on Communications (ICC), Kuala Lumpur, Malaysia, 23–27 May 2016; pp. 1–6. [Google Scholar]
- Liaskos, C.; Nie, S.; Tsioliaridou, A.; Pitsillides, A.; Ioannidis, S.; Akyildiz, I. A new wireless communication paradigm through software-controlled metasurfaces. IEEE Commun. Mag. 2018, 56, 162–169. [Google Scholar] [CrossRef] [Green Version]
- Hum, S.V.; Perruisseau-Carrier, J. Reconfigurable reflectarrays and array lenses for dynamic antenna beam control: A review. IEEE Trans. Antennas Propag. 2013, 62, 183–198. [Google Scholar] [CrossRef] [Green Version]
- Basharat, S.; Hassan, S.A.; Pervaiz, H.; Mahmood, A.; Ding, Z.; Gidlund, M. Reconfigurable Intelligent Surfaces: Potentials, Applications, and Challenges for 6G Wireless Networks. IEEE Wirel. Commun. 2021, 28, 184–191. [Google Scholar] [CrossRef]
- Zhao, W.; Wang, G.; Atapattu, S.; Tsiftsis, T.A.; Ma, X. Performance Analysis of Large Intelligent Surface Aided Backscatter Communication Systems. IEEE Wirel. Commun. Lett. 2020, 9, 962–966. [Google Scholar] [CrossRef]
- Guo, C.; Lu, Z.; Guo, Z.; Yang, F.; Ding, L. Maximum ergodic capacity of intelligent reflecting surface assisted MIMO wireless communication system. In Proceedings of the International Conference on Communications and Networking in China, Hangzhou, China, 20–21 November 2019; pp. 331–343. [Google Scholar]
- Guo, H.; Liang, Y.C.; Chen, J.; Larsson, E.G. Weighted sum-rate maximization for reconfigurable intelligent surface-aided wireless networks. IEEE Trans. Wirel. Commun. 2020, 19, 3064–3076. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.; Zappone, A.; Alexandropoulos, G.C.; Debbah, M.; Yuen, C. Reconfigurable intelligent surfaces for energy efficiency in wireless communication. IEEE Trans. Wirel. Commun. 2019, 18, 4157–4170. [Google Scholar] [CrossRef] [Green Version]
- Pan, C.; Ren, H.; Wang, K.; Xu, W.; Elkashlan, M.; Nallanathan, A.; Hanzo, L. Multicell MIMO Communications Relying on Intelligent Reflecting Surfaces. IEEE Trans. Wirel. Commun. 2020, 19, 5218–5233. [Google Scholar] [CrossRef]
- Zhao, M.M.; Wu, Q.; Zhao, M.J.; Zhang, R. Intelligent reflecting surface enhanced wireless networks: Two-timescale beamforming optimization. IEEE Trans. Wirel. Commun. 2020, 20, 2–17. [Google Scholar] [CrossRef]
- Zhou, G.; Pan, C.; Ren, H.; Popovski, P.; Swindlehurst, A.L. Channel Estimation for RIS-Aided Multiuser Millimeter-Wave Systems. IEEE Trans. Signal Process. 2022, 70, 1478–1492. [Google Scholar] [CrossRef]
- Ahmed, Q.Z.; Ahmed, S.; Alouini, M.S.; Aïssa, S. Minimizing the Symbol-Error-Rate for Amplify-and-Forward Relaying Systems Using Evolutionary Algorithms. IEEE Trans. Commun. 2015, 63, 390–400. [Google Scholar] [CrossRef]
- Özdogan, Ö.; Björnson, E.; Larsson, E.G. Intelligent Reflecting Surfaces: Physics, Propagation, and Pathloss Modeling. IEEE Wirel. Commun. Lett. 2020, 9, 581–585. [Google Scholar] [CrossRef]
Reference | Methods | Framework | Advantage | Limitations |
---|---|---|---|---|
[22] | Semidefinite relaxation (SDR) | RIS-aided MIMO system | Significantly improves spectral efficiency performance | Extremely high computational cost |
[23] | Fractional programming (FP) method | RIS-aided multi-user network | Improves weighted sum rate | High computational cost |
[24] | Sequential programming (SP) method | RIS-aided wireless network | Improves energy/spectral efficiency | High computational cost |
[25] | Block coordinate descent (BCD) algorithm | RIS-aided multiuser network | Improves weighted sum rate | High computational cost |
[26] | Penalty dual decomposition (PDD) method | RIS-aided multiuser network | Two-time scale joint beamforming scheme | High computational cost |
Symbols | Meaning |
---|---|
v | Vector |
V | Matrix |
V | Transpose of V |
V | Hermitian of V |
V | Pseudo-inverse of V |
Expected operator | |
Tr. | Trace function |
V | l1 norm |
V | l2 norm |
diag | Diagonal entries of the matrix |
∠ | Angle of the argument |
Symbols and Value | Symbols and Value |
---|---|
M = 4 | Noise = −120 dBm |
N = 48 | x = 3 for BS-user |
K = 4 | x = 2 for BS-RIS and RIS-user |
S = 40 | 1st BS position = (0 m, −20 m) |
2nd BS position = (45 m, −20 m) | 1st RIS position = (30 m, −3 m) |
2nd RIS position = (50 m, 3 m) | 3rd RIS position = (70 m, 3 m) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siddiqi, M.Z.; Munir, A.; Mohsan, S.A.H.; Shah, S.; Chaudhary, S.; Sangwongngam, P.; Wuttisittikulkij, L. Low-Complexity Beamforming Design for a Cooperative Reconfigurable Intelligent Surface-Aided Cell-Free Network. Sensors 2023, 23, 903. https://doi.org/10.3390/s23020903
Siddiqi MZ, Munir A, Mohsan SAH, Shah S, Chaudhary S, Sangwongngam P, Wuttisittikulkij L. Low-Complexity Beamforming Design for a Cooperative Reconfigurable Intelligent Surface-Aided Cell-Free Network. Sensors. 2023; 23(2):903. https://doi.org/10.3390/s23020903
Chicago/Turabian StyleSiddiqi, Muhammad Zain, Aisha Munir, Syed Agha Hassnain Mohsan, Shashi Shah, Sushank Chaudhary, Paramin Sangwongngam, and Lunchakorn Wuttisittikulkij. 2023. "Low-Complexity Beamforming Design for a Cooperative Reconfigurable Intelligent Surface-Aided Cell-Free Network" Sensors 23, no. 2: 903. https://doi.org/10.3390/s23020903
APA StyleSiddiqi, M. Z., Munir, A., Mohsan, S. A. H., Shah, S., Chaudhary, S., Sangwongngam, P., & Wuttisittikulkij, L. (2023). Low-Complexity Beamforming Design for a Cooperative Reconfigurable Intelligent Surface-Aided Cell-Free Network. Sensors, 23(2), 903. https://doi.org/10.3390/s23020903