TinyFallNet: A Lightweight Pre-Impact Fall Detection Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overall Flowchart
2.2. Public Dataset
2.3. Data Preparation
2.4. Deep Learning Models
2.4.1. ConvLSTM
2.4.2. VGGNet
2.4.3. ResNet
2.5. Model Training
2.6. Performance Evaluation
3. Results
3.1. Performance of ConvLSTM
3.2. Performance of VGGNet
3.3. Performance of ResNet
3.4. Comparison of VGGNet and ResNet
3.5. Lightweighted ResNet
3.6. Evaluation Based on the Older Subject Dataset
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kenny, R.A.; O’Shea, D.; Walker, H.F. Impact of a Dedicated Syncope and Falls Facility for Older Adults on Emergency Beds. Age Ageing 2002, 31, 272–275. [Google Scholar] [CrossRef] [PubMed]
- Rubenstein, L.Z. Falls in Older People: Epidemiology, Risk Factors and Strategies for Prevention. Age Ageing 2006, 35, ii37–ii41. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization; Ageing, and Life Course Unit. WHO Global Report on Falls Prevention in Older Age; World Health Organization: Geneva, Switzerland, 2008; ISBN 9241563532. [Google Scholar]
- Gray-Miceli, D. Fall Risk Assessment for Older Adults: The Hendrich II Model. Ann. Long Term Care 2008, 15. Available online: https://www.hmpgloballearningnetwork.com/site/altc/article/6786 (accessed on 1 July 2023).
- Syed, A.S.; Sierra-Sosa, D.; Kumar, A.; Elmaghraby, A. A Deep Convolutional Neural Network-XGB for Direction and Severity Aware Fall Detection and Activity Recognition. Sensors 2022, 22, 2547. [Google Scholar] [CrossRef] [PubMed]
- Iguchi, Y.; Lee, J.H.; Okamoto, S. Enhancement of Fall Detection Algorithm Using Convolutional Autoencoder and Personalized Threshold. In Proceedings of the 2021 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA, 10–12 January 2021. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhu, S. Real-Time Activity and Fall Risk Detection for Aging Population Using Deep Learning. In Proceedings of the 2018 9th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON), New York, NY, USA, 8–10 November 2018; pp. 1055–1059. [Google Scholar] [CrossRef]
- Tamura, T.; Yoshimura, T.; Sekine, M.; Uchida, M.; Tanaka, O. A Wearable Airbag to Prevent Fall Injuries. IEEE Trans. Inf. Technol. Biomed. 2009, 13, 910–914. [Google Scholar] [CrossRef] [PubMed]
- Bourke, A.K.; Lyons, G.M. A Threshold-Based Fall-Detection Algorithm Using a Bi-Axial Gyroscope Sensor. Med. Eng. Phys. 2008, 30, 84–90. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Xue, S. Portable Preimpact Fall Detector with Inertial Sensors. IEEE Trans. Neural Syst. Rehabil. Eng. 2008, 16, 178–183. [Google Scholar] [CrossRef]
- Ahn, S.; Kim, J.; Koo, B.; Kim, Y. Evaluation of Inertial Sensor-Based Pre-Impact Fall Detection Algorithms Using Public Dataset. Sensors 2019, 19, 774. [Google Scholar] [CrossRef]
- Sucerquia, A.; López, J.D.; Vargas-Bonilla, J.F. SisFall: A Fall and Movement Dataset. Sensors 2017, 17, 198. [Google Scholar] [CrossRef]
- Vavoulas, G.; Pediaditis, M.; Chatzaki, C.; Spanakis, E.G.; Tsiknakis, M. The Mobifall Dataset: Fall Detection and Classification with a Smartphone. Int. J. Monit. Surveill. Technol. Res. 2014, 2, 44–56. [Google Scholar] [CrossRef]
- Saleh, M.; Abbas, M.; Le Jeannes, R.B. FallAllD: An Open Dataset of Human Falls and Activities of Daily Living for Classical and Deep Learning Applications. IEEE Sens. J. 2020, 21, 1849–1858. [Google Scholar] [CrossRef]
- Musci, M.; De Martini, D.; Blago, N.; Facchinetti, T.; Piastra, M. Online Fall Detection Using Recurrent Neural Networks. arXiv 2018, arXiv:1804.04976. [Google Scholar]
- Torti, E.; Fontanella, A.; Musci, M.; Blago, N.; Pau, D.; Leporati, F.; Piastra, M. Embedding Recurrent Neural Networks in Wearable Systems for Real-Time Fall Detection. Microprocess. Microsyst. 2019, 71, 102895. [Google Scholar] [CrossRef]
- Yu, X.; Qiu, H.; Xiong, S. A Novel Hybrid Deep Neural Network to Predict Pre-Impact Fall for Older People Based on Wearable Inertial Sensors. Front. Bioeng. Biotechnol. 2020, 8, 63. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Jang, J.; Xiong, S.; Yu, X. A Large-Scale Open Motion Dataset (KFall) and Benchmark Algorithms for Detecting Pre-Impact Fall of the Elderly Using Wearable Inertial Sensors. Front. Aging Neurosci. 2021, 13, 692865. [Google Scholar] [CrossRef] [PubMed]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Alarifi, A.; Alwadain, A. Killer Heuristic Optimized Convolution Neural Network-Based Fall Detection with Wearable IoT Sensor Devices. Meas. J. Int. Meas. Confed. 2020, 167, 108258. [Google Scholar] [CrossRef]
- Yu, X.; Koo, B.; Jang, J.; Kim, Y.; Xiong, S. A Comprehensive Comparison of Accuracy and Practicality of Different Types of Algorithms for Pre-Impact Fall Detection Using Both Young and Old Adults. Meas. J. Int. Meas. Confed. 2022, 201, 111785. [Google Scholar] [CrossRef]
- Klenk, J.; Schwickert, L.; Palmerini, L.; Mellone, S.; Bourke, A.; Ihlen, E.A.F.; Kerse, N.; Hauer, K.; Pijnappels, M.; Synofzik, M.; et al. The FARSEEING Real-World Fall Repository: A Large-Scale Collaborative Database to Collect and Share Sensor Signals from Real-World Falls. Eur. Rev. Aging Phys. Act. 2016, 13, 8. [Google Scholar] [CrossRef]
- Aziz, O.; Russell, C.M.; Park, E.J.; Robinovitch, S.N. The Effect of Window Size and Lead Time on Pre-Impact Fall Detection Accuracy Using Support Vector Machine Analysis of Waist Mounted Inertial Sensor Data. In Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 26–30 August 2014; pp. 30–33. [Google Scholar] [CrossRef]
- Liu, K.-C.; Hsieh, C.-Y.; Huang, H.-Y.; Hsu, S.J.-P.; Chan, C.-T. An Analysis of Segmentation Approaches and Window Sizes in Wearable-Based Critical Fall Detection Systems with Machine Learning Models. IEEE Sens. J. 2019, 20, 3303–3313. [Google Scholar] [CrossRef]
- Warden, P.; Situnayake, D. Tinyml: Machine Learning with Tensorflow Lite on Arduino and Ultra-Low-Power Microcontrollers; O’Reilly Media: Newton, MA, USA, 2019; ISBN 1492052019. [Google Scholar]
- Howard, A.; Sandler, M.; Chu, G.; Chen, L.-C.; Chen, B.; Tan, M.; Wang, W.; Zhu, Y.; Pang, R.; Vasudevan, V. Searching for Mobilenetv3. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019; pp. 1314–1324. [Google Scholar]
- Zhang, X.; Zhou, X.; Lin, M.; Sun, J. ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 6848–6856. [Google Scholar]
- Chi, T.; Liu, K.; Hsieh, C.; Tsao, Y.; Chan, C. Prefallkd: Pre-impact fall detection via cnn-vit knowledge distillation. In Proceedings of the ICASSP 2023–2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Rhodes Island, Greece, 4–10 June 2023; pp. 1–5. [Google Scholar] [CrossRef]
- Mercuri, M.; Soh, P.J.; Mehrjouseresht, P.; Crupi, F.; Schreurs, D. Biomedical Radar System for Real-Time Contactless Fall Detection and Indoor Localization. IEEE J. Electromagn. RF Microw. Med. Biol. 2023, 1–10. [Google Scholar] [CrossRef]
Task ID | Activity | Trials |
---|---|---|
D01 | Stand for 30 s | 1 |
D02 | Stand, slowly bend the back with or without bending at knees, tie shoelace, and get up | 5 |
D03 | Pick up an object from the floor | 5 |
D04 | Gently jump (try to reach an object) | 5 |
D05 | Stand, sit to the ground, wait a moment, and get up with normal speed | 5 |
D06 | Walk normally with turn (4 m) | 5 |
D07 | Walk quickly with turn (4 m) | 5 |
D08 | Jog normally with turn (4 m) | 5 |
D09 | Jog quickly with turn (4 m) | 5 |
D10 | Stumble while walking | 5 |
D11 | Sit on a chair for 30 s | 1 |
D12 | Sit on the sofa (back is inclined to the support) for 30 s | 1 |
D13 | Sit down to a chair normally, and get up from a chair normally | 5 |
D14 | Sit down to a chair quickly, and get up from a chair quickly | 5 |
D15 | Sit a moment, trying to get up, and collapse into a chair | 5 |
D16 | Stand, sit on the sofa (back is inclined to the support), and get up normally | 5 |
D17 | Lie on the bed for 30 s | 1 |
D18 | Sit a moment, lie down to the bed normally, and get up normally | 5 |
D19 | Sit a moment, lie down on the bed quickly, and get up quickly | 5 |
D20 | Walk upstairs and downstairs normally (five steps) | 5 |
D21 | Walk upstairs and downstairs quickly (five steps) | 5 |
Task ID | Activity | Trials |
---|---|---|
F01 | Forward fall when trying to sit down | 5 |
F02 | Backward fall when trying to sit down | 5 |
F03 | Lateral fall when trying to sit down | 5 |
F04 | Forward fall when trying to get up | 5 |
F05 | Lateral fall when trying to get up | 5 |
F06 | Forward fall while sitting, caused by fainting | 5 |
F07 | Lateral fall while sitting, caused by fainting | 5 |
F08 | Backward fall while sitting, caused by fainting | 5 |
F09 | Vertical (forward) fall while walking caused by fainting | 5 |
F10 | Fall while walking, use of hands to dampen fall, caused by fainting | 5 |
F11 | Forward fall while walking caused by a trip | 5 |
F12 | Forward fall while jogging caused by a trip | 5 |
F13 | Forward fall while walking caused by a slip | 5 |
F14 | Lateral fall while walking caused by a slip | 5 |
F15 | Backward fall while walking caused by a slip | 5 |
Task ID | Activity |
---|---|
17744725-01 | After walking with a wheeled walker, stood behind a chair, then fell backward on the floor. |
38243026-05 | Fell forward while bending down to fix the shoelace. |
42990421-01 | Wanted to pick up an object from the ground |
42990421-02 | Got up from the chair and wanted to walk |
42990421-03a | When trying to move to the side, wheeled walker fell forward. Freezed movement. |
72858619-01 | Went to the table in the dining room. Fell down backward on the buttocks. |
72858619-02 | Person held onto the wall, then fell down backward on the buttocks. |
74827807-04 | Fell while walking. |
74827807-07 | Walked, then fell down in front of the entrance of the house. |
79761947-03 | While changing the hip protector, fell backward on the ground, and hit the toilet. |
91943076-01 | Fell down in front of the entrance of the house. |
91943076-02 | Walked, then fell down opening the door in the entrance hall. |
96201346-01 | While walking to the bathroom, stopped by freezing, and fell from standing position. |
96201346-03 | Standing at the wardrobe, wanted to walk backward and then fell on buttocks. |
96201346-05 | Walked backward from the washing basin, then fell backward. |
ConvLSTM_9axis | ConvLSTM_6axis | ConvLSTM_6axis_VGG | |
---|---|---|---|
Sensitivity (%) | 99.77 | 100.00 | 99.77 |
Specificity (%) | 95.27 | 94.48 | 95.07 |
Accuracy (%) | 97.37 | 97.05 | 97.27 |
Lead time (ms) | 618.28 ± 331.38 | 558.76 ± 253.81 | 548.60 ± 289.10 |
Memory size (MB) | 1.58 | 1.57 | 2.07 |
VGG16 | VGG16 + BN | VGG16 + BN + LSTM | VGG16 + BN + LSTM + (Filters = 64) | |
---|---|---|---|---|
Sensitivity (%) | 49.55 | 100.00 | 99.55 | 100.00 |
Specificity (%) | 98.22 | 94.87 | 97.24 | 96.25 |
Accuracy (%) | 75.50 | 97.27 | 98.32 | 98.00 |
Lead time (ms) | 218.91 ± 173.85 | 576.33 ± 271.26 | 545.77 ± 201.17 | 560.56 ± 312.31 |
Memory size (MB) | 56.6 | 56.9 | 58.7 | 2.82 |
ResNet50 | ResNet50 (Filters 1/2) | ResNet50 (Filters 1/4) | ResNet50 (Filters 1/8) | ResNet50 (Filters 1/16) | ResNet50 (Filters 1/32) | ResNet50 (Filters= 64) | |
---|---|---|---|---|---|---|---|
Sensitivity (%) | 99.32 | 98.65 | 97.52 | 98.20 | 89.86 | 59.23 | 97.30 |
Specificity (%) | 96.45 | 96.84 | 96.84 | 95.27 | 97.04 | 97.44 | 96.84 |
Accuracy (%) | 97.79 | 97.69 | 97.16 | 96.64 | 93.69 | 79.60 | 97.06 |
Lead time (ms) | 486.78 ± 241.08 | 477.03 ± 288.65 | 463.56 ± 261.34 | 498.30 ± 312.57 | 318.70 ± 194.31 | 276.16 ± 159.09 | 445.16 ± 243.49 |
Memory size (MB) | 184.0 | 47.0 | 12.6 | 3.95 | 1.74 | 1.17 | 5.07 |
VGG19 | ResNet24 | |
---|---|---|
Sensitivity (%) | 99.09 | 99.55 |
Specificity (%) | 95.86 | 97.63 |
Accuracy (%) | 97.37 | 98.5 |
Lead time (ms) | 583.20 ± 336.42 | 561.72 ± 309.12 |
Memory size (MB) | 2.68 | 1.11 |
ResNet24 | ResNet21 | ResNet18 | ResNet15 | ResNet14 | |
---|---|---|---|---|---|
Sensitivity (%) | 99.55 | 100.00 | 99.77 | 98.65 | 99.32 |
Specificity (%) | 97.63 | 95.66 | 96.25 | 97.63 | 96.84 |
Accuracy (%) | 98.53 | 97.69 | 97.90 | 98.11 | 98.00 |
Lead time (ms) | 561.72 ± 309.12 | 558.31 ± 302.86 | 495.30 ± 230.88 | 493.54 ± 274.58 | 539.00 ± 278.07 |
Memory size (MB) | 1.11 | 1.01 | 0.96 | 0.87 | 0.70 |
Movement | Subject | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 | S9 | S10 | |
D01 | 1/1 | 1/1 | 1/1 | 1/1 | 1/1 | 1/1 | 1/1 | 1/1 | 1/1 | 1/1 |
D02 | 0/5 | 5/5 | 5/5 | 5/5 | 4/5 | NA | 5/5 | 5/5 | 5/5 | 5/5 |
D03 | 3/5 | 5/5 | 5/5 | 5/5 | 5/5 | NA | 5/5 | 4/5 | 3/5 | 3/5 |
D04 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
D05 | 5/5 | 2/5 | NA | 2/5 | 1/5 | NA | NA | NA | NA | 5/5 |
D06 | 5/5 | 5/5 | 4/5 | 5/5 | 5/5 | 0/5 | 4/5 | 5/5 | 5/5 | 5/5 |
D07 | 5/5 | 5/5 | 5/5 | 5/5 | 5/5 | 0/5 | 5/5 | 5/5 | 5/5 | 5/5 |
D08 | 5/5 | 5/5 | 5/5 | 5/5 | 5/5 | 5/5 | 5/5 | 5/5 | 5/5 | 5/5 |
D09 | 5/5 | 5/5 | NA | 5/5 | 5/5 | NA | 5/5 | 5/5 | 5/5 | 5/5 |
D10 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
D11 | 1/1 | 1/1 | 1/1 | 1/1 | 1/1 | 1/1 | 1/1 | 1/1 | 1/1 | 1/1 |
D12 | 1/1 | 1/1 | 1/1 | 1/1 | 1/1 | 1/1 | 1/1 | 1/1 | 1/1 | 1/1 |
D13 | 5/5 | 5/5 | 5/5 | 5/5 | 5/5 | 5/5 | 5/5 | 5/5 | 5/5 | 4/5 |
D14 | 5/5 | 5/5 | 4/5 | 5/5 | 5/5 | 1/5 | 4/5 | 5/5 | 5/5 | 4/5 |
D15 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
D16 | 5/5 | 5/5 | 5/5 | 5/5 | 5/5 | 4/5 | 4/5 | 5/5 | 5/5 | 5/5 |
D17 | 1/1 | 1/1 | 1/1 | 1/1 | 1/1 | 1/1 | 1/1 | 1/1 | 1/1 | 1/1 |
D18 | 5/5 | 5/5 | 5/5 | 5/5 | 3/5 | 5/5 | 5/5 | 5/5 | 5/5 | 5/5 |
D19 | 5/5 | 5/5 | 5/5 | 5/5 | 5/5 | 5/5 | 5/5 | 5/5 | 5/5 | 4/5 |
D20 | 4/5 | 1/5 | 0/5 | 1/5 | 0/5 | 0/5 | NA | 0/5 | 4/5 | 5/5 |
D21 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
Movement | Subject | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 | S9 | S10 | |
D01 | 1/1 | 1/1 | 1/1 | 1/1 | 1/1 | 1/1 | 1/1 | 1/1 | 1/1 | 1/1 |
D02 | 5/5 | 5/5 | 5/5 | 5/5 | 5/5 | NA | 5/5 | 5/5 | 5/5 | 5/5 |
D03 | 5/5 | 5/5 | 5/5 | 5/5 | 5/5 | NA | 5/5 | 4/5 | 5/5 | 4/5 |
D04 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
D05 | 5/5 | 5/5 | NA | 5/5 | 3/5 | NA | NA | NA | NA | 5/5 |
D06 | 5/5 | 5/5 | 5/5 | 5/5 | 5/5 | 5/5 | 5/5 | 5/5 | 5/5 | 5/5 |
D07 | 5/5 | 5/5 | 5/5 | 5/5 | 5/5 | 5/5 | 5/5 | 5/5 | 5/5 | 5/5 |
D08 | 5/5 | 5/5 | 5/5 | 5/5 | 5/5 | 5/5 | 5/5 | 5/5 | 5/5 | 5/5 |
D09 | 5/5 | 5/5 | NA | 5/5 | 5/5 | NA | 5/5 | 5/5 | 5/5 | 5/5 |
D10 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
D11 | 1/1 | 1/1 | 1/1 | 1/1 | 1/1 | 1/1 | 1/1 | 1/1 | 1/1 | 1/1 |
D12 | 1/1 | 1/1 | 1/1 | 1/1 | 1/1 | 1/1 | 1/1 | 1/1 | 1/1 | 1/1 |
D13 | 5/5 | 5/5 | 5/5 | 5/5 | 5/5 | 5/5 | 5/5 | 5/5 | 5/5 | 5/5 |
D14 | 5/5 | 5/5 | 5/5 | 5/5 | 5/5 | 5/5 | 5/5 | 5/5 | 5/5 | 4/5 |
D15 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
D16 | 5/5 | 5/5 | 5/5 | 5/5 | 5/5 | 5/5 | 5/5 | 5/5 | 5/5 | 5/5 |
D17 | 1/1 | 1/1 | 1/1 | 1/1 | 1/1 | 1/1 | 1/1 | 1/1 | 1/1 | 1/1 |
D18 | 5/5 | 5/5 | 5/5 | 5/5 | 5/5 | 5/5 | 5/5 | 5/5 | 5/5 | 5/5 |
D19 | 5/5 | 5/5 | 5/5 | 5/5 | 5/5 | 5/5 | 5/5 | 5/5 | 5/5 | 5/5 |
D20 | 5/5 | 5/5 | 0/5 | 5/5 | 5/5 | 2/5 | NA | 5/5 | 5/5 | 5/5 |
D21 | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koo, B.; Yu, X.; Lee, S.; Yang, S.; Kim, D.; Xiong, S.; Kim, Y. TinyFallNet: A Lightweight Pre-Impact Fall Detection Model. Sensors 2023, 23, 8459. https://doi.org/10.3390/s23208459
Koo B, Yu X, Lee S, Yang S, Kim D, Xiong S, Kim Y. TinyFallNet: A Lightweight Pre-Impact Fall Detection Model. Sensors. 2023; 23(20):8459. https://doi.org/10.3390/s23208459
Chicago/Turabian StyleKoo, Bummo, Xiaoqun Yu, Seunghee Lee, Sumin Yang, Dongkwon Kim, Shuping Xiong, and Youngho Kim. 2023. "TinyFallNet: A Lightweight Pre-Impact Fall Detection Model" Sensors 23, no. 20: 8459. https://doi.org/10.3390/s23208459
APA StyleKoo, B., Yu, X., Lee, S., Yang, S., Kim, D., Xiong, S., & Kim, Y. (2023). TinyFallNet: A Lightweight Pre-Impact Fall Detection Model. Sensors, 23(20), 8459. https://doi.org/10.3390/s23208459