Intelligent Crack Detection Method Based on GM-ResNet
Abstract
:1. Introduction
2. The Proposed GM-ResNet Road Crack Detection Framework
2.1. ResNet
2.2. GAM
2.3. MFCNN
2.4. Focal Loss Function
2.5. GM-ResNet Network Framework for Road Crack Detection
- (1)
- The crack image dataset containing cracks with images and without images is divided into training and testing datasets according to a certain ratio.
- (2)
- The training datasets are input into the proposed GM-ResNet for model training, and the loss function of the training process adopts the focal loss function.
- (3)
- If the current training epoch is greater than the preset maximum epoch, the resultant trained model is subsequently extracted and utilized for testing purposes with the testing datasets. Alternatively, if the current training epoch is below the maximum threshold, the process returns to step (2) for continued training iterations.
- (4)
- The detection results of the final crack image testing datasets are output.
3. Experimental Verification
3.1. Dataset Preparation
3.2. Model Training Parameter Settings
3.3. Model Training and Testing
- (a)
- True positive class (TP): the model correctly determines the input positive category samples as positive category samples.
- (b)
- True negative class (TN): the model correctly determines the input negative category samples as negative category samples.
- (c)
- False positive class (FP): the model mistakenly determines the input negative category samples as positive category samples.
- (d)
- False negative class (FN): the model mistakenly determines the input positive category samples as negative category samples.
4. Conclusions
- (1)
- By introducing the GAM attention module to improve the feature extraction ability of the model, this mechanism enables comprehensive three-channel feature extraction and cross-dimensional interaction between the channels and spatial dimensions, avoiding a decrease in the feature extraction ability caused by the omission of useful feature information.
- (2)
- Relying on the deep network architecture, batch normalization layer and activation function layer in the MFCNN module to enhance the nonlinear fitting ability of the model and avoid overfitting, the generalization performance of the model is effectively enhanced.
- (3)
- The focal loss function is introduced to train the model to overcome the category imbalance problem of road crack detection; thus, the model can better distinguish between positive and negative samples and difficult and easy classification samples and improve the final detection performance of the model.
- (4)
- The experimental verification of the concrete crack image datasets also shows that the proposed model is significantly superior to other comparative models in terms of accuracy, recall and precision evaluation indicators, as well as in the output effect of crack detection, and has achieved significant progress, demonstrating the effectiveness and applicability of the model in the field of crack detection.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Weng, X.; Huang, Y.; Li, Y.; Yang, H.; Yu, S. Unsupervised domain adaptation for crack detection. Autom. Constr. 2023, 153, 104939. [Google Scholar] [CrossRef]
- Shi, Y.; Cui, L.; Qi, Z.; Meng, F.; Chen, Z. Automatic Road Crack Detection Using Random Structured Forests. IEEE Trans. Intell. Transp. Syst. 2016, 17, 3434–3445. [Google Scholar] [CrossRef]
- Xu, N.; He, L.; Li, Q. Crack-Att Net: Crack detection based on improved U-Net with parallel attention. Multimed. Tools Appl. 2023. [Google Scholar] [CrossRef]
- Gupta, P.; Dixit, M. Image-based crack detection approaches: A comprehensive survey. Multimed. Tools Appl. 2022, 81, 40181–40229. [Google Scholar] [CrossRef]
- Liu, F.; Xu, G.; Yang, Y.; Niu, X.; Pan, Y. Novel Approach to Pavement Cracking Automatic Detection Based on Segment Extending. In Proceedings of the 2008 International Symposium on Knowledge Acquisition and Modeling, Wuhan, China, 21–22 December 2008; pp. 610–614. [Google Scholar]
- Li, Q.; Zou, Q.; Zhang, D.; Mao, Q. FoSA: F* Seed-growing Approach for crack-line detection from pavement images. Image Vis. Comput. 2011, 29, 861–872. [Google Scholar] [CrossRef]
- Nguyen, H.-N.; Kam, T.-Y.; Cheng, P.-Y. An Automatic Approach for Accurate Edge Detection of Concrete Crack Utilizing 2D Geometric Features of Crack. J. Signal Process. Syst. 2013, 77, 221–240. [Google Scholar] [CrossRef]
- Li, E.-S.; Zhu, S.-L.; Zhu, B.-S.; Zhao, Y.; Xia, C.-G.; Song, L.-H. An Adaptive Edge-Detection Method Based on the Canny Operator. In Proceedings of the 2009 International Conference on Environmental Science and Information Application Technology, Wuhan, China, 4–5 July 2009; pp. 465–469. [Google Scholar]
- Kim, J.J.; Kim, A.-R.; Lee, S.-W. Artificial Neural Network-Based Automated Crack Detection and Analysis for the Inspection of Concrete Structures. Appl. Sci. 2020, 10, 8105. [Google Scholar] [CrossRef]
- Liu, C.; Zhu, C.; Xia, X.; Zhao, J.; Long, H. FFEDN: Feature Fusion Encoder Decoder Network for Crack Detection. IEEE Trans. Intell. Transp. Syst. 2022, 23, 15546–15557. [Google Scholar] [CrossRef]
- Liu, X.; Song, L.; Liu, S.; Zhang, Y. A Review of Deep-Learning-Based Medical Image Segmentation Methods. Sustainability 2021, 13, 1224. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, F.; Zhang, Y.D.; Zhu, Y.J. Road crack detection using deep convolutional neural network. In Proceedings of the 2016 IEEE International Conference on Image Processing (ICIP), Phoenix, AZ, USA, 25–28 September 2016; pp. 3708–3712. [Google Scholar]
- Cha, Y.-J.; Choi, W.; Büyüköztürk, O. Deep Learning-Based Crack Damage Detection Using Convolutional Neural Networks. Comput. Aided Civ. Infrastruct. Eng. 2017, 32, 361–378. [Google Scholar] [CrossRef]
- Chen, F.-C.; Jahanshahi, M.R. NB-CNN: Deep Learning-Based Crack Detection Using Convolutional Neural Network and Naïve Bayes Data Fusion. IEEE Trans. Ind. Electron. 2018, 65, 4392–4400. [Google Scholar] [CrossRef]
- Liang, D.; Zhou, X.-F.; Wang, S.; Liu, C.-J. Research on Concrete Cracks Recognition based on Dual Convolutional Neural Network. KSCE J. Civ. Eng. 2019, 23, 3066–3074. [Google Scholar] [CrossRef]
- Zhao, X.; Huang, P.; Shu, X. Wavelet-Attention CNN for image classification. Multimed. Syst. 2022, 28, 915–924. [Google Scholar] [CrossRef]
- Li, L.; Xu, M.; Liu, H.; Li, Y.; Wang, X.; Jiang, L.; Wang, Z.; Fan, X.; Wang, N. A Large-Scale Database and a CNN Model for Attention-Based Glaucoma Detection. IEEE Trans. Med. Imaging 2020, 39, 413–424. [Google Scholar] [CrossRef]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef] [PubMed]
- Xiang, J.; Wei, C.; Wang, M.; Teng, L. End-to-End Multilevel Hybrid Attention Framework for Hyperspectral Image Classification. IEEE Geosci. Remote Sens. Lett. 2022, 19, 5511305. [Google Scholar] [CrossRef]
- Wang, H.; Liu, Z.; Peng, D.; Cheng, Z. Attention-guided joint learning CNN with noise robustness for bearing fault diagnosis and vibration signal denoising. ISA Trans. 2022, 128, 470–484. [Google Scholar] [CrossRef]
- Yao, Q.; Wang, R.; Fan, X.; Liu, J.; Li, Y. Multi-class Arrhythmia detection from 12-lead varied-length ECG using Attention-based Time-Incremental Convolutional Neural Network. Inf. Fusion 2020, 53, 174–182. [Google Scholar] [CrossRef]
- Liu, Y.; Shao, Z.; Hoffmann, N. Global Attention Mechanism: Retain Information to Enhance Channel-Spatial Interactions. arXiv 2021, arXiv:2112.05561. [Google Scholar]
- Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollar, P. Focal Loss for Dense Object Detection. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 318–327. [Google Scholar] [CrossRef] [PubMed]
- Coskun, M.; Ucar, A.; Yildirim, O.; Demir, Y. Face recognition based on convolutional neural network. In Proceedings of the 2017 International Conference on Modern Electrical and Energy Systems, Kremenchuk, Ukraine, 15–17 November 2017; pp. 376–379. [Google Scholar]
- Soon, F.C.; Khaw, H.Y.; Chuah, J.H.; Kanesan, J. PCANet-Based Convolutional Neural Network Architecture for a Vehicle Model Recognition System. IEEE Trans. Intell. Transp. Syst. 2019, 20, 749–759. [Google Scholar] [CrossRef]
- Esteva, A.; Kuprel, B.; Novoa, R.A.; Ko, J.; Swetter, S.M.; Blau, H.M.; Thrun, S. Dermatologist-level classification of skin cancer with deep neural networks. Nature 2017, 542, 115–118. [Google Scholar] [CrossRef]
- Ali, R.; Chuah, J.H.; Talip, M.S.A.; Mokhtar, N.; Shoaib, M.A. Structural crack detection using deep convolutional neural networks. Autom. Constr. 2022, 133, 103989. [Google Scholar] [CrossRef]
- Li, C.; Zhao, D.; Mu, S.; Zhang, W.; Shi, N.; Li, L. Fault diagnosis for distillation process based on CNN–DAE. Chin. J. Chem. Eng. 2019, 27, 598–604. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. In Proceedings of the Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–6 December 2012; pp. 84–90. [Google Scholar]
- Christian, S.; Liu, W.; Jia, Y.; Pierre, S.; Scott, R.; Dragomir, A.; Dumitru, E.; Vincent, V.; Andrew, R. Going deeper with convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. In Proceedings of the 2015 3rd International Conference on Learning Representations (ICLR), San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2261–2269. [Google Scholar]
- Iandola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5 MB model size. arXiv 2016, arXiv:1602.07360. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Bahdanau, D.; Cho, K.; Bengio, Y. Neural Machine Translation by Jointly Learning to Align and Translate. arXiv 2014, arXiv:1409.0473. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention Is All You Need. arXiv 2017, arXiv:1706.03762. [Google Scholar]
- Hu, J.; Shen, L.; Albanie, S.; Sun, G.; Wu, E. Squeeze-and-Excitation Networks. arXiv 2017, arXiv:1709.01507. [Google Scholar]
- Woo, S.; Park, J.; Lee, J.-Y.; Kweon, I.S. CBAM: Convolutional Block Attention Module. In Proceedings of the European Conference on Computer Vision, Munich, Germany, 8–14 September 2018. [Google Scholar]
- Wang, Q.; Wu, B.; Zhu, P.; Li, P.; Zuo, W.; Hu, Q. ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks. In Proceedings of the Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019. [Google Scholar]
- Yang, L.; Li, B.; Li, W.; Liu, Z.; Yang, G.; Xiao, J. Deep Concrete Inspection Using Unmanned Aerial Vehicle Towards CSSC Database. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vancouver, BC, Canada, 24–28 September 2017. [Google Scholar]
Parameter | Value | Parameter | Value |
---|---|---|---|
epoch | 10 | batch | 628 |
batch size | 64 | optimizer | “SGD” |
momentum type | “nesterov” | momentum | 0.9 |
dampening | 0.9 | weight decay | 0.001 |
lr scheduler | “StepLR” | learning rate | 0.01 |
gamma | 0.1 | step size | 5 |
Model | Epoch | Recall | Precision | F1-Score | Model | Epoch | Recall | Precision | F1-Score |
---|---|---|---|---|---|---|---|---|---|
AlexNet | 1 | 0.868 | 0.862 | 0.861 | VGG16 | 1 | 0.913 | 0.883 | 0.895 |
2 | 0.91 | 0.888 | 0.897 | 2 | 0.938 | 0.919 | 0.927 | ||
3 | 0.915 | 0.9 | 0.906 | 3 | 0.947 | 0.934 | 0.939 | ||
4 | 0.921 | 0.906 | 0.911 | 4 | 0.953 | 0.948 | 0.949 | ||
5 | 0.926 | 0.912 | 0.917 | 5 | 0.959 | 0.954 | 0.955 | ||
6 | 0.93 | 0.919 | 0.923 | 6 | 0.965 | 0.964 | 0.963 | ||
7 | 0.932 | 0.921 | 0.925 | 7 | 0.97 | 0.97 | 0.969 | ||
8 | 0.936 | 0.93 | 0.932 | 8 | 0.973 | 0.975 | 0.973 | ||
9 | 0.937 | 0.932 | 0.933 | 9 | 0.979 | 0.98 | 0.979 | ||
10 | 0.938 | 0.934 | 0.935 | 10 | 0.98 | 0.982 | 0.98 | ||
DenseNet | 1 | 0.728 | 0.806 | 0.756 | ResNet-34 | 1 | 0.899 | 0.89 | 0.892 |
2 | 0.817 | 0.859 | 0.834 | 2 | 0.944 | 0.943 | 0.942 | ||
3 | 0.843 | 0.88 | 0.859 | 3 | 0.963 | 0.966 | 0.964 | ||
4 | 0.858 | 0.896 | 0.874 | 4 | 0.975 | 0.978 | 0.976 | ||
5 | 0.872 | 0.905 | 0.886 | 5 | 0.985 | 0.986 | 0.985 | ||
6 | 0.878 | 0.914 | 0.894 | 6 | 0.99 | 0.991 | 0.99 | ||
7 | 0.886 | 0.921 | 0.901 | 7 | 0.992 | 0.992 | 0.992 | ||
8 | 0.893 | 0.927 | 0.908 | 8 | 0.993 | 0.993 | 0.993 | ||
9 | 0.901 | 0.934 | 0.916 | 9 | 0.995 | 0.995 | 0.995 | ||
10 | 0.905 | 0.939 | 0.92 | 10 | 0.996 | 0.997 | 0.996 | ||
SqueezeNet | 1 | 0.992 | 0.532 | 0.691 | GM-ResNet | 1 | 0.911 | 0.903 | 0.905 |
2 | 0.986 | 0.557 | 0.709 | 2 | 0.958 | 0.951 | 0.953 | ||
3 | 0.954 | 0.604 | 0.736 | 3 | 0.975 | 0.972 | 0.972 | ||
4 | 0.948 | 0.63 | 0.753 | 4 | 0.985 | 0.985 | 0.985 | ||
5 | 0.944 | 0.648 | 0.764 | 5 | 0.992 | 0.991 | 0.991 | ||
6 | 0.942 | 0.661 | 0.773 | 6 | 0.996 | 0.996 | 0.996 | ||
7 | 0.943 | 0.665 | 0.776 | 7 | 0.998 | 0.998 | 0.998 | ||
8 | 0.942 | 0.679 | 0.785 | 8 | 0.999 | 0.998 | 0.998 | ||
9 | 0.946 | 0.684 | 0.79 | 9 | 0.999 | 0.998 | 0.999 | ||
10 | 0.946 | 0.684 | 0.791 | 10 | 0.999 | 0.999 | 0.999 |
Image | Length (cm) | Angle (°) |
---|---|---|
Image (2) | 84.601 | 105.289 |
Image (3) | 85.624 | 75.195 |
Image (4) | 86.327 | 73.440 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Xu, X.; He, X.; Wei, X.; Yang, H. Intelligent Crack Detection Method Based on GM-ResNet. Sensors 2023, 23, 8369. https://doi.org/10.3390/s23208369
Li X, Xu X, He X, Wei X, Yang H. Intelligent Crack Detection Method Based on GM-ResNet. Sensors. 2023; 23(20):8369. https://doi.org/10.3390/s23208369
Chicago/Turabian StyleLi, Xinran, Xiangyang Xu, Xuhui He, Xiaojun Wei, and Hao Yang. 2023. "Intelligent Crack Detection Method Based on GM-ResNet" Sensors 23, no. 20: 8369. https://doi.org/10.3390/s23208369
APA StyleLi, X., Xu, X., He, X., Wei, X., & Yang, H. (2023). Intelligent Crack Detection Method Based on GM-ResNet. Sensors, 23(20), 8369. https://doi.org/10.3390/s23208369