Non-Invasive Assessment of Back Surface Topography: Technologies, Techniques and Clinical Utility
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Historical Overview
3.2. Recent Developments
3.3. State of the Art Developments
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Hresko, M.T. Idiopathic Scoliosis in Adolescents. N. Engl. J. Med. 2013, 368, 834–841. [Google Scholar] [CrossRef]
- Shannon, T. Dynamic Surface Topography and Its Application to the Evaluation of Adolescent Idiopathic Scoliosis. Ph.D. Thesis, Oxford Brookes University, Oxford, UK, 2010. [Google Scholar]
- Trobisch, P.; Suess, O.; Schwab, F. Idiopathic Scoliosis. Medicine 2010, 107, 875–884. [Google Scholar] [CrossRef]
- NHS. Overview-Scoliosis. Available online: https://www.nhs.uk/conditions/scoliosis/ (accessed on 9 October 2023).
- Lenke, L.G.; Betz, R.R.; Harms, J.; Bridwell, K.H.; Clements, D.H.; Lowe, T.G.; Blanke, K. Adolescent Idiopathic Scoliosis. A New Classification to Determine Extent of Spinal Arthrodesis. J. Bone Jt. Surg.-Ser. A 2001, 83, 1169–1181. [Google Scholar] [CrossRef]
- Zheng, R.; Hill, D.; Hedden, D.; Mahood, J.; Moreau, M.; Southon, S.; Lou, E. Factors Influencing Spinal Curvature Measurements on Ultrasound Images for Children with Adolescent Idiopathic Scoliosis (AIS). PLoS ONE 2018, 13, e0198792. [Google Scholar] [CrossRef] [PubMed]
- Chockalingam, N.; Dangerfield, P.H.; Giakas, G. Introduction to Biomechanical Assessment of Gait. Int. J. Ther. Rehabil. 2002, 9, 15–23. [Google Scholar] [CrossRef]
- King, H.A.; Moe, J.H.; Bradford, D.S.; Winter, R.B. The Selection of Fusion Levels in Thoracic Idiopathic Scoliosis. J. Bone Joint Surg. Am. 1983, 65, 1302–1313. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Grünwald, A.T.D.; Alves-Pinto, A.; Maier, R.; Cremers, D.; Pfeiffer, D.; Lampe, R. A Noninvasive 3D Body Scanner and Software Tool towards Analysis of Scoliosis. Biomed Res. Int. 2019, 2019, 15. [Google Scholar] [CrossRef] [PubMed]
- De Korvin, G.; Randriaminahisoa, T.; Cugy, E.; Cheze, L.; de Sèze, M. Detection of Progressive Idiopathic Scoliosis during Growth Using Back Surface Topography: A Prospective Study of 100 patients. Ann. Phys. Rehabil. Med. 2014, 57, 629–639. [Google Scholar] [CrossRef]
- Shannon, T.; Jetvić, N.; Chockalingam, N. Cosmetic Changes in Patients Following a Schroth Exercise Regime: A Two Year Follow-Up. Stud. Health Technol. Inform. 2021, 28, 302. [Google Scholar] [CrossRef]
- Negrini, S.; Donzelli, S.; Aulisa, A.G.; Czaprowski, D.; Schreiber, S.; de Mauroy, J.C.; Diers, H.; Grivas, T.B.; Knott, P.; Kotwicki, T.; et al. 2016 SOSORT Guidelines: Orthopaedic and Rehabilitation Treatment of Idiopathic Scoliosis during Growth. Scoliosis Spinal Disord. 2018, 13, 3. [Google Scholar] [CrossRef]
- Altaf, F.; Gibson, A.; Dannawi, Z.; Noordeen, H. Adolescent Idiopathic Scoliosis. BMJ 2013, 346, 7906. [Google Scholar] [CrossRef] [PubMed]
- Šarčević, Z.; Tepavčević, A. Association between Adolescent Idiopathic Scoliosis and Sacroiliac Joint Dysfunction in Young Athletes: A Case Control Study. Medicine 2019, 98, e15161. [Google Scholar] [CrossRef] [PubMed]
- Konieczny, M.R.; Senyurt, H.; Krauspe, R. Epidemiology of Adolescent Idiopathic Scoliosis. J. Child. Orthop. 2013, 7, 3–9. [Google Scholar] [CrossRef]
- Kokabu, T.; Kawakami, N.; Uno, K.; Kotani, T.; Suzuki, T.; Abe, Y.; Maeda, K.; Inage, F.; Ito, Y.M.; Iwasaki, N.; et al. Three-Dimensional Depth Sensor Imaging to Identify Adolescent Idiopathic Scoliosis: A Prospective Multicenter Cohort Study. Sci. Rep. 2019, 9, 9678. [Google Scholar] [CrossRef]
- Lonner, B.S.; Castillo, A.; Kassin, G.; Ren, Y. Surface Topography Assessment of Body Shape after Surgical Correction in Adolescent Idiopathic Scoliosis. Spine Deform. 2020, 8, 213–220. [Google Scholar] [CrossRef] [PubMed]
- Komeili, A.; Westover, L.M.; Parent, E.C.; Moreau, M.; El-Rich, M.; Adeeb, S. Surface Topography Asymmetry Maps Categorizing External Deformity in Scoliosis. Spine J. 2014, 14, 973–983.e2. [Google Scholar] [CrossRef] [PubMed]
- Knott, P.; Liu, X.C. Eliminating 2D Spinal Assessments and Embracing 3D and 4D: Clinical Application of Surface Topography. Stud. Health Technol. Inform. 2021, 280, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Parent, E.C.; Damaraju, S.; Hill, D.L.; Lou, E.; Smetaniuk, D. Identifying the Best Surface Topography Parameters for Detecting Idiopathic Scoliosis Curve Progression. Stud. Health Technol. Inform. 2010, 158, 78–82. [Google Scholar] [CrossRef]
- Applebaum, A.; Cho, W.; Nessim, A.; Kim, K.; Tarpada, S.P.; Yoon, S.H.; Pujar, B.; Kim, D.; Kim, S.Y. Establishing the Validity of Surface Topography for Assessment of Scoliosis: A Prospective Study. Spine Deform. 2021, 9, 685–689. [Google Scholar] [CrossRef]
- Misterska, E.; Glowacki, M.; Latuszewska, J.; Adamczyk, K. Perception of Stress Level, Trunk Appearance, Body Function and Mental Health in Females with Adolescent Idiopathic Scoliosis Treated Conservatively: A Longitudinal Analysis. Qual. Life Res. 2013, 22, 1633–1645. [Google Scholar] [CrossRef]
- Misterska, E.; Głowacki, M.; Harasymczuk, J. Assessment of Spinal Appearance in Female Patients with Adolescent Idiopathic Scoliosis Treated Operatively. Med. Sci. Monit. 2011, 17, 404–410. [Google Scholar] [CrossRef] [PubMed]
- Drerup, B. Rasterstereographic Measurement of Scoliotic Deformity. Scoliosis 2014, 9, 22. [Google Scholar] [CrossRef] [PubMed]
- Maragkoudakis, E.G.; Gelalis, I.; Grivas, T.; Burwell, G.R.; Mazioti, C.; Tsilimidos, G. Using the Scoliometer and a Surface Topography Apparatus to Check If Back Trunk Asymmetry Changes in Children and Adolescents in the Forward Flexion and Standing Erect Positions. Cureus 2019, 11, 2–10. [Google Scholar] [CrossRef] [PubMed]
- Chowanska, J.; Kotwicki, T.; Rosadzinski, K.; Sliwinski, Z. School Screening for Scoliosis: Can Surface Topography Replace Examination with Scoliometer? Scoliosis 2012, 7, 9. [Google Scholar] [CrossRef]
- Pineda, S.; Bago, J.; Gilperez, C.; Climent, J.M. Validity of the Walter Reed Visual Assessment Scale to Measure Subjective Perception of Spine Deformity in Patients with Idiopathic Scoliosis. Scoliosis 2006, 1, 18. [Google Scholar] [CrossRef]
- Glowacki, M.; Misterska, E.; Adamczyk, K.; Latuszewska, J. Prospective Assessment of Scoliosis-Related Anxiety and Impression of Trunk Deformity in Female Adolescents Under Brace Treatment. J. Dev. Phys. Disabil. 2013, 25, 203–220. [Google Scholar] [CrossRef]
- Rivett, L.A.; Rothberg, A.; Stewart, A.; Berkowitz, R. The Relationship between Quality of Life and Compliance to a Brace Protocol in Adolescents with Idiopathic Scoliosis: A Comparative Study. BMC Musculoskelet. Disord. 2009, 10, 5. [Google Scholar] [CrossRef]
- Girdler, S.; Cho, B.; Mikhail, C.M.; Cheung, Z.B.; Maza, N.; Kang-Wook Cho, S. Emerging Techniques in Diagnostic Imaging for Idiopathic Scoliosis in Children and Adolescents: A Review of the Literature. World Neurosurg. 2020, 136, 128–135. [Google Scholar] [CrossRef]
- Porto, F.; Gurgel, J.L.; Russomano, T.; Farinatti, P.D.T.V. Moiré Topography: Characteristics and Clinical Application. Gait Posture 2010, 32, 422–424. [Google Scholar] [CrossRef]
- Gaál, Z.; Antal, Á.; Tamás, P. Scoliosis Testing Features on the Basis of Electronically Generated Moire Patterns. In Proceedings of the 2010 IEEE 8th International Symposium on Applied Machine Intelligence and Informatics (SAMI), Herlany, Slovakia, 28–30 January 2010; pp. 335–340. [Google Scholar] [CrossRef]
- Moreno Yeras, A.; González Peña, R.; Junco, R. Moiré Topography: Alternative Technique in Health Care. Opt. Lasers Eng. 2003, 40, 105–116. [Google Scholar] [CrossRef]
- Drerup, B.; Hierholzer, E. Assessment of Scoliotic Deformity from Back Shape Asymmetry Using an Improved Mathematical Model. Clin. Biomech. 1996, 11, 376–383. [Google Scholar] [CrossRef] [PubMed]
- Betsch, M.; Wild, M.; Jungbluth, P.; Hakimi, M.; Windolf, J.; Haex, B.; Horstmann, T.; Rapp, W. Reliability and Validity of 4D Rasterstereography under Dynamic Conditions. Comput. Biol. Med. 2011, 41, 308–312. [Google Scholar] [CrossRef] [PubMed]
- Schroeder, J.; Reer, R.; Braumann, K.M. Video Raster Stereography Back Shape Reconstruction: A Reliability Study for Sagittal, Frontal, and Transversal Plane Parameters. Eur. Spine J. 2014, 24, 262–269. [Google Scholar] [CrossRef] [PubMed]
- Weisz, I.; Jefferson, R.J.; Turner-Smith, A.R.; Houghton, G.R.; Harris, J.D. ISIS Scanning: A Useful Assessment Technique in the Management of Scoliosis. Spine J. 1987, 13, 405–408. [Google Scholar] [CrossRef] [PubMed]
- Berryman, F.; Pynsent, P.; Fairbank, J.; Disney, S. A New System for Measuring Three-Dimensional Back Shape in Scoliosis. Eur. Spine J. 2008, 17, 663–672. [Google Scholar] [CrossRef]
- Gardner, A.; Berryman, F.; Pynsent, P. The Kyphosis–Lordosis Difference Parameter and Its Utility in Understanding the Pathogenesis of Adolescent Idiopathic Scoliosis. BMC Res. Notes 2022, 15, 178. [Google Scholar] [CrossRef]
- Gardner, A.; Berryman, F.; Pynsent, P. The Relationship between Minor Coronal Asymmetry of the Spine and Measures of Spinal Sagittal Shape in Adolescents without Visible Scoliosis. Sci. Rep. 2023, 13, 4294. [Google Scholar] [CrossRef]
- Knott, P.; Sturm, P.; Lonner, B.; Cahill, P.; Betsch, M.; McCarthy, R.; Kelly, M.; Lenke, L.; Betz, R. Multicenter Comparison of 3D Spinal Measurements Using Surface Topography with Those from Conventional Radiography. Spine Deform. 2016, 4, 98–103. [Google Scholar] [CrossRef]
- Mangone, M.; Raimondi, P.; Paoloni, M.; Pellanera, S.; Di Michele, A.; Di Renzo, S.; Vanadia, M.; Dimaggio, M.; Murgia, M.; Santilli, V. Vertebral Rotation in Adolescent Idiopathic Scoliosis Calculated by Radiograph and Back Surface Analysis-Based Methods: Correlation between the Raimondi Method and Rasterstereography. Eur. Spine J. 2013, 22, 367–371. [Google Scholar] [CrossRef]
- Frerich, J.M.; Hertzler, K.; Knott, P.; Mardjetko, S. Comparison of Radiographic and Surface Topography Measurements in Adolescents with Idiopathic Scoliosis. Open Orthop. J. 2012, 6, 261–265. [Google Scholar] [CrossRef]
- Degenhardt, B.; Starks, Z.; Bhatia, S.; Franklin, G.A. Appraisal of the DIERS Method for Calculating Postural Measurements: An Observational Study. Scoliosis Spinal Disord. 2017, 12, 28. [Google Scholar] [CrossRef] [PubMed]
- Bolzinger, M.; Bernardini, I.; Thevenin Lemoine, C.; Gallini, A.; Accadbled, F.; Sales de Gauzy, J. Monitoring Adolescent Idiopathic Scoliosis by Measuring Ribs Prominence Using Surface Topography Device. Spine Deform. 2021, 9, 1349–1354. [Google Scholar] [CrossRef] [PubMed]
- Schmid, S.; Studer, D.; Hasler, C.C.; Romkes, J.; Taylor, W.R.; Lorenzetti, S.; Brunner, R. Quantifying Spinal Gait Kinematics Using an Enhanced Optical Motion Capture Approach in Adolescent Idiopathic Scoliosis. Gait Posture 2016, 44, 231–237. [Google Scholar] [CrossRef] [PubMed]
- Kramers-De Quervain, I.A.; Müller, R.; Stacoff, A.; Grob, D.; Stüssi, E. Gait Analysis in Patients with Idiopathic Scoliosis. Eur. Spine J. 2004, 13, 449–456. [Google Scholar] [CrossRef]
- Haber, C.K.; Sacco, M. Scoliosis: Lower Limb Asymmetries during the Gait Cycle. Arch. Physiother. 2015, 5, 4. [Google Scholar] [CrossRef]
- Chockalingam, N.; Rahmatalla, A.; Dangerfield, P.; Cochrane, T.; Ahmed, E.-N.; Dove, J. Kinematic Differences in Lower Limb Gait Analysis of Scoliotic Subjects. Stud. Health Technol. Inform. 2002, 91, 173–177. [Google Scholar]
- Grant, C.A.; Johnston, M.; Adam, C.J.; Little, J.P. Accuracy of 3D Surface Scanners for Clinical Torso and Spinal Deformity Assessment. Med. Eng. Phys. 2019, 63, 63–71. [Google Scholar] [CrossRef]
- Timmi, A.; Coates, G.; Fortin, K.; Ackland, D.; Bryant, A.L.; Gordon, I.; Pivonka, P. Accuracy of a Novel Marker Tracking Approach Based on the Low-Cost Microsoft Kinect v2 Sensor. Med. Eng. Phys. 2018, 59, 63–69. [Google Scholar] [CrossRef]
- Shannon, T.; Chockalingam, N. Investigation of a Low Cost Method to Quantify Cosmetic Defect. Stud. Health Technol. Inform. 2012, 176, 282–285. [Google Scholar] [CrossRef]
- Xu, X.; McGorry, R.W.; Chou, L.S.; Lin, J.H.; Chang, C.C. Accuracy of the Microsoft KinectTM for Measuring Gait Parameters during Treadmill Walking. Gait Posture 2015, 42, 145–151. [Google Scholar] [CrossRef]
- Müller, B.; Ilg, W.; Giese, M.A.; Ludolph, N. Validation of Enhanced Kinect Sensor Based Motion Capturing for Gait Assessment. PLoS ONE 2017, 12, e0175813. [Google Scholar] [CrossRef] [PubMed]
- Shannon, T.; Chockalingam, N.; Jevtić, N. The Radiological and Clinical Assessment of a Cohort of AIS Patients in Serbia and Bulgaria. Spine J. 2017, 17, S329. [Google Scholar] [CrossRef]
- Hannink, E.; Shannon, T.; Barker, K.L.; Dawes, H. The reliability and reproducibility of sagittal spinal curvature measurement using the Microsoft Kinect V2. J. Back Musculoskelet. Rehabil. 2020, 33, 295–301. [Google Scholar] [CrossRef]
- Rayward, L.; Pearcy, M.; Izatt, M.; Green, D.; Labrom, R.; Askin, G.; Little, J.P. Predicting Spinal Column Profile from Surface Topography via 3D Non-Contact Surface Scanning. PLoS ONE 2023, 18, e0282634. [Google Scholar] [CrossRef] [PubMed]
- Thakur, A.; Heyer, J.H.; Wong, E.; Hillstrom, H.J.; Groisser, B.; Page, K.; Gmelich, C.; Cunningham, M.E.; Widmann, R.F.; Hresko, M.T. The Effects of Adolescent Idiopathic Scoliosis on Axial Rotation of the Spine: A Study of Twisting Using Surface Topography. Children 2022, 9, 670. [Google Scholar] [CrossRef] [PubMed]
- Zucker, C.P.; Cirrincione, P.M.; Hillstrom, H.J.; Thakur, A.; Wisch, J.L.; Groisser, B.N.; Mintz, D.N.; Cunningham, M.E.; Hresko, M.T.; Haddas, R.; et al. The Relationship between Physical Activity, Structural Deformity, and Spinal Mobility in Adolescent Idiopathic Scoliosis Patients. Spine Deform. 2023, 11, 1093–1100. [Google Scholar] [CrossRef]
- Thakur, A.; Groisser, B.; Hillstrom, H.J.; Cunningham, M.E.; Hresko, M.T.; Otremski, H.; Morse, K.W.; Page, K.; Gmelich, C.; Kimmel, R.; et al. 3D Surface Topographic Measurements for Idiopathic Scoliosis Are Highly Correlative to Patient Self-Image Questionnaires. Spine Deform. 2023, 11, 871–880. [Google Scholar] [CrossRef]
- Zheng, Y.P.; Lee, T.T.Y.; Lai, K.K.L.; Yip, B.H.K.; Zhou, G.Q.; Jiang, W.W.; Cheung, J.C.W.; Wong, M.S.; Ng, B.K.W.; Cheng, J.C.Y.; et al. A Reliability and Validity Study for Scolioscan: A Radiation-Free Scoliosis Assessment System Using 3D Ultrasound Imaging. Scoliosis Spinal Disord. 2016, 11, 13. [Google Scholar] [CrossRef]
- 62. de Reuver, S.; Brink, R.C.; Lee, T.T.Y.; Zheng, Y.P.; Beek, F.J.A.; Castelein, R.M. Cross-validation of ultrasound imaging in adolescent idiopathic scoliosis. Eur. Spine J. 2021, 30, 628–633. [Google Scholar] [CrossRef]
- Manca, A.; Monticone, M.; Cugusi, L.; Doria, C.; Tranquilli-Leali, P.; Deriu, F. Back Surface Measurements by Rasterstereography for Adolescent Idiopathic Scoliosis: From Reproducibility to Data Reduction Analyses. Eur. Spine J. 2018, 27, 2130–2138. [Google Scholar] [CrossRef]
- Labecka, M.K.; Plandowska, M. Moiré Topography as a Screening and Diagnostic Tool-A Systematic Review. PLoS ONE 2021, 16, e0260858. [Google Scholar] [CrossRef] [PubMed]
- Knott, P.; Pappo, E.; Cameron, M.; DeMauroy, J.C.; Rivard, C.; Kotwicki, T.; Zaina, F.; Wynne, J.; Stikeleather, L.; Bettany-Saltikov, J.; et al. SOSORT 2012 Consensus Paper: Reducing x-Ray Exposure in Pediatric Patients with Scoliosis. Scoliosis 2014, 9, 4. [Google Scholar] [CrossRef] [PubMed]
- Page, K.; Gmelich, C.; Thakur, A.; Heyer, J.H.; Hillstrom, H.J.; Groisser, B.; Morse, K.W.; Li, D.; Cunningham, M.E.; Hresko, M.T.; et al. 3D Surface Topographic Optical Scans Yield Highly Reliable Global Spine Range of Motion Measurements in Scoliotic and Non-Scoliotic Adolescents. Children 2022, 9, 1756. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mehta, B.; Chockalingam, N.; Shannon, T.; Jevtic, N.; Lazic, F.; Jasani, V.; Eddison, N.; Healy, A.; Needham, R. Non-Invasive Assessment of Back Surface Topography: Technologies, Techniques and Clinical Utility. Sensors 2023, 23, 8485. https://doi.org/10.3390/s23208485
Mehta B, Chockalingam N, Shannon T, Jevtic N, Lazic F, Jasani V, Eddison N, Healy A, Needham R. Non-Invasive Assessment of Back Surface Topography: Technologies, Techniques and Clinical Utility. Sensors. 2023; 23(20):8485. https://doi.org/10.3390/s23208485
Chicago/Turabian StyleMehta, Bhavna, Nachiappan Chockalingam, Thomas Shannon, Nikola Jevtic, Filip Lazic, Vinay Jasani, Nicola Eddison, Aoife Healy, and Robert Needham. 2023. "Non-Invasive Assessment of Back Surface Topography: Technologies, Techniques and Clinical Utility" Sensors 23, no. 20: 8485. https://doi.org/10.3390/s23208485
APA StyleMehta, B., Chockalingam, N., Shannon, T., Jevtic, N., Lazic, F., Jasani, V., Eddison, N., Healy, A., & Needham, R. (2023). Non-Invasive Assessment of Back Surface Topography: Technologies, Techniques and Clinical Utility. Sensors, 23(20), 8485. https://doi.org/10.3390/s23208485