COSIBAS Platform—Cognitive Services for IoT-Based Scenarios: Application in P2P Networks for Energy Exchange
Abstract
:1. Introduction
2. Related Work
3. Architecture
- Generic Components “A platform of open source software components which can be used jointly or in combination with third-party components to build platforms that aid in the development of intelligent solutions in a fast, easy and inexpensive way” [29].
- Specific Components Well-defined components designed to assist the application development plan in other use cases.
- Context Broker A single component required to be considered a FIWARE solution.
- External Services and Dashboard Components responsible for creating requests to the system and displaying their responses.
Summary of Useful Web Approaches
4. Machine-Learning Models for Wind-Power-Generation Prediction
4.1. Study of the Dataset
- Date/Time Time at which the measurement was taken, the measurements were taken at 10 minute intervals.
- LV Active Power (kW) The power generated by that mill at that time.
- Wind Speed (m/s) The wind speed at the height of the windmill axis.
- Theoretical Power Curve (KW) The theoretical power that the windmill should generate for that wind speed (provided by the manufacturer).
- Wind Direction (°) The wind direction at the windmill axis (The windmill is automatically rotated to that direction).
- Month A month column was added based on the date column.
- Mean Wind Speed In this new column, the wind speed is rewritten in 0.5 intervals—for example: if the wind speed is between 3.25 and 3.75, it becomes 3.5; and if the wind speed is between 3.75 and 4.25, it becomes 4.
- Mean Wind Direction In this new column, the wind direction is rewritten in 30 degree intervals—for example: for wind directions between 15 and 45, it would become 30; or for wind directions between 45 and 75, it would become 60.
- Direction In this column, we rewrite the Mean Wind Direction column to replace its values with letters, e.g., 0 = N, 30 = NNE, 60 = NEE and 90 = E, …
4.2. Algorithms Used Wind
5. Machine-Learning Models for Solar-Power-Generation Prediction
5.1. Study of the Dataset
- Day of Year Day of current year [0–365].
- Year Year in which the measurement is taken.
- Month Month of the year in which the measurement is taken.
- Day Day of the month in which the measurement is taken.
- First Hour of Period Measurements are taken in 3 h intervals, i.e., each measurement represents the value of a 3 h interval, and this column represents the time of day when that 3 h period begins.
- Daylight Represents whether the time that measurement was taken was in the daytime or nighttime.
- Distance to Solar Noon A measure representing the distance to the time of day when the sun is at the highest point in the sky for the location where the measurements are taken [0–1].
- Average Temperature (Day) Average of the temperature of the day when the measurement is taken.
- Wind Direction (Day) Average wind direction for the day the measurement is taken.
- Average Wind Speed (Day) Average wind speed for the day the measurement is taken.
- Sky Cover Indicates how clear the sky is.
- Visibility Indicates the visibility.
- Relative Humidity Relative humidity of the environment.
- Wind Speed (Period) Average wind speed of the period in which the measurement is taken.
- Barometric Pressure (Period) Average barometric pressure of the period in which the measurement is taken.
- Generated Amount of power generated in that period.
5.2. Algorithms Used Solar
6. Trading
- No bidders for the auction: the auction fails and no one wins the lot.
- Single bidder for the auction: The consumer wins the auction with the starting bid price.
- Multiple bidders for the auction: The winner selection process begins.
7. Discussion of Future Research Directions
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Studer, R.; Benjamins, V.R.; Fensel, D. Knowledge engineering: Principles and methods. Data Knowl. Eng. 1998, 25, 161–197. [Google Scholar] [CrossRef] [Green Version]
- Rhayem, A.; Mhiri, M.B.A.; Gargouri, F. Semantic Web Technologies for the Internet of Things: Systematic Literature Review. Internet Things 2020, 11, 100206. [Google Scholar] [CrossRef]
- Barnaghi, P.; Wang, W.; Henson, C.; Taylor, K. Semantics for the Internet of Things: Early progress and back to the future. Int. J. Semant. Web Inf. Syst. (IJSWIS) 2012, 8, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Ruta, M.; Scioscia, F.; Di Sciascio, E.; Rotondi, D. Ubiquitous Knowledge Bases for the Semantic Web of Things. First Internet of Things International Forum. 2011. Available online: https://sisinflab.poliba.it/publications/ubiquitous-knowledge-bases-for-the-semantic-web-of-things/ (accessed on 8 December 2020).
- Jara, A.J.; Olivieri, A.C.; Bocchi, Y.; Jung, M.; Kastner, W.; Skarmeta, A.F. Semantic web of things: An analysis of the application semantics for the iot moving towards the iot convergence. Int. J. Web Grid Serv. 2014, 10, 244–272. [Google Scholar] [CrossRef]
- Garcia-de Prado, A.; Ortiz, G.; Boubeta-Puig, J. COLLECT: COLLaborativE ConText-aware service oriented architecture for intelligent decision-making in the Internet of Things. Expert Syst. Appl. 2017, 85, 231–248. [Google Scholar] [CrossRef] [Green Version]
- Jabbar, S.; Ullah, F.; Khalid, S.; Khan, M.; Han, K. Semantic interoperability in heterogeneous IoT infrastructure for healthcare. Wirel. Commun. Mob. Comput. 2017, 2017, 9731806. [Google Scholar] [CrossRef] [Green Version]
- Ullah, F.; Habib, M.A.; Farhan, M.; Khalid, S.; Durrani, M.Y.; Jabbar, S. Semantic interoperability for big-data in heterogeneous IoT infrastructure for healthcare. Sustain. Cities Soc. 2017, 34, 90–96. [Google Scholar] [CrossRef]
- Xiao, G.; Guo, J.; Da Xu, L.; Gong, Z. User interoperability with heterogeneous IoT devices through transformation. IEEE Trans. Ind. Inform. 2014, 10, 1486–1496. [Google Scholar] [CrossRef]
- Perera, C.; Zaslavsky, A.; Christen, P.; Georgakopoulos, D. Context aware computing for the internet of things: A survey. IEEE Commun. Surv. Tutor. 2013, 16, 414–454. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Chen, H.; Orlandi, F.; Lee, Y.H.; O’Sullivan, D.; Dev, S. Automated climate analyses using knowledge graph. In Proceedings of the 2021 IEEE USNC-URSI Radio Science Meeting (Joint with AP-S Symposium), Singapore, 4–10 December 2021; pp. 106–107. [Google Scholar]
- Wu, J.; Orlandi, F.; Pathan, M.S.; O’Sullivan, D.; Dev, S. Augmenting weather sensor data with remote knowledge graphs. In Proceedings of the IGARSS 2022—2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022; pp. 1264–1267. [Google Scholar]
- Salatino, A.A.; Thanapalasingam, T.; Mannocci, A.; Osborne, F.; Motta, E. The computer science ontology: A large-scale taxonomy of research areas. In International Semantic Web Conference; Springer: Cham, Switzerland, 2018; pp. 187–205. [Google Scholar]
- Wu, J.; Orlandi, F.; Gollini, I.; Pisoni, E.; Dev, S. Uplifting air quality data using knowledge graph. In Proceedings of the 2021 Photonics & Electromagnetics Research Symposium (PIERS), Hangzhou, China, 21–25 November 2021; pp. 2347–2350. [Google Scholar]
- Wu, J.; Orlandi, F.; O’Sullivan, D.; Dev, S. LinkClimate: An interoperable knowledge graph platform for climate data. Comput. Geosci. 2022, 169, 105215. [Google Scholar] [CrossRef]
- Szilagyi, I.; Wira, P. Ontologies and Semantic Web for the Internet of Things—A survey. In Proceedings of the IECON 2016—42nd Annual Conference of the IEEE Industrial Electronics Society, Florence, Italy, 23–26 October 2016; pp. 6949–6954. [Google Scholar]
- Compton, M.; Barnaghi, P.; Bermudez, L.; Garcia-Castro, R.; Corcho, O.; Cox, S.; Graybeal, J.; Hauswirth, M.; Henson, C.; Herzog, A.; et al. The SSN ontology of the W3C semantic sensor network incubator group. J. Web Semant. 2012, 17, 25–32. [Google Scholar] [CrossRef]
- Kotis, K.; Katasonov, A. An Iot-Ontology for the Representation of Interconnected, Clustered and Aligned Smart Entities; Technical Report; VTT Technical Research Center of Finland: Espoo, Finland, 2012. [Google Scholar]
- Seydoux, N.; Drira, K.; Hernandez, N.; Monteil, T. IoT-O, a core-domain IoT ontology to represent connected devices networks. In European Knowledge Acquisition Workshop; Springer: Cham, Switzerland, 2016; pp. 561–576. [Google Scholar]
- Muppavarapu, V.; Ramesh, G.; Gyrard, A.; Noura, M. Knowledge extraction using semantic similarity of concepts from Web of Things knowledge bases. Data Knowl. Eng. 2021, 135, 101923. [Google Scholar] [CrossRef]
- Daniele, L.; Hartog, F.d.; Roes, J. Created in close interaction with the industry: The smart appliances reference (SAREF) ontology. In International Workshop Formal Ontologies Meet Industries; Springer: Cham, Switzerland, 2015; pp. 100–112. [Google Scholar]
- Gyrard, A. Designing Cross-Domain Semantic Web of Things Applications. Ph.D. Thesis, Télécom ParisTech, Palaiseau, France, 2015. [Google Scholar]
- Pfisterer, D.; Romer, K.; Bimschas, D.; Kleine, O.; Mietz, R.; Truong, C.; Hasemann, H.; Kröller, A.; Pagel, M.; Hauswirth, M.; et al. SPITFIRE: Toward a semantic web of things. IEEE Commun. Mag. 2011, 49, 40–48. [Google Scholar] [CrossRef]
- Mehta, S.; Tiwari, S.; Siarry, P.; Jabbar, M. Tools, Languages, Methodologies for Representing Semantics on the Web of Things; John Wiley & Sons: Hoboken, NJ, USA, 2022. [Google Scholar]
- Afzaal, R.; Shoaib, M. Data recoverability and estimation for perception layer in semantic web of things. PLoS ONE 2021, 16, e0245847. [Google Scholar] [CrossRef] [PubMed]
- Loseto, G.; Patton, E.W.; Seneviratne, O.; Van Woensel, W.; Scioscia, F.; Kagal, L. Mobile App Development for the Semantic Web of Things with Punya. In Proceedings of the ISWC (Posters/Demos/Industry), Virtual Conference, 24–28 October 2021. [Google Scholar]
- Obaid, A.J.; Chatterjee, T.; Bhattacharya, A. Semantic Web and Web Page Clustering Algorithms: A Landscape View. EAI Endorsed Trans. Energy Web 2021, 8, e7. [Google Scholar] [CrossRef]
- Mishra, S.; Jain, S.; Rai, C.; Gandhi, N. Security challenges in semantic web of things. In International Conference on Innovations in Bio-Inspired Computing and Applications; Springer: Cham, Switzerland, 2018; pp. 162–169. [Google Scholar]
- FIWARE. FIWARE Context Broker. 2020. Available online: https://www.fiware.org/catalogue/ (accessed on 28 December 2020).
- PATEL, C. Wind Turbine Power Analysis. 2020. Available online: https://www.kaggle.com/code/chittalpatel/wind-turbine-power-analysis/notebook (accessed on 28 December 2020).
- Ganthia, B.P.; Mohanty, M.; Maherchandani, J.K. Power analysis using various types of wind turbines. In Modeling and Control of Static Converters for Hybrid Storage Systems; IGI Global: Hershey, PA, USA, 2022; pp. 271–286. [Google Scholar]
- OVERFITTED. WSolar Power Generation. 2020. Available online: https://www.kaggle.com/code/chittalpatel/wind-turbine-power-analysis/notebook (accessed on 3 November 2022).
- Gül, Ö.M. Blockchain-Enabled Internet of Things (IoTs) Platforms for Vehicle Sensing and Transportation Monitoring. Available online: https://www.researchgate.net/publication/353903283_Blockchain-enabled_Internet_of_Things_IoTs_platforms_for_vehicle_sensing_and_transportation_monitoring (accessed on 3 November 2022).
- Wongthongtham, P.; Marrable, D.; Abu-Salih, B.; Liu, X.; Morrison, G. Blockchain-enabled Peer-to-Peer energy trading. Comput. Electr. Eng. 2021, 94, 107299. [Google Scholar] [CrossRef]
Model | MAE | MSE | RMSE | R2 | RMSLE | TT (s) |
---|---|---|---|---|---|---|
Light Gradient Boosting | 152.6337 | 141,232.3644 | 375.287 | 0.918 | 1.508 | 0.127 |
Gradient Boosting | 155.4339 | 141,346.4811 | 375.4099 | 0.9179 | 1.6532 | 0.94 |
CatBoost | 154.6182 | 143,318.3611 | 378.0807 | 0.9168 | 1.6128 | 2.963 |
Extreme Gradient Boosting | 157.3401 | 148,772.8508 | 385.1605 | 0.9136 | 1.5959 | 1.129 |
Random Forest | 160.9863 | 152,788.12 10 | 390.4444 | 0.9113 | 1.3707 | 2.217 |
Extra Trees | 166.4859 | 158,063.3209 | 397.1247 | 0.9082 | 1.3746 | 1.07 |
K Neighbors Regressor | 171.5040 | 165,489.9156 | 406.3238 | 0.9039 | 1.3991 | 0.024 |
Ada Boost | 309.1532 | 246,932.7357 | 496.5982 | 0.8566 | 2.0464 | 0.088 |
Decision Tree | 199.8973 | 277,651.8974 | 526.6256 | 0.8387 | 1.8514 | 0.049 |
Linear Regression | 385.0205 | 283,773.3672 | 532.5063 | 0.8352 | 2.6316 | 0.425 |
Bayesian Ridge | 385.0236 | 283,773.3669 | 532.5063 | 0.8352 | 2.6316 | 0.007 |
Ridge | 385.0258 | 283,773.3562 | 532.5063 | 0.8352 | 2.6315 | 0.006 |
Least Angle | 385.0206 | 283,773.3667 | 532.5063 | 0.8352 | 2.6316 | 0.008 |
Lasso | 385.1961 | 283,776.5953 | 532.5101 | 0.8352 | 2.6312 | 0.007 |
Orthogonal Matching Pursuit | 385.9314 | 284,452.3678 | 533.1459 | 0.8348 | 2.6404 | 0.007 |
Huber Regressor | 378.314 1 | 295,961.1937 | 543.7595 | 0.8281 | 2.7125 | 0.032 |
Passive Agg ressive | 378.0183 | 303,116.3767 | 550.2841 | 0.8239 | 2.768 | 0.014 |
Lasso LeastAngle | 429.8264 | 316,211.4787 | 562.2203 | 0.8163 | 2.5564 | 0.016 |
Elastic Net | 547.8478 | 444,773.0906 | 666.8626 | 0.7415 | 2.8225 | 0.007 |
Model | MAE | MSE | RMSE | R2 | RMSLE | MAPE |
---|---|---|---|---|---|---|
CatBoost | 1383.53 | 8,258,035.897 | 2842.3398 | 0.92 | 3.368 | 1.4268 |
Light Gradient Boosting Machine | 1425.90 | 8,645,953.306 | 2917.0007 | 0.9167 | 3.1948 | 1.444 |
Gradient Boosting | 1525.33 | 9,042,987.79 | 2973.3297 | 0.9129 | 3.4837 | 1.9477 |
Random Forest | 1387.55 | 9,132,938.701 | 2988.8308 | 0.9122 | 1.4369 | 1.3502 |
Extreme Gradient Boosting | 1528.08 | 9,132,115.59 | 2989.7954 | 0.912 | 3.5136 | 1.9225 |
Extra Trees | 1371.164 | 9,370,078.345 | 3032.71 | 0.9091 | 1.4207 | 1.2388 |
K Neighbors | 1995.01 | 14,418,032.69 | 3783.2075 | 0.8593 | 1.8795 | 3.2709 |
AdaBoost | 2658.09 | 16,246,782.77 | 4011.6881 | 0.8427 | 4.5131 | 3.6487 |
Decision Tree | 1823.12 | 18,487,851.69 | 4231.6982 | 0.8231 | 1.7356 | 1.2967 |
Linear | 3320.22 | 21,609,347.74 | 4633.5979 | 0.7902 | 5.0483 | 6.1362 |
Lasso | 3321.05 | 21,609,322.51 | 4633.5942 | 0.7902 | 5.0499 | 6.1158 |
Bayesian Ridge | 3328.44 | 21,619,397.04 | 4634.7018 | 0.7901 | 5.0601 | 6.103 |
Ridge Regression | 3330.88 | 21,622,794.72 | 4635.0831 | 0.79 | 5.0622 | 6.0973 |
Lasso Least Angle | 3341.40 | 21,757,851.6 | 4649.9118 | 0.7888 | 5.0506 | 5.7934 |
Random Sample Consensus | 3260.63 | 21,838,823.48 | 4657.6009 | 0.7878 | 5.0006 | 6.0694 |
TheilSen Regressor | 3436.71 | 22,350,259.85 | 4713.5883 | 0.7825 | 5.1132 | 6.0852 |
Huber Regressor | 3054.06 | 23,610,757.4 | 4837.1228 | 0.7706 | 4.615 | 4.3961 |
Passive Aggressive | 3018.56 | 26,104,737.57 | 5088.1992 | 0.747 | 4.1218 | 3.0214 |
Elastic Net | 4701.35 | 37,866,615.25 | 6143.6763 | 0.6359 | 5.2276 | 8.0117 |
Orthogonal Matching Pursuit | 4881.56 | 38,453,549.95 | 6193.5956 | 0.6299 | 5.3537 | 5.5916 |
Least Angle Regression | 5456.26 | 63,265,660.21 | 7134.0762 | 0.4037 | 5.4275 | 10.456 |
Support Vector Machine | 6928.34 | 147,606,069.7 | 12,099.8444 | -0.3985 | 4.5004 | 1.4865 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martín, D.G.; Florez, S.L.; González-Briones, A.; Corchado, J.M. COSIBAS Platform—Cognitive Services for IoT-Based Scenarios: Application in P2P Networks for Energy Exchange. Sensors 2023, 23, 982. https://doi.org/10.3390/s23020982
Martín DG, Florez SL, González-Briones A, Corchado JM. COSIBAS Platform—Cognitive Services for IoT-Based Scenarios: Application in P2P Networks for Energy Exchange. Sensors. 2023; 23(2):982. https://doi.org/10.3390/s23020982
Chicago/Turabian StyleMartín, Diego Gutiérrez, Sebastian Lopez Florez, Alfonso González-Briones, and Juan M. Corchado. 2023. "COSIBAS Platform—Cognitive Services for IoT-Based Scenarios: Application in P2P Networks for Energy Exchange" Sensors 23, no. 2: 982. https://doi.org/10.3390/s23020982
APA StyleMartín, D. G., Florez, S. L., González-Briones, A., & Corchado, J. M. (2023). COSIBAS Platform—Cognitive Services for IoT-Based Scenarios: Application in P2P Networks for Energy Exchange. Sensors, 23(2), 982. https://doi.org/10.3390/s23020982