Construction Site Safety Management: A Computer Vision and Deep Learning Approach
Abstract
:1. Introduction
2. Related Work
3. Development of Object Recognition Models for Construction Site Safety Management
3.1. Development Structure and Procedure
3.2. Development Environment and System Configuration
3.3. Image Data Collection
3.4. Preprocessing Module
3.5. Image Dataset Structure
3.6. Backbone Model
3.7. Model Creation
3.8. Internal Structure of Object Recognition Model and Data Flow for Each Model
4. Implementation and Simulation
4.1. Data Flow and User Interface Design
4.2. Evaluation Indices
4.3. Simulation and Tests
5. Conclusions and Future Research Direction
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Toole, T.M. Construction site safety roles. J. Constr. Eng. Manage 2002, 128, 203–210. [Google Scholar] [CrossRef]
- Haikio, J.; Kallio, J.; Makela, S.M.; Keranen, J. IoT-based safety monitoring from the perspective of construction site workers. Int. J. Occup. Environ. Saf. 2020, 4, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Fang, W.; Love, P.E.; Ding, L.; Xu, S.; Kong, T.; Li, H. Computer Vision and Deep Learning to Manage Safety in Construction: Matching Images of Unsafe Behavior and Semantic Rules. IEEE Trans. Eng. Manag. 2021; 1–13, early access. [Google Scholar] [CrossRef]
- Nath, N.D.; Behzadan, A.H.; Paal, S.G. Deep learning for site safety: Real-time detection of personal protective equipment. Autom. Constr. 2020, 112, 103085. [Google Scholar] [CrossRef]
- Guo, S.Y.; Ding, L.Y.; Luo, H.B.; Jiang, X.Y. A big-data-based platform of workers’ behavior: Observations from the field. Accid. Anal. Prev. 2016, 93, 299–309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azhar, S.; Behringer, A. A BIM-based approach for communicating and implementing a construction site safety plan. In Proceedings of the 49th ASC Annual International Conference, San Luis Obispo, CA, USA, 10–13 April 2013; pp. 212–219. [Google Scholar]
- Seo, J.; Han, S.; Lee, S.; Kim, H. Computer vision techniques for construction safety and health monitoring. Adv. Eng. Inf. 2015, 29, 239–251. [Google Scholar] [CrossRef]
- Shapira, A.; Rosenfeld, Y.; Mizrahi, I. Vision system for tower cranes. J. Constr. Eng. Manage. 2008, 134, 320–332. [Google Scholar] [CrossRef]
- Awalgaonkar, N.M.; Zheng, H.; Gurciullo, C.S. DEEVA: A deep learning and IoT based computer vision system to address safety and security of production sites in energy industry. arXiv 2020, arXiv:2003.01196. [Google Scholar]
- Besl, P.J.; Jain, R.C. Three-dimensional object recognition. ACM Comput. Surv. 1985, 17, 75–145. [Google Scholar] [CrossRef]
- Jafri, R.; Ali, S.A.; Arabnia, H.R.; Fatima, S. Computer vision-based object recognition for the visually impaired in an indoors environment: A survey. Vis. Comput. 2014, 30, 1197–1222. [Google Scholar] [CrossRef]
- Wu, H.; Zhong, B.; Li, H.; Love, P.; Pan, X.; Zhao, N. Combining computer vision with semantic reasoning for on-site construction safety management. J. Build. Eng. 2021, 42, 103036. [Google Scholar] [CrossRef]
- Moohialdin, A.; Lamari, F.; Marc, M.; Trigunarsyah, B. A Real-Time Computer Vision System for Workers’ PPE and Posture Detection in Actual Construction Site Environment; EASEC16 Springer: Singapore, 2021; pp. 2169–2181. [Google Scholar]
- Fang, W.; Ding, L.; Love, P.E.; Luo, H.; Li, H.; Pena-Mora, F.; Zhou, C. Computer vision applications in construction safety assurance. Autom. Constr. 2020, 110, 103013. [Google Scholar] [CrossRef]
- Chen, S.; Demachi, K. A vision-based approach for ensuring proper use of personal protective equipment (PPE) in decommissioning of Fukushima Daiichi Nuclear Power Station. Appl. Sci. 2020, 10, 5129. [Google Scholar] [CrossRef]
- Balakreshnan, B.; Richards, G.; Nanda, G.; Mao, H.; Athinarayanan, R.; Zaccaria, J. PPE compliance detection using artificial intelligence in learning factories. Procedia Manuf. 2020, 45, 277–282. [Google Scholar] [CrossRef]
- Delhi, V.S.K.; Sankarlal, R.; Thomas, A. Detection of personal protective equipment (PPE) compliance on construction site using computer vision based deep learning techniques. Front. Built Environ. 2020, 6, 136. [Google Scholar] [CrossRef]
- Zhang, M.; Shi, R.; Yang, Z. A critical review of vision-based occupational health and safety monitoring of construction site workers. Saf. Sci. 2020, 126, 104658. [Google Scholar] [CrossRef]
- Tahir, N.; Batureb, U.; Abubakar, K.; Baba, M.; Yarima, S. Image Recognition Based Autonomous Driving: A Deep Learning Approach. Int. J. Eng. Manuf. 2020, 10, 11–19. [Google Scholar] [CrossRef]
- Fayou, S.; Ngo, H.; Sek, Y. Combining Multi-Feature Regions for Fine-Grained Image Recognition. Int. J. Image Graph. Signal Process. 2022, 14, 15–25. [Google Scholar] [CrossRef]
- Tania, M.; Afroze, D.; Akhter, J.; Rahaman, A.; Islam, I. Image Recognition Using Machine Learning with the Aid of MLR. Int. J. Image Graph. Signal Process. 2021, 13, 12–22. [Google Scholar] [CrossRef]
- Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. Imagenet: A large-scale hierarchical image database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255. [Google Scholar]
- Torrey, L.; Shavlik, J. Transfer learning. In Handbook of Research on Machine Learning Applications and Trends: Algorithms, Methods, and Techniques; IGI Global: Hershey, PA, USA, 2010; pp. 242–264. [Google Scholar]
- Pan, S.J.; Yang, Q. A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 2009, 22, 1345–1359. [Google Scholar] [CrossRef]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- Bradski, G.; Kaehler, A. Learning OpenCV: Computer vision with the OpenCV library; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2008. [Google Scholar]
- Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Zitnick, C.L. Microsoft COCO: Common objects in context. In European Conference on Computer Vision; Springer: Cham, Switzerland, 2014; pp. 740–755. [Google Scholar]
- Sauvola, J.; Pietikäinen, M. Adaptive document image binarization. Pattern Recognit. 2000, 33, 225–236. [Google Scholar] [CrossRef]
- Vincent, L. Morphological grayscale reconstruction in image analysis: Applications and efficient algorithms. IEEE Trans. Image Process. 1993, 2, 176–201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adelson, E.H.; Anderson, C.H.; Bergen, J.R.; Burt, P.J.; Ogden, J.M. Pyramid methods in image processing. RCA Eng. 1984, 29, 33–41. [Google Scholar]
- Wang, Y.; Chen, Q.; Zhang, B. Image enhancement based on equal area dualistic sub-image histogram equalization method. IEEE Trans. Consum. Electron. 1999, 45, 68–75. [Google Scholar] [CrossRef]
- Cheng, H.D.; Jiang, X.H.; Sun, Y.; Wang, J. Color image segmentation: Advances and prospects. Pattern Recognit. 2001, 34, 2259–2281. [Google Scholar] [CrossRef]
- Ketkar, N. Introduction to Keras. In Deep Learning with Python; Manning Publications: Berkeley, CA, USA, 2017; pp. 97–111. [Google Scholar]
- Everingham, M.; Van Gool, L.; Williams, C.K.; Winn, J.; Zisserman, A. The pascal visual object classes (VOC) challenge. Int. J. Comput. Vision 2010, 88, 303–338. [Google Scholar] [CrossRef]
- Andriluka, M.; Pishchulin, L.; Gehler, P.; Schiele, B. 2D human pose estimation: New benchmark and state of the art analysis. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 3686–3693. [Google Scholar]
- Güler, R.A.; Neverova, N.; Kokkinos, I. Densepose: Dense human pose estimation in the wild. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7297–7306. [Google Scholar]
- ONVIF. ONVIF™ Core Specification, Version 2.2. May 2012. Available online: http://www.onvif.org/specs/DocMap.html (accessed on 2 November 2022).
Hardware Server Platform | Software Server Platform | ||
---|---|---|---|
CPU | AMD Ryzen 9 3950x | Operating System | Ubuntu 18.04 |
RAM | 64 GB | Kernel | 5.4.0-54-generic |
GPU | GeForce RTX3080 | Language | Python 3.8.0 |
LAN | Gigabit Ethernet | Virtual Environment | Anaconda 4.9.2 |
Main Storage | NVMe 1 Tb | Vision Library | OpenCV 4.2.0 |
Data Storage | HDD 4 TB | TensorFlow | 1.15.2 |
Before Binarization | After Binarization |
---|---|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.; Lee, S. Construction Site Safety Management: A Computer Vision and Deep Learning Approach. Sensors 2023, 23, 944. https://doi.org/10.3390/s23020944
Lee J, Lee S. Construction Site Safety Management: A Computer Vision and Deep Learning Approach. Sensors. 2023; 23(2):944. https://doi.org/10.3390/s23020944
Chicago/Turabian StyleLee, Jaekyu, and Sangyub Lee. 2023. "Construction Site Safety Management: A Computer Vision and Deep Learning Approach" Sensors 23, no. 2: 944. https://doi.org/10.3390/s23020944
APA StyleLee, J., & Lee, S. (2023). Construction Site Safety Management: A Computer Vision and Deep Learning Approach. Sensors, 23(2), 944. https://doi.org/10.3390/s23020944