Evolutionary Image Registration: A Review
Abstract
:1. Introduction
- -
- identification of the most recent research papers in the field of evolutionary image registration, published in the last 5 years and indexed in major databases, available either openly from the publisher or the authors, or through the research network of which our university is a member;
- -
- focus on successful use of evolutionary algorithms for image registration;
- -
- identification of fields of application where research efforts are focused;
- -
- main ideas of each reported research are summarized giving a clear view of the approach;
- -
- identification and comparative analysis of the main (dis)similarity measures used to register images and performance indicators used to assess algorithms’ results and to compare them between algorithms;
- -
- comparative analysis of main elements of evolutionary approaches: basic algorithm and algorithm class and fitness functions.
2. Methodology
3. Articles
3.1. Genetic Algorithm
3.2. Evolutionary Strategies and Swarm Intelligence
3.3. Generic Evolutionary Algorithm
4. Discussion
4.1. Field of Application
4.2. Basic Evolutionary Algorithm
4.3. Similarity Measures
4.4. Fitness Functions
4.5. Performance Indicators
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tan, Y.; Zhu, Y. Fireworks Algorithm for Optimization; Springer: Berlin/Heidelberg, Germany, 2010; pp. 355–364. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Document Search—Web of Science Core Collection. Available online: https://www.webofscience.com/wos/woscc/basic-search (accessed on 7 November 2022).
- Elsevier Scopus. Available online: https://www.scopus.com/search/form.uri?display=basic (accessed on 21 November 2022).
- IEEE Xplore. Available online: https://ieeexplore.ieee.org/Xplore/home.jsp (accessed on 4 December 2022).
- Home—Springer. Available online: https://link.springer.com/ (accessed on 4 December 2022).
- Pirpinia, K.; Bosman, P.A.N.; Sonke, J.-J.; van Herk, M.; Alderliesten, T. Evolutionary Machine Learning for Multi-Objective Class Solutions in Medical Deformable Image Registration. Algorithms 2019, 12, 99. [Google Scholar] [CrossRef] [Green Version]
- Roche, A.; Malandain, G.; Pennec, X.; Ayache, N. The Correlation Ratio as a New Similarity Measure for Multimodal Image Registration. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention—MICCAI’98, Cambridge, MA, USA, 11–13 October 1998; Wells, W.M., Colchester, A., Delp, S., Eds.; Springer: Berlin/Heidelberg, Germany, 1998; pp. 1115–1124. [Google Scholar]
- Wahba, G. Spline Models for Observational Data; SIAM: Philadelphia, USA, 1990; ISBN 978-1-61197-012-8. [Google Scholar]
- Rodrigues, S.; Bauer, P.; Bosman, P.A.N. A Novel Population-Based Multi-Objective CMA-ES and the Impact of Different Constraint Handling Techniques. In Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation, Vancouver, BC, Canada, 12–16 July 2014; Association for Computing Machinery: New York, NY, USA, 2014; pp. 991–998. [Google Scholar]
- Nakane, T.; Xie, H.; Zhang, C. Image Deformation Estimation via Multiobjective Optimization. IEEE Access 2022, 10, 53307–53323. [Google Scholar] [CrossRef]
- Keikhosravi, A.; Li, B.; Liu, Y.; Eliceiri, K.W. Intensity-based registration of bright-field and second-harmonic generation images of histopathology tissue sections. Biomed. Opt. Express 2019, 11, 160–173. [Google Scholar] [CrossRef] [PubMed]
- Shi, G.; Xu, X.; Dai, Y. SIFT Feature Point Matching Based on Improved RANSAC Algorithm. In Proceedings of the 2013 5th International Conference on Intelligent Human-Machine Systems and Cybernetics, Hangzhou, China, 26–27 August 2013; Volume 1, pp. 474–477. [Google Scholar]
- Ma, W.; Wen, Z.; Wu, Y.; Jiao, L.; Gong, M.; Zheng, Y.; Liu, L. Remote Sensing Image Registration with Modified SIFT and Enhanced Feature Matching. IEEE Geosci. Remote Sens. Lett. 2016, 14, 3–7. [Google Scholar] [CrossRef]
- Klein, S.; Staring, M.; Murphy, K.; Viergever, M.A.; Pluim, J.P.W. elastix: A Toolbox for Intensity-Based Medical Image Registration. IEEE Trans. Med. Imaging 2009, 29, 196–205. [Google Scholar] [CrossRef]
- Vidal, F.P.; Mitchell, I.T.; Létang, J.M. Use of fast realistic simulations on GPU to extract CAD models from microtomographic data in the presence of strong CT artefacts. Precis. Eng. 2021, 74, 110–125. [Google Scholar] [CrossRef]
- Hansen, N.; Ostermeier, A. Completely Derandomized Self-Adaptation in Evolution Strategies. Evol. Comput. 2001, 9, 159–195. [Google Scholar] [CrossRef]
- Bermejo, E.; Chica, M.; Damas, S.; Salcedo-Sanz, S.; Cordón, O. Coral Reef Optimization with substrate layers for medical Image Registration. Swarm Evol. Comput. 2018, 42, 138–159. [Google Scholar] [CrossRef]
- Salcedo-Sanz, S.; Del Ser, J.; Landa-Torres, I.; Gil-López, S.; Portilla-Figueras, J.A. The Coral Reefs Optimization Algorithm: A Novel Metaheuristic for Efficiently Solving Optimization Problems. Sci. World J. 2014, 2014, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Vermeij, M.; Sanz, S.S.; Bulnes, J.M. New Coral Reefs-based Approaches for the Model Type Selection Problem: A Novel Method to Predict a Nation’s Future Energy Demand. Int. J. Bio-Inspired Comput. 2017, 10, 1. [Google Scholar] [CrossRef]
- Takahashi, M.; Kita, H. A crossover operator using independent component analysis for real-coded genetic algorithms. In Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No. 01TH8546), Seoul, Korea, 27–30 May 2001; pp. 643–649. [Google Scholar]
- Deb, K.; Agrawal, R.B. Simulated binary crossover for continuous search space. Complex Syst. 1994, 9, 1–34. [Google Scholar]
- Trabia, M.B.; Bin Lu, X. A Fuzzy Adaptive Simplex Search Optimization Algorithm. J. Mech. Des. 1999, 123, 216–225. [Google Scholar] [CrossRef]
- Storn, R.; Price, K. Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 1997, 11, 341–359. [Google Scholar] [CrossRef]
- Nelder, J.A.; Mead, R. A Simplex Method for Function Minimization. Comput. J. 1965, 7, 308–313. [Google Scholar] [CrossRef]
- Klein, S.; Pluim, J.P.W.; Staring, M.; Viergever, M.A. Adaptive Stochastic Gradient Descent Optimisation for Image Registration. Int. J. Comput. Vis. 2008, 81, 227–239. [Google Scholar] [CrossRef] [Green Version]
- Jenkinson, M.; Bannister, P.; Brady, M.; Smith, S. Improved Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain Images. Neuroimage 2002, 17, 825–841. [Google Scholar] [CrossRef]
- Friedman, M. A Comparison of Alternative Tests of Significance for the Problem of $m$ Rankings. Ann. Math. Stat. 1940, 11, 86–92. [Google Scholar] [CrossRef]
- Dunn, O.J. Multiple Comparisons among Means. J. Am. Stat. Assoc. 1961, 56, 52–64. [Google Scholar] [CrossRef]
- Holm, S. A Simple Sequentially Rejective Multiple Test Procedure. Scand. J. Stat. 1979, 6, 65–70. [Google Scholar] [CrossRef]
- Wu, Y.; Ma, W.; Miao, Q.; Wang, S. Multimodal continuous ant colony optimization for multisensor remote sensing image registration with local search. Swarm Evol. Comput. 2019, 47, 89–95. [Google Scholar] [CrossRef]
- Dorigo, M.; Maniezzo, V.; Colorni, A. Ant system: Optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. Part B Cybern. 1996, 26, 29–41. [Google Scholar] [CrossRef] [Green Version]
- Socha, K.; Dorigo, M. Ant colony optimization for continuous domains. Eur. J. Oper. Res. 2008, 185, 1155–1173. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Wei, C.; Zhao, J.; Qiang, Y.; Wu, W.; Hao, Z. Adaptive mutation quantum-inspired squirrel search algorithm for global optimization problems. Alex. Eng. J. 2022, 61, 7441–7476. [Google Scholar] [CrossRef]
- Jain, M.; Singh, V.; Rani, A. A novel nature-inspired algorithm for optimization: Squirrel search algorithm. Swarm Evol. Comput. 2019, 44, 148–175. [Google Scholar] [CrossRef]
- Sun, J.; Feng, B.; Xu, W. Particle Swarm Optimization with Particles Having Quantum Behavior. In Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753), Portland, OR, USA, 19–23 June 2004; Volume 1, pp. 325–331. [Google Scholar]
- Li, Y.; Bai, X.; Jiao, L.; Xue, Y. Partitioned-cooperative quantum-behaved particle swarm optimization based on multilevel thresholding applied to medical image segmentation. Appl. Soft Comput. 2017, 56, 345–356. [Google Scholar] [CrossRef]
- Bejinariu, S.-I.; Costin, H.; Rotaru, F.; Luca, R.; Nita, C.D.; Lazar, C. Fireworks Algorithm Based Image Registration. In Proceedings of the Soft Computing Applications, Sofa 2016, Volume 1, Arad, Romania, 24–26 August 2016; Balas, V.E., Jain, L.C., Balas, M.M., Eds.; Springer International Publishing: Cham, Switzerland, 2018; Volume 633, pp. 509–523. [Google Scholar]
- Tan, Y. Fireworks Algorithm: A Novel Swarm Intelligence Optimization Method; Springer: Berlin/Heidelberg, Germany, 2015; ISBN 978-3-662-46353-6. [Google Scholar]
- Bejinariu, S.-I.; Costin, H.; Rotaru, F.; Luca, R.; Nita, C.D. Automatic multi-threshold image segmentation using metaheuristic algorithms. In Proceedings of the 2015 International Symposium on Signals, Circuits and Systems (ISSCS), Iasi, Romania, 9–10 July 2015; pp. 1–4. [Google Scholar]
- Bejinariu, S.-I.; Costin, H.; Rotaru, F.; Luca, R.; Niţă, C. Image Processing by Means of Some Bio-Inspired Optimization Algorithms. In Proceedings of the 2015 E-Health and Bioengineering Conference (EHB), Iasi, Romania, 19–21 November 2015; pp. 1–4. [Google Scholar]
- Bejinariu, S.-I.; Costin, H.; Rotaru, F.; Niţă, C.; Luca, R.; Lazar, C. Parallel Processing and Bioinspired Computing for Biomedical Image Registration. Comput. Sci. J. Mold. 2014, 22, 253–277. [Google Scholar]
- Chen, Y.; He, F.; Li, H.; Zhang, D.; Wu, Y. A full migration BBO algorithm with enhanced population quality bounds for multimodal biomedical image registration. Appl. Soft Comput. 2020, 93, 106335. [Google Scholar] [CrossRef]
- Simon, D. Biogeography-Based Optimization. IEEE Trans. Evol. Comput. 2008, 12, 702–713. [Google Scholar] [CrossRef] [Green Version]
- Valsecchi, A.; Damas, S.; Santamaría, J.; Marrakchi-Kacem, L. Intensity-based image registration using scatter search. Artif. Intell. Med. 2014, 60, 151–163. [Google Scholar] [CrossRef] [PubMed]
- Saxena, S.; Pohit, M. Near Infrared and Visible Image Registration Using Whale Optimization Algorithm. Int. J. Appl. Metaheuristic Comput. 2022, 13, 1–14. [Google Scholar] [CrossRef]
- Mirjalili, S.; Lewis, A. The Whale Optimization Algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
- Bay, H.; Tuytelaars, T.; Van Gool, L. SURF: Speeded Up Robust Features. In Proceedings of the Computer Vision—ECCV 2006, Graz, Austria, 7–13 May 2006; Leonardis, A., Bischof, H., Pinz, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 404–417. [Google Scholar]
- Muja, M.; Lowe, D.G. Fast Approximate Nearest Neighbors with Automatic Algorithm Configuration. VISAPP 2009, 2, 331–340. [Google Scholar]
- Leutenegger, S.; Chli, M.; Siegwart, R.Y. BRISK: Binary Robust Invariant Scalable Keypoints. In Proceedings of the 2011 International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; pp. 2548–2555. [Google Scholar]
- Harris, C.; Stephens, M. A Combined Corner and Edge Detector. British Machine Vision Association and Society for Pattern Recognition. In Proceedings of the Alvey Vision Conference 1988, London, UK, 21–24 November 1988; pp. 147–151. [Google Scholar]
- Chen, Y.; He, F.; Zeng, X.; Li, H.; Liang, Y. The explosion operation of fireworks algorithm boosts the coral reef optimization for multimodal medical image registration. Eng. Appl. Artif. Intell. 2021, 102, 104252. [Google Scholar] [CrossRef]
- Shen, D.; Lin, Y.; Ren, Z.; Chen, W. Normal-Based Flower Pollination Algorithm (FPA) for Solving 3D Point Set Registration via Rotation Optimization. IEEE Access 2020, 8, 193578–193592. [Google Scholar] [CrossRef]
- Yang, X.-S. Flower Pollination Algorithm for Global Optimization. In Proceedings of the Unconventional Computation and Natural Computation, Orléans, France, 3–7 September 2012; Durand-Lose, J., Jonoska, N., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 240–249. [Google Scholar]
- Hu, H.; Pun, C.-M.; Liu, Y.; Lai, X.; Yang, Z.; Gao, H. An artificial bee algorithm with a leading group and its application into image registration. Multimed. Tools Appl. 2019, 79, 14643–14669. [Google Scholar] [CrossRef]
- Karaboga, D. An Idea Based on Honey Bee Swarm for Numerical Optimization, Technical Report—TR06; Technical Report; Erciyes University: Kayseri, Türkiye, 2005. [Google Scholar]
- Liu, X.; Chen, S.; Zhuo, L.; Li, J.; Huang, K. Multi-sensor image registration by combining local self-similarity matching and mutual information. Front. Earth Sci. 2018, 12, 779–790. [Google Scholar] [CrossRef]
- Shechtman, E.; Irani, M. Matching Local Self-Similarities across Images and Videos. In Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, MN, USA, 17–22 June 2017; pp. 1–8. [Google Scholar]
- Wang, J.; Yu, H. A new chaos cat swarm optimization algorithm based on saliency gradient for power equipment infrared and visible images registration. Evol. Intell. 2022, 1–15. [Google Scholar] [CrossRef]
- Chu, S.-C.; Tsai, P.; Pan, J.-S. Cat Swarm Optimization. In Proceedings of the PRICAI 2006: Trends in Artificial Intelligence, Guilin, China, 7–11 August 2016; Yang, Q., Webb, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 854–858. [Google Scholar]
- Yu, K.; Ma, J.; Hu, F.; Ma, T.; Quan, S.; Fang, B. A grayscale weight with window algorithm for infrared and visible image registration. Infrared Phys. Technol. 2019, 99, 178–186. [Google Scholar] [CrossRef]
- Liang, J.; Liu, X.; Huang, K.; Li, X.; Wang, D.; Wang, X. Automatic Registration of Multisensor Images Using an Integrated Spatial and Mutual Information (SMI) Metric. IEEE Trans. Geosci. Remote Sens. 2014, 52, 603–615. [Google Scholar] [CrossRef]
- Banharnsakun, A. Feature point matching based on ABC-NCC algorithm. Evol. Syst. 2017, 9, 71–80. [Google Scholar] [CrossRef]
- Shi, J.; Tomasi, C. Good Features to Track. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 21–23 June 1994; pp. 593–600. [Google Scholar]
- Bradski, G.; Kaehler, A. Learning OpenCV: Computer Vision with the OpenCV Library; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2008; ISBN 978-0-596-55404-0. [Google Scholar]
- Stan, A.D.; Cocianu, C.-L. Evolutionary-Based Approach for Solving Digital Signature Recognition Task. In Proceedings of the 14th International Scientific Conference Elearning and Software for Education: Elearning Challenges and New Horizons, Vol 2, Bucharest, Romania, 19–20 April 2018; Roceanu, I., Ionita, A.D., Dascalu, M.I., Moldoveanu, A., Radu, C., Matu, S.T., Colibaba, A.C., Eds.; Carol I National Defence University Publishing House: Bucharest, Romania, 2018; pp. 254–261. [Google Scholar]
- Cocianu, C.-L.; Stan, A.; Avramescu, M. New Attempts in Solving Image Recognition Tasks. In Proceedings of the Information and Software Technologies, Icist 2019, Vilnius, Lithuania, 10–12 October 2019; Damasevicius, R., Vasiljeviene, G., Eds.; Springer International Publishing: Cham, Switzerland, 2019; Volume 1078, pp. 463–474. [Google Scholar]
- Cocianu, C.-L.; Stan, A. New Evolutionary-Based Techniques for Image Registration. Appl. Sci. 2019, 9, 176. [Google Scholar] [CrossRef]
- Cocianu, C.-L.; Stan, A.D.; Avramescu, M. Firefly-Based Approaches of Image Recognition. Symmetry 2020, 12, 881. [Google Scholar] [CrossRef]
- Cocianu, C.-L.; Uscatu, C.R. Cluster-Based Memetic Approach of Image Alignment. Electronics 2021, 10, 2606. [Google Scholar] [CrossRef]
- Cocianu, C.L.; Uscatu, C.R. Multi-Scale Memetic Image Registration. Electronics 2022, 11, 278. [Google Scholar] [CrossRef]
- Eiben, A.E.; Smith, J.E. Introduction to Evolutionary Computing; Springer: Berlin/Heidelberg, Germany, 2015; ISBN 978-3-662-44874-8. [Google Scholar]
- Edelkamp, S.; Schrodl, S. Heuristic Search: Theory and Applications; Elsevier: Amsterdam, The Netherlands, 2011; ISBN 978-0-08-091973-7. [Google Scholar]
- Goshtasby, A.A. Theory and Applications of Image Registration; John Wiley & Sons: Hoboken, NJ, USA, 2017; ISBN 978-1-119-17171-3. [Google Scholar]
- El-tanany, A.S.; Hussein, K.; Mousa, A.; Amein, A.S. Evaluation of Gradient Descent Optimization Method for SAR Images Co-Registration. In Proceedings of the 2020 12th International Conference on Electrical Engineering (ICEENG), Cairo, Egypt, 7–9 July 2020; pp. 288–292. [Google Scholar]
- Viola, P.; Iii, W.M.W. Alignment by Maximization of Mutual Information. Int. J. Comput. Vis. 1997, 24, 137–154. [Google Scholar] [CrossRef]
- Vila, M.; Bardera, A.; Feixas, M.; Sbert, M. Tsallis Mutual Information for Document Classification. Entropy 2011, 13, 1694–1707. [Google Scholar] [CrossRef] [Green Version]
- Spanakis, C.; Mathioudakis, E.; Kampanis, N.; Tsiknakis, M.; Marias, K. Machine-learning regression in evolutionary algorithms and image registration. IET Image Process. 2019, 13, 843–849. [Google Scholar] [CrossRef]
- Geem, Z.W.; Kim, J.H.; Loganathan, G.V. A new heuristic optimization algorithm: Harmony search. Simulation 2001, 76, 60–68. [Google Scholar] [CrossRef]
- Cover, T.M.; Thomas, J.A. Elements of Information Theory; John Wiley & Sons: Hoboken, NJ, USA, 2012; ISBN 978-1-118-58577-1. [Google Scholar]
- Vapnik, V.N. Statistical Learning Theory, 1st ed.; Wiley-Interscience: New York, NY, USA, 1998; ISBN 978-0-471-03003-4. [Google Scholar]
- Gomez, O.; Mesejo, P.; Ibanez, O.; Valsecchi, A.; Cordon, O. A real-coded evolutionary algorithm-based registration approach for forensic identification using the radiographic comparison of frontal sinuses. In Proceedings of the 2020 IEEE Congress on Evolutionary Computation, Glasgow, UK, 19–24 July 2020. [Google Scholar]
- Gómez, O.; Ibáñez, O.; Valsecchi, A.; Cordón, O.; Kahana, T. 3D-2D silhouette-based image registration for comparative radiography-based forensic identification. Pattern Recognit. 2018, 83, 469–480. [Google Scholar] [CrossRef]
- Sørensen, T. A Method of Establishing Groups of Equal Amplitude in Plant Sociology Based on Similarity of Species Content and Ist Application to Analyses of the Vegetation on Danish Commons; Munksgaard: Copenhagen, Denmark, 1948. [Google Scholar]
- van de Kraats, E.; Penney, G.; Tomazevic, D.; van Walsum, T.; Niessen, W. Standardized evaluation methodology for 2-D-3-D registration. IEEE Trans. Med. Imaging 2005, 24, 1177–1189. [Google Scholar] [CrossRef] [PubMed]
- Price, K.; Storn, R.M.; Lampinen, J.A. Differential Evolution: A Practical Approach to Global Optimization; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2006; ISBN 978-3-540-31306-9. [Google Scholar]
- Martínez-Río, J.; Carmona, E.J.; Cancelas, D.; Novo, J.; Ortega, M. Robust multimodal registration of fluorescein angiography and optical coherence tomography angiography images using evolutionary algorithms. Comput. Biol. Med. 2021, 134, 104529. [Google Scholar] [CrossRef]
- Wang, X.; Wang, X.; Han, L. A Novel Parallel Architecture for Template Matching based on Zero-Mean Normalized Cross-Correlation. IEEE Access 2019, 7, 186626–186636. [Google Scholar] [CrossRef]
- Sun, Y.; Li, Y.; Yang, Y.; Yue, H. Differential evolution algorithm with population knowledge fusion strategy for image registration. Complex Intell. Syst. 2021, 8, 835–850. [Google Scholar] [CrossRef]
- Schmitt, M.; Zhu, X.X. Data Fusion and Remote Sensing: An ever-growing relationship. IEEE Geosci. Remote Sens. Mag. 2016, 4, 6–23. [Google Scholar] [CrossRef]
- Li, Y.; Chen, C.; Yang, F.; Huang, J. Deep Sparse Representation for Robust Image Registration. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 4894–4901. [Google Scholar]
- Bouter, A.; Alderliesten, T.; Bosman, P.A. GPU-Accelerated Parallel Gene-pool Optimal Mixing Applied to Multi-Objective Deformable Image Registration. In Proceedings of the 2021 IEEE Congress on Evolutionary Computation (cec 2021), Krakow, Poland, 28 June–1 July 2021; IEEE: New York, NY, USA, 2021; pp. 2539–2548. [Google Scholar]
- Thierens, D.; Bosman, P.A.N. Optimal Mixing Evolutionary Algorithms. In Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, Dublin, Ireland, 12–16 July 2011; Association for Computing Machinery: New York, NY, USA; pp. 617–624. [Google Scholar]
- Bouter, A.; Alderliesten, T.; Bosman, P.A. Achieving Highly Scalable Evolutionary Real-Valued Optimization by Exploiting Partial Evaluations. Evol. Comput. 2021, 29, 129–155. [Google Scholar] [CrossRef]
- Casella, A.; De Falco, I.; Della Cioppa, A.; Scafuri, U.; Tarantino, E. Exploiting multi-core and GPU hardware to speed up the registration of range images by means of Differential Evolution. J. Parallel Distrib. Comput. 2018, 133, 307–318. [Google Scholar] [CrossRef]
- Yamany, S.; Ahmed, M.; Hemayed, E.; Farag, A. Novel surface registration using the grid closest point (GCP) transform. In Proceedings of the 1998 International Conference on Image Processing, ICIP98, Chicago, IL, USA, 7 October 1998; IEEE: New York, NY, USA, 1998; pp. 809–813. [Google Scholar]
- De Falco, I.; Scafuri, U.; Tarantino, E.; Della Cioppa, A. An asynchronous adaptive multi-population model for distributed differential evolution. In Proceedings of the IEEE Congress on Evolutionary Computation (CEC), Vancouver, BC, Canada, 24–29 July 2016; IEEE: New York, NY, USA, 2016; pp. 5010–5017. [Google Scholar]
- Wu, Y.; Liu, Y.; Gong, M.; Gong, P.; Li, H.; Tang, Z.; Miao, Q.; Ma, W. Multi-View Point Cloud Registration Based on Evolutionary Multitasking With Bi-Channel Knowledge Sharing Mechanism. IEEE Trans. Emerg. Top. Comput. Intell. 2022, 1–18. [Google Scholar] [CrossRef]
- Carlos, H.; Aranda, R.; Mejia-Zuluaga, P.A.; Medina-Fernandez, S.L.; Hernandez-Lopez, F.J.; Alvarez-Carmona, M.A. Co-Registration of Remote Sensing Image Based on Histogram Kernel Predictability. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 1–14. [Google Scholar] [CrossRef]
- Reducindo, I.; Arce-Santana, E.R.; Campos-Delgado, D.U.; Vigueras-Gomez, J.F.; Alba, A. An exploration of multimodal similarity metrics for parametric image registration based on particle filtering. In Proceedings of the 2011 8th International Conference on Electrical Engineering, Computing Science and Automatic Control, Merida City, Mexico, 26–28 October; pp. 1–6.
- Ye, Y.; Bruzzone, L.; Shan, J.; Bovolo, F.; Zhu, Q. Fast and Robust Matching for Multimodal Remote Sensing Image Registration. IEEE Trans. Geosci. Remote Sens. 2019, 57, 9059–9070. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.; Zhang, Y.; Wan, Y.; Liu, X.; Yan, X.; Li, J. Multi-Modal Remote Sensing Image Matching Considering Co-Occurrence Filter. IEEE Trans. Image Process. 2022, 31, 2584–2597. [Google Scholar] [CrossRef] [PubMed]
- Gómez, O.; Mesejo, P.; Ibáñez, O.; Cordón, O. Deep architectures for the segmentation of frontal sinuses in X-ray images: Towards an automatic forensic identification system in comparative radiography. Neurocomputing 2021, 456, 575–585. [Google Scholar] [CrossRef]
- Gómez, O.; Mesejo, P.; Ibáñez, O.; Valsecchi, A.; Cordón, O. Deep architectures for high-resolution multi-organ chest X-ray image segmentation. Neural Comput. Appl. 2019, 32, 15949–15963. [Google Scholar] [CrossRef] [Green Version]
- Moravec, J. Hand contour classification using evolutionary algorithm. Inf. Technol. Control 2020, 49, 55–79. [Google Scholar] [CrossRef]
- Besl, P.J.; McKay, N.D. A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 1992, 14, 239–256. [Google Scholar] [CrossRef] [Green Version]
- Mallipeddi, R.; Suganthan, P.; Pan, Q.; Tasgetiren, M. Differential evolution algorithm with ensemble of parameters and mutation strategies. Appl. Soft Comput. 2011, 11, 1679–1696. [Google Scholar] [CrossRef]
- Abe, S.; Otake, Y.; Tennma, Y.; Hiasa, Y.; Oka, K.; Tanaka, H.; Shigi, A.; Miyamura, S.; Sato, Y.; Murase, T. Analysis of forearm rotational motion using biplane fluoroscopic intensity-based 2D–3D matching. J. Biomech. 2019, 89, 128–133. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, B.; Li, Y.; Zuo, C.; Wang, X.; Zhang, W. A method of partially overlapping point clouds registration based on differential evolution algorithm. PLoS ONE 2018, 13, e0209227. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Yuan, Z.; DU, S.; Ma, L.; Zhu, J. Rigid Partially Registration Algorithm for Point Set with Particle Lter. Sci. Sin. Inf. 2014, 44, 886–899. [Google Scholar] [CrossRef]
- Zhu, J.; Meng, D.; Li, Z.; Du, S.; Yuan, Z. Robust registration of partially overlapping point sets via genetic algorithm with growth operator. IET Image Process. 2014, 8, 582–590. [Google Scholar] [CrossRef] [Green Version]
- Fischer, P.; Schuegraf, P.; Merkle, N.; Storch, T. An Evolutionary Algorithm for Fast Intensity Based Image Matching Between Optical and SAR Satellite Imagery. In Proceedings of the ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences; Copernicus GmbH: Göttingen, Germany, 2018; Volume IV-3, pp. 83–90. [Google Scholar]
- Damas, S.; Santamaria, J. Evolutionary Intensity-based Medical Image Registration: A Review. Curr. Med. Imaging Former. Curr. Med Imaging Rev. 2014, 9, 283–297. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Li, S.; Pradhan, D.; Hammoud, R.; Chen, Q.; Yin, F.-F.; Zhao, Y.; Kim, J.H.; Movsas, B. Comparison of Similarity Measures for Rigid-body CT/Dual X-ray Image Registrations. Technol. Cancer Res. Treat. 2007, 6, 337–345. [Google Scholar] [CrossRef] [PubMed]
- Melbourne, A.; Ridgway, G.; Hawkes, D.J. Image similarity metrics in image registration. Prog. Biomed. Opt. Imaging Proc. SPIE 2010, 7623, 962–971. [Google Scholar] [CrossRef] [Green Version]
- Kvålseth, T.O. On Normalized Mutual Information: Measure Derivations and Properties. Entropy 2017, 19, 631. [Google Scholar] [CrossRef]
Articles | Field of Application |
---|---|
[16,98,109] | 3D models |
[66,67,68] | banking, signature |
[31,46,57,78,89,99,112] | geographic |
[69,70,71,105] | identification |
[53,59] | industrial |
[7,12,18,34,43,52,55,78,82,87,103,108] | medical |
[11,38,63,92,95] | unspecified |
Articles | Basic Algorithm(s) | Type * | Class ** |
---|---|---|---|
[7] | GA | Population | GA |
[11] | GA | Population | GA |
[12] | (1+1)ES | Single individual | ES |
[16] | CMA-ES | Population | ES |
[18] | CRO | Population | SI |
[31] | ACO | Population | SI |
[34] | SSA, QPSO | Population | SI |
[38] | FWA | Population | SI |
[43] | BBO, DE | Population | SI |
[46] | WOA | Population | SI |
[52] | FWA, CRO | Population | SI |
[53] | FPA | Population | SI |
[55] | ABC | Population | SI |
[57] | PSO | Population | SI |
[59] | CSA | Population | SI |
[63] | ABC | Population | SI |
[66] | ES | Population | ES |
[67] | ES, 2MES | Population | ES |
[68] | APSO, ES | Population | SI |
[69] | FA, 2MES | Population | SI |
[70] | FA, 2MES | Population | SI |
[71] | FA, 2MES | Population | SI |
[78] | HAR, SVR | Population | G-EA |
[82] | RCEA | Population | G-EA |
[87] | DE | Population | G-EA |
[89] | DE | Population | G-EA |
[92] | GOMEA | Population | G-EA |
[95] | DE | Population | G-EA |
[98] | EMTO | Population | G-EA |
[99] | EA | Population | G-EA |
[103] | RCEA | Population | G-EA |
[105] | ICP, DE | Population | G-EA |
[108] | unspecified | Population | - |
[109] | DE | Population | G-EA |
[112] | EA, Hill climbing | Population | G-EA |
Articles | Image Similarity |
---|---|
[12,18,31,38,43,46,52,55,57,59,66,67,68,69,78,89,112] | MI-based |
[11,16,95] | MSE-based |
[99] | SHKP |
[16] | SSIM |
[7] | BEP |
[7,16,34,63,87] | CC-based |
[70,71,82,103] | DICE-based |
[31,89] | DTV |
[11,98,109] | ED-based |
[16] | MAE |
[53,92,105,108] | unspecified |
Articles | Fitness |
---|---|
[12,18,38,43,46,52,55,57,66,67,68,69,78,89,112] | MI-based |
[16,34,63,87] | CC-based |
[70,71,82,103] | DICE-based |
[16,53,95] | MSE-based |
[7,38,109] | ED-based |
[11,31,53,59,92,98,99,105,108] | others |
Articles | Algorithm Accuracy |
---|---|
[11,12,31,53,57,59,66,67,68,69,70,71,78,89,99] | Standard image processing error/similarity measures (SNR/SNPR, RMSE, MAE, SSIM) |
[57,63,67,68,69,70,71,87,109] | Success/recognition rate |
[38,43,46,52,55,66,67,70,71,99] | MI-based |
[34,38,63], | CC-based |
[7,11,82,92,98,103,105] | ED-based |
[70,82,103] | DICE-based |
[18] | average distance of corner VOI, Bohmann–Dunn test, Holm test, visual |
[95] | Friedman, Quade, Aligned Friedman |
[16,108,112] | unspecified |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cocianu, C.-L.; Uscatu, C.R.; Stan, A.D. Evolutionary Image Registration: A Review. Sensors 2023, 23, 967. https://doi.org/10.3390/s23020967
Cocianu C-L, Uscatu CR, Stan AD. Evolutionary Image Registration: A Review. Sensors. 2023; 23(2):967. https://doi.org/10.3390/s23020967
Chicago/Turabian StyleCocianu, Cătălina-Lucia, Cristian Răzvan Uscatu, and Alexandru Daniel Stan. 2023. "Evolutionary Image Registration: A Review" Sensors 23, no. 2: 967. https://doi.org/10.3390/s23020967
APA StyleCocianu, C. -L., Uscatu, C. R., & Stan, A. D. (2023). Evolutionary Image Registration: A Review. Sensors, 23(2), 967. https://doi.org/10.3390/s23020967