A Symmetrized Dot Pattern Extraction Method Based on Frobenius and Nuclear Hybrid Norm Penalized Robust Principal Component Analysis and Decomposition and Reconstruction
Abstract
:1. Introduction
2. Related Theories and Proposed Methods
2.1. Frobenius and Nuclear Hybrid Norm Penalized Robust Principal Component Analysis
2.1.1. The Principle and Framework of FNHN-RPCA
2.1.2. Optimization Algorithm for FNHN-RPCA
2.2. The DPR/KLdiv Selection Criteria
2.3. SDP Theory
2.4. The Proposed Method
2.4.1. Improvements to the DPR/KLdiv Criterion
2.4.2. SDP Pattern Extraction Model Based on FNHN-RPCA and Decomposition and Reconstruction
3. Experimental Verification and Results Analysis
3.1. Case 1. Western Reserve University Public Dataset
3.1.1. Experimental Instruments and Experimental Data
3.1.2. Improve the Validation of the DPR/KLdiv Criteria
3.1.3. Validation of the Feature Extraction Method
3.2. Case 2. Laboratory Rolling Bearing Data
3.2.1. Experimental Instruments and Experimental Data
3.2.2. Comparison and Verification of Feature Extraction Methods
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Liu, X.; Chen, G.; Cheng, Z.; Wei, X.; Wang, H. Convolution neural network based particle filtering for remaining useful life prediction of rolling bearing. Adv. Mech. Eng. 2022, 14, 16878132221100631. [Google Scholar] [CrossRef]
- Yu, A.; Huang, H.Z.; Li, Y.F.; Yang, W.; Deng, Z. A modified nonlinear fatigue damage accumulation model for life prediction of rolling bearing under variable loading conditions. Fatigue Fract. Eng. Mater. Struct. 2022, 45, 852–864. [Google Scholar] [CrossRef]
- Chen, J.; Hu, W.; Cao, D.; Zhang, Z.; Chen, Z.; Blaabjerg, F. A meta-learning method for electric machine bearing fault diagnosis under varying working conditions with limited data. IEEE Trans. Ind. Inform. 2022, 19, 2552–2564. [Google Scholar] [CrossRef]
- Fu, W.; Jiang, X.; Li, B.; Tan, C.; Chen, B.; Chen, X. Rolling bearing fault diagnosis based on 2D time-frequency images and data augmentation technique. Meas. Sci. Technol. 2023, 34, 045005. [Google Scholar] [CrossRef]
- Ma, P.; Zhang, H.; Fan, W.; Wang, C.; Wen, G.; Zhang, X. A novel bearing fault diagnosis method based on 2D image representation and transfer learning-convolutional neural network. Meas. Sci. Technol. 2019, 30, 055402. [Google Scholar] [CrossRef]
- Pickover, C.A. On the use of symmetrized dot patterns for the visual characterization of speech waveforms and other sampled data. J. Acoust. Soc. Am. 1986, 80, 955–960. [Google Scholar] [CrossRef]
- Sun, Y.; Li, S.; Wang, X. Bearing fault diagnosis based on EMD and improved Chebyshev distance in SDP image. Measurement 2021, 176, 109100. [Google Scholar] [CrossRef]
- Gu, Y.; Zeng, L.; Qiu, G. Bearing fault diagnosis with varying conditions using angular domain resampling technology, SDP and DCNN. Measurement 2020, 156, 107616. [Google Scholar] [CrossRef]
- Candès, E.J.; Li, X.; Ma, Y.; Wright, J. Robust principal component analysis? JACM 2011, 58, 1–37. [Google Scholar] [CrossRef]
- Feng, S.; Tang, S.; Zhao, C.; Cui, Y. A Hyperspectral Anomaly Detection Method Based on Low-Rank and Sparse Decomposition With Density Peak Guided Collaborative Representation. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5501513. [Google Scholar] [CrossRef]
- Chang, Y.; Yan, L.; Chen, B.; Zhong, S.; Tian, Y. Hyperspectral image restoration: Where does the low-rank property exist. IEEE Trans. Geosci. Remote Sens. 2020, 59, 6869–6884. [Google Scholar] [CrossRef]
- Ge, M.; Lv, Y.; Zhang, Y.; Yi, C.; Ma, Y. An effective bearing fault diagnosis technique via local robust principal component analysis and multi-scale permutation entropy. Entropy 2019, 21, 959. [Google Scholar] [CrossRef]
- Tang, H.; Liao, Z.; Chen, P.; Zuo, D.; Yi, S. A Robust Deep Learning Network for Low-speed Machinery Fault Diagnosis based on Multi-kernel and RPCA. IEEE/ASME Trans. Mechatron. 2021, 27, 1522–1532. [Google Scholar] [CrossRef]
- Shang, F.; Cheng, J.; Liu, Y.; Luo, Z.Q.; Lin, Z. Bilinear factor matrix norm minimization for robust PCA: Algorithms and applications. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 2066–2080. [Google Scholar] [CrossRef] [PubMed]
- Yu, K.; Ma, H.; Zeng, J.; Han, H.; Li, H.; Wen, B. Frobenius and nuclear hybrid norm penalized robust principal component analysis for transient impulsive feature detection of rolling bearings. ISA Trans. 2020, 100, 373–386. [Google Scholar] [CrossRef]
- Shi, J.; Hua, Z.; Huang, W.; Dumond, P.; Shen, C.; Zhu, Z. Instantaneous frequency synchronized generalized stepwise demodulation transform for bearing fault diagnosis. IEEE Trans. Instrum. Meas. 2022, 71, 3509515. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, L.; Hu, A.; Yu, G. Time-extracting S-transform algorithm and its application in rolling bearing fault diagnosis. Sci. China Technol. Sci. 2022, 65, 932–942. [Google Scholar] [CrossRef]
- Gilles, J. Empirical Wavelet Transform. IEEE Trans. Signal Process. 2013, 61, 3999–4010. [Google Scholar] [CrossRef]
- Dragomiretskiy, K.; Zosso, D. Variational Mode Decomposition. IEEE Trans. Signal Process. 2014, 62, 531–544. [Google Scholar] [CrossRef]
- Wu, Z.; Huang, N. Ensemble Empirical Mode Decomposition: A Noise-Assisted Data Analysis Method. Adv. Adapt. Data Anal. 2009, 1, 1–41. [Google Scholar] [CrossRef]
- Li, Y.-X.; Li, Y.-A.; Chen, Z.; Chen, X. Feature Extraction of Ship-Radiated Noise Based on Permutation Entropy of the Intrinsic Mode Function with the Highest Energy. Entropy 2016, 18, 393. [Google Scholar] [CrossRef]
- Chen, W.; Li, J.; Wang, Q.; Han, K. Fault feature extraction and diagnosis of rolling bearings based on wavelet thresholding denoising with CEEMDAN energy entropy and PSO-LSSVM. Measurement 2021, 172, 108901. [Google Scholar] [CrossRef]
- Mao, X.; Yang, A.C.; Peng, C.K.; Shang, P. Analysis of economic growth fluctuations based on EEMD and causal decomposition. Phys. A Stat. Mech. Its Appl. 2020, 553, 124661. [Google Scholar] [CrossRef]
- Bai, L.; Xu, J.; Chen, Z.; Li, W.; Liu, Z.; Zhao, B.; Wang, Z. The regional features of temperature variation trends over Xinjiang in China by the ensemble empirical mode decomposition method. Int. J. Climatol. 2014, 35, 3229–3237. [Google Scholar] [CrossRef]
- Pang, B.; Liang, J.; Liu, H.; Dong, J.; Xu, Z.; Zhao, X. Intelligent Bearing Fault Diagnosis Based on Multivariate Symmetrized Dot Pattern and LEG Transformer. Machines 2022, 10, 550. [Google Scholar] [CrossRef]
- Huang, D.; Li, S.; Qin, N.; Zhang, Y. Fault Diagnosis of High-Speed Train Bogie Based on the Improved-CEEMDAN and 1-D CNN Algorithms. IEEE Trans. Instrum. Meas. 2021, 70, 3508811. [Google Scholar] [CrossRef]
- Prosvirin, A.E.; Islam, M.; Kim, J.; Kim, J.M. Rub-impact fault diagnosis using an effective IMF selection technique in ensemble empirical mode decomposition and hybrid feature models. Sensors 2018, 18, 2040. [Google Scholar] [CrossRef]
- Prosvirin, A.E.; Islam, M.M.M.; Kim, J.M. An improved algorithm for selecting IMF components in ensemble empirical mode decomposition for domain of rub-impact fault diagnosis. IEEE Access 2019, 7, 121728–121741. [Google Scholar] [CrossRef]
- Kennel, M.B.; Brown, R.; Abarbanel, H.D.I. Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys. Rev. A 1992, 45, 3403. [Google Scholar] [CrossRef]
- Hintermüller, M.; Wu, T. Robust principal component pursuit via inexact alternating minimization on matrix manifolds. J. Math. Imaging Vis. 2015, 51, 361–377. [Google Scholar] [CrossRef]
- Gu, S.; Zhang, L.; Zuo, W.; Feng, X. Weighted nuclear norm minimization with application to image denoising. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 2862–2869. [Google Scholar]
- Maliuk, A.S.; Prosvirin, A.E.; Ahmad, Z.; Kim, C.H.; Kim, J.M. Novel bearing fault diagnosis using gaussian mixture model-based fault band selection. Sensors 2021, 21, 6579. [Google Scholar] [CrossRef] [PubMed]
- Cha, S.H. Comprehensive survey on distance/similarity measures between probability density functions. City 2007, 1, 300–307. [Google Scholar]
- Yang, S.; Gu, X.; Liu, Y.; Hao, R.; Li, S. A general multi-objective optimized wavelet filter and its applications in fault diagnosis of wheelset bearings. Mech. Syst. Signal Process. 2020, 145, 106914. [Google Scholar] [CrossRef]
IMF | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
DPR | 10.1 | 10.1 | 10.1 | 10.4 | 10.2 | 10.2 | 10.2 | 10.1 | 10.1 | 10.1 | 10.1 | 10.1 | 10.1 | 10.1 |
KLdiv | 1.13 | 0.99 | 0.88 | 0.86 | 0.86 | 0.84 | 0.81 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 |
Obj | 0 | 0.32 | 0.67 | 0.84 | 0.78 | 0.87 | 0.98 | 1 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 |
adTH | 0.1389 |
IMF | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
DPR | 0.06 | 0.76 | 0.61 | 2.23 | 1.57 | 1.74 | 1.58 | 1.09 | 0.85 | 0.80 | 0.80 | 0.81 | 0.81 | 0.81 |
KLdiv | 1.13 | 0.99 | 0.88 | 0.86 | 0.86 | 0.84 | 0.81 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 |
Obj | 0 | 0.28 | 0.25 | 1 | 0.7 | 0.8 | 0.75 | 0.52 | 0.4 | 0.38 | 0.38 | 0.38 | 0.38 | 0.38 |
adTH | 0.1014 | |||||||||||||
aw | 0.5598 |
Normal | Inner Race | Ball | O-@12 | O-@6 | O-@3 | |
---|---|---|---|---|---|---|
Normal | 1 | 0.7807 | 0.8649 | 0.8604 | 0.7781 | 0.7130 |
Inner race | 0.7807 | 1 | 0.7663 | 0.7704 | 0.6527 | 0.6986 |
Ball | 0.8649 | 0.7663 | 1 | 0.8791 | 0.7700 | 0.6868 |
O-@12 | 0.8604 | 0.7704 | 0.8791 | 1 | 0.7523 | 0.6717 |
O-@6 | 0.7781 | 0.6527 | 0.7700 | 0.7523 | 1 | 0.7563 |
O-@3 | 0.7130 | 0.6986 | 0.6868 | 0.6717 | 0.7563 | 1 |
Mean correlation coefficient | 0.6826 | 0.6917 | 0.7680 | 0.7916 | 0.7502 | 0.6876 |
Normal | Inner Race | Ball | O-@12 | O-@6 | O-@3 | |
---|---|---|---|---|---|---|
Normal | 1 | 0.7452 | 0.8473 | 0.7754 | 0.6200 | 0.5645 |
Inner race | 0.7452 | 1 | 0.8285 | 0.8542 | 0.8057 | 0.7724 |
Ball | 0.8473 | 0.8285 | 1 | 0.8314 | 0.7103 | 0.6537 |
O-@12 | 0.7754 | 0.8542 | 0.8314 | 1 | 0.7914 | 0.7464 |
O-@6 | 0.6200 | 0.8057 | 0.7103 | 0.7914 | 1 | 0.8507 |
O-@3 | 0.5645 | 0.7724 | 0.6537 | 0.7464 | 0.8507 | 1 |
Mean correlation coefficient | 0.6250 | 0.7012 | 0.6824 | 0.6827 | 0.6862 | 0.7084 |
Normal | Inner Race | Ball | O-@12 | O-@6 | O-@3 | |
---|---|---|---|---|---|---|
Normal | 1 | 0.5145 | 0.4594 | 0.6114 | 0.5746 | 0.6144 |
Inner race | 0.5145 | 1 | 0.4246 | 0.5758 | 0.5963 | 0.5410 |
Ball | 0.4594 | 0.4246 | 1 | 0.4510 | 0.4703 | 0.4311 |
O-@12 | 0.6114 | 0.5758 | 0.4510 | 1 | 0.7336 | 0.7140 |
O-@6 | 0.5746 | 0.5963 | 0.4703 | 0.7336 | 1 | 0.7066 |
O-@3 | 0.6144 | 0.5410 | 0.4311 | 0.7140 | 0.7066 | 1 |
Mean correlation coefficient | 0.7819 | 0.7952 | 0.8076 | 0.7933 | 0.7950 | 0.7745 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Wei, S.; Xi, T.; Li, H. A Symmetrized Dot Pattern Extraction Method Based on Frobenius and Nuclear Hybrid Norm Penalized Robust Principal Component Analysis and Decomposition and Reconstruction. Sensors 2023, 23, 8509. https://doi.org/10.3390/s23208509
Wang L, Wei S, Xi T, Li H. A Symmetrized Dot Pattern Extraction Method Based on Frobenius and Nuclear Hybrid Norm Penalized Robust Principal Component Analysis and Decomposition and Reconstruction. Sensors. 2023; 23(20):8509. https://doi.org/10.3390/s23208509
Chicago/Turabian StyleWang, Lijing, Shichun Wei, Tao Xi, and Hongjiang Li. 2023. "A Symmetrized Dot Pattern Extraction Method Based on Frobenius and Nuclear Hybrid Norm Penalized Robust Principal Component Analysis and Decomposition and Reconstruction" Sensors 23, no. 20: 8509. https://doi.org/10.3390/s23208509
APA StyleWang, L., Wei, S., Xi, T., & Li, H. (2023). A Symmetrized Dot Pattern Extraction Method Based on Frobenius and Nuclear Hybrid Norm Penalized Robust Principal Component Analysis and Decomposition and Reconstruction. Sensors, 23(20), 8509. https://doi.org/10.3390/s23208509