Hydrogen Peroxide Electrochemical Sensor Based on Ag/Cu Bimetallic Nanoparticles Modified on Polypyrrole
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Characterization
2.3. PPy–Ag/Cu Electrode Fabrication
2.4. Electrochemical Measurements
3. Results and Discussion
3.1. Characterization
3.2. Optimization of Experimental Parameters
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gimeno, P.; Bousquet, C.; Lassu, N.; Maggio, A.F.; Civade, C.; Brenier, C. High-Performance Liquid Chromatography Method for the Determination of Hydrogen Peroxide Present or Released on Teeth Bleaching Kits and Hair Cosmetic Products. J. Pharm. Biomed. Anal. 2015, 107, 386–393. [Google Scholar] [CrossRef] [PubMed]
- Patel, N.G.; Erlenkötter, A.; Cammann, K.; Chemnitius, G.C. Fabrication and Characterization of Disposable Type Lactate Oxidase Sensors for Dairy Products and Clinical Analysis. Sens. Actuators, B 2000, 67, 134–141. [Google Scholar] [CrossRef]
- Cui, X.; Wu, S.; Li, Y.; Wang, G. Sensing Hydrogen Peroxide Using a Glassy Carbon Electrode Modified with In-Situ Electrodeposited Platinum-Gold Bimetallic Nanoclusters on a Graphene Surface. Microchim. Acta 2015, 182, 265–272. [Google Scholar] [CrossRef]
- Lennicke, C.; Rahn, J.; Lichtenfels, R.; Wessjohann, L.A.; Seliger, B. Hydrogen Peroxide–Production, Fate and Role in Redox Signaling of Tumor Cells. Cell Commun. Signal. 2015, 13, 39. [Google Scholar] [CrossRef]
- Liang, C.J.; He, B.Y.A. Titration Method for Determining Individual Oxidant Concentration in the Dual Sodium Persulfate and Hydrogen Peroxide Oxidation System. Chemosphere 2018, 198, 297–302. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, Q.; Zhan, H. Headspace Gas Chromatographic Method for the Determination of Hydrogen Peroxide Residues in Bleaching Effluent. Bioresources 2014, 9, 4510–4516. [Google Scholar] [CrossRef]
- Liu, Z.Y.; Shen, C.L.; Lou, Q.; Zhao, W.B.; Wei, J.Y.; Liu, K.K.; Zang, J.H.; Dong, L.; Shan, C.X. Efficient Chemiluminescent ZnO Nanoparticles for Cellular Imaging. J. Lumin 2020, 221, 117111. [Google Scholar] [CrossRef]
- Wang, M.Y.; Qiu, S.Y.; Yang, H.Y.; Huang, Y.X.; Dai, L.; Zhang, B.L.; Zou, J. Spectrophotometric Determination of Hydrogen Peroxide in Water with Peroxidase-Catalyzed Oxidation of Potassium Iodide and Its Applications to Hydroxylamine-Involved Fenton and Fenton-Like Systems. Chemosphere 2021, 270, 129448–129456. [Google Scholar] [CrossRef]
- Hrapovic, S.; Liu, Y.; Male, K.B.; Luong, J.H.T. Electrochemical Biosensing Platforms Using Platinum Nanoparticles and Carbon Nanotubes. Anal. Chem. 2004, 76, 1083–1088. [Google Scholar] [CrossRef]
- Li, G.; Wang, Y.; Xu, H. A Hydrogen Peroxide Sensor Prepared by Electropolymerization of Pyrrole Based on Screen-Printed Carbon Paste Electrodes. Sensors 2007, 7, 239–250. [Google Scholar] [CrossRef]
- Li, X.Y.; Liu, Y.X.; Zheng, L.C.; Dong, M.J.; Xue, Z.H. A Novel Nonenzymatic Hydrogen Peroxide Sensor Based on Silver Nanoparticles and Ionic Liquid Functionalized Multiwalled Carbon Nanotube Composite Modified Electrode. Electrochim. Acta 2013, 113, 170–175. [Google Scholar] [CrossRef]
- Arena, A.; Scandurra, G.; Ciofi, C.; Saitta, G. Nafion/Polypyrrole Blends for Non-Enzymatic Detection of Hydrogen Peroxide. Key Eng. Mater. 2013, 543, 255–260. [Google Scholar] [CrossRef]
- Wang, Q.Q.; Zhang, X.P.; Huang, L.; Zhang, Z.Q.; Dong, S.J. GOx@ ZIF-8 (NiPd) nanoflower: An artificial enzyme system for tandem catalysis. Angew. Chem 2017, 129, 16298–16301. [Google Scholar] [CrossRef]
- Baretta, R.; Gabrielli, V.; Frasconi, M. Nanozyme–cellulose hydrogel composites enabling cascade catalysis for the colorimetric detection of glucose. ACS Appl. Nano Mater. 2022, 5, 13845–13853. [Google Scholar] [CrossRef]
- Park, J.S.; Choi, J.S.; Han, D.K. Platinum nanozyme-hydrogel composite (PtNZHG)-impregnated cascade sensing system for one-step glucose detection in serum, urine, and saliva. Sens. Actuators B 2022, 359, 131585. [Google Scholar] [CrossRef]
- Hira, S.A.; Yusuf, M.; Annas, D.; Nagappan, S.; Song, S.; Park, S.; Park, K.H. Recent Advances on Conducting Polymer-Supported Nanocomposites for Nonenzymatic Electrochemical Sensing. Ind. Eng. Chem. Res. 2021, 60, 13425–13437. [Google Scholar] [CrossRef]
- Xie, Y.; Tu, X.L.; Ma, X.; Xiao, M.Q.; Liu, G.B.; Qu, F.L.; Dai, R.Y. In-Situ Synthesis of Hierarchically Porous Polypyrrole@ ZIF-8/Graphene Aerogels for Enhanced Electrochemical Sensing of 2, 2-Methylenebis (4-Chlorophenol). Electrochim. Acta 2019, 311, 114–122. [Google Scholar] [CrossRef]
- Lin, M.; Yang, J.; Cho, M.; Lee, Y.K. Hydrogen Peroxide Detection Using a Polypyrrole/Prussian Blue Nanowire Modified Electrode. Macromol. Res. 2011, 19, 673–678. [Google Scholar] [CrossRef]
- Pei, F.B.; Wang, P.; Ma, E.H.; Yu, H.X.; Gao, C.X.; Yin, H.H.; Li, Y.Y.; Liu, Q.; Dong, Y.H. A Sandwich-Type Amperometric Immunosensor Fabricated by Au@ Pd Nds/Fe2+-CS/PPyNts and Au Nps/NH2-GS to Detect CEA Sensitively Via Two Detection Methods. Biosens. Bioelectron. 2018, 122, 231–238. [Google Scholar] [CrossRef]
- Mathivanan, D.; Devi, K.S.S.; Sathiyan, G.; Tyagi, A.; da Silva, V.A.O.P.; Janegitz, B.C.; Prakash, J.; Gupta, R.K. Novel Polypyrrole-Graphene Oxide-Gold Nanocomposite for High Performance Hydrogen Peroxide Sensing Application. Sens. Actuators A 2021, 32, 112769. [Google Scholar] [CrossRef]
- Wu, B.Y.; Zhao, N.; Hou, S.H.; Zhang, C. Electrochemical Synthesis of Polypyrrole, Reduced Graphene Oxide, and Gold Nanoparticles Composite and Its Application to Hydrogen Peroxide Biosensor. Nanomaterials 2016, 6, 220. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.W.; Zhang, K.; Wei, G.; Su, Z.Q. Fabrication of Polypyrrole Nanoplates Decorated with Silver and Gold Nanoparticles for Sensor Applications. RSC Adv. 2015, 5, 69745–69752. [Google Scholar] [CrossRef]
- Scandurra, G.; Arena, A.; Ciofi, C.; Saitta, G. Electrical Characterization and Hydrogen Peroxide Sensing Properties of Gold/Nafion: Polypyrrole/Mwcnts Electrochemical Devices. Sensors 2013, 13, 3878–3888. [Google Scholar] [CrossRef] [PubMed]
- Qi, C.; Zheng, J. Novel Nonenzymatic Hydrogen Peroxide Sensor Based on Fe3O4/PPy/Ag Nanocomposites. J. Electroanal. Chem. 2015, 747, 53–58. [Google Scholar] [CrossRef]
- Nia, P.M.; Meng, W.P.; Alias, Y. Hydrogen Peroxide Sensor: Uniformly Decorated Silver Nanoparticles on Polypyrrole for Wide Detection Range. Appl. Surf. Sci. 2015, 357, 1565–1572. [Google Scholar] [CrossRef]
- Xing, L.; Rong, Q.; Ma, Z. Non-Enzymatic Electrochemical Sensing of Hydrogen Peroxide Based on Polypyrrole/Platinum Nanocomposites. Sens. Actuators B 2015, 221, 242–247. [Google Scholar] [CrossRef]
- Li, Y.L.; Chang, Y.Z.; Jin, M.; Han, G.Y. A Nonenzymatic Hydrogen Peroxide Sensor Based on Pt/PPy Hollow Hybrid Microspheres. J. Appl. Polym. Sci. 2012, 126, 1316–1321. [Google Scholar] [CrossRef]
- Zheng, J.P.; Liu, Y.; Ye, C.; Cheng, Y.; Liu, Y.; Zhang, Z.G.; Yin, M.Z.; Gao, Q.H.; Liu, H.T. Durable Hydrogen Peroxide Biosensors Based on Polypyrrole-Decorated Platinum/Palladium Bimetallic Nanoparticles. ACS Appl. Nano Mater. 2021, 4, 8116–8125. [Google Scholar] [CrossRef]
- Hosseini, H.; Rezaei, S.J.T.; Rahmani, P.; Sharifi, R.; Nabid, M.R. Nonenzymatic Glucose and Hydrogen Peroxide Sensors Based on Catalytic Properties of Palladium Nanoparticles/Poly (3, 4-Ethylenedioxythiophene) Nanofibers. Sens. Actuators B 2014, 195, 85–91. [Google Scholar] [CrossRef]
- Cao, Y.; Qi, Y.L.; Meng, X.T.; Si, W.M.; Hao, Q.L.; Lei, W.; Li, J.; Cao, J.; Li, X.W.; Li, Q.H.; et al. Facile Preparation of Hemin/Polypyrrole/N, B-Co-Doped Graphene Nanocomposites for Non-Enzymatic H2O2 Determination. J. Electrochem. Soc. 2018, 165, B623. [Google Scholar] [CrossRef]
- Baghayeri, M.; Zare, E.N.; Lakouraj, M.M. A Simple Hydrogen Peroxide Biosensor Based on A Novel Electro-Magnetic Poly (P-Phenylenediamine) @ Fe3O4 Nanocomposite. Biosens. Bioelectron. 2014, 55, 259–265. [Google Scholar] [CrossRef] [PubMed]
- Nia, P.M.; Meng, W.P.; Alias, Y. One-Step Electrodeposition of Polypyrrole-Copper Nano Particles for H2O2 Detection. J. Electrochem. Soc. 2015, 163, B8. [Google Scholar] [CrossRef]
- He, G.L.; Gao, F.L.; Li, W.; Li, P.W. Electrochemical Sensing of H2O2 Released from Living Cells Based on AuPd Alloy-Modified PDA Nanotubes. Anal. Methods 2019, 11, 1651–1656. [Google Scholar] [CrossRef]
- Guler, M.; Turkoglu, V.; Bulut, A. Electrochemical Sensing of Hydrogen Peroxide Using Pd@ Ag Bimetallic Nanoparticles Decorated Functionalized Reduced Graphene Oxide. Electrochim. Acta 2018, 263, 118–126. [Google Scholar] [CrossRef]
- Mao, J.; Zhang, Z. Polypyrrole as Electrically Conductive Biomaterials: Synthesis, Biofunctionalization, Potential Applications and Challenges. In Cutting-Edge Enabling Technologies for Regenerative Medicine; Advances in Experimental Medicine and Biology Series; Springer: Berlin/Heidelberg, Germany, 2018; pp. 347–370. [Google Scholar]
- Welch, C.M.; Banks, C.E.; Simm, A.O. Silver nanoparticle assemblies supported on glassy-carbon electrodes for the electro-analytical detection of hydrogen peroxide. Anal. Bioanal. Chem. 2005, 382, 12–21. [Google Scholar] [CrossRef]
- Hoang, T.T.H.; Verma, S.; Ma, S.C.; Timothy, T.F.; Janis, T.; Anatoly, I.F. Nanoporous copper–silver alloys by additive-controlled electrodeposition for the selective electroreduction of CO2 to ethylene and ethanol. Am. Chem. J. 2018, 140, 5791–5797. [Google Scholar] [CrossRef]
- Bernasconi, R.; Hart, J.L.; Lang, A.C. Structural properties of electrodeposited Cu-Ag alloys. Electrochim. Acta 2017, 251, 475–481. [Google Scholar] [CrossRef]
- Uzunçar, S.; Özdoğan, N. Amperometric Detection of Glucose and H2O2 Using Peroxide Selective Electrode Based on Carboxymethylcellulose/Polypyrrole and Prussian Blue Nanocomposite. Mater. Today Commun. 2021, 26, 101839. [Google Scholar] [CrossRef]
- Yang, Z.; Qi, C.; Zheng, X. Facile Synthesis of Silver Nanoparticle-Decorated Graphene Oxide Nanocomposites and Their Application for Electrochemical Sensing. New J. Chem. 2015, 39, 9358–9362. [Google Scholar] [CrossRef]
- Sahoo, S.; Sahoo, P.K.; Manna, S.A. Novel Low Cost Nonenzymatic Hydrogen Peroxide Sensor Based on CoFe2O4/CNTs Nanocomposite Modified Electrode. J. Electroanal. Chem. 2020, 876, 114504. [Google Scholar] [CrossRef]
- Ma, B.; Kong, C.C.; Hu, X.X. A Sensitive Electrochemical Nonenzymatic Biosensor for The Detection of H2O2 Released from Living Cells Based on Ultrathin Concave Ag Nanosheets. Biosens. Bioelectron. 2018, 106, 29–36. [Google Scholar] [CrossRef] [PubMed]
C | N | O | Cu | Ag |
---|---|---|---|---|
40.76% | 3.07% | 31.70% | 20.09% | 2.04% |
Materials | Linear Range | Sensitivity | LOD * | Ref. |
---|---|---|---|---|
PPy–GO–AuNPs | 2.5–25 mM | 41.35 μA/ (mM × cm2) | 5 μM | [20] |
PPy–rGO–Au | 0.032–2 mM | 317 μA/ (mM × cm2) | 2.7 μM | [21] |
PPy–PtPd NP | 2.5–400 μM | 1360.83 μA/ (mM × cm2) | 2.5 μM | [18] |
PPy–Cu | 0.4–1 mM | - | 0.51 μM | [32] |
1–12 mM | 510 μA/ (mM × cm2) | 4.39 μM | ||
CMC/PPy/PB | 20–1100 μM | 456.8 μA/ (mM × cm2) | 5.23 μM | [39] |
AgNPs–TWEEN–GO | 0.02–23.1 mM | - | 8.7 μM | [40] |
CoFe2O4/CNTs | 5–50 μM | - | 0.05 μM | [41] |
AgNSs | 5–6000 μM | - | 0.17 μM | [42] |
PPy–Ag/Cu | 0.1–1.0 mM 1.0–37.0 mM | 265.06 μA/ (mM × cm2) 445.78 μA/ (mM × cm2) | 0.027 μM 0.063 μM | This work |
Linear Range | Added H2O2 Concentration (mM) | Measured H2O2 Concentration (mM) | Measured H2O2 Mean Concentration (mM) | Recovery (%) |
---|---|---|---|---|
0.1~1 | 0.2000 | 0.2035 | 0.2048 | 102.40 |
0.1983 | ||||
0.2127 | ||||
0.5000 | 0.5311 | 0.5150 | 103.00 | |
0.5043 | ||||
0.5097 | ||||
0.8000 | 0.8003 | 0.7987 | 99.84 | |
0.7914 | ||||
0.8044 | ||||
1~35 | 5.000 | 4.9724 | 4.9323 | 98.65 |
4.8834 | ||||
4.9412 | ||||
15.00 | 15.5333 | 15.7207 | 104.80 | |
15.4646 | ||||
16.1641 | ||||
25.00 | 26.3112 | 26.1462 | 104.58 | |
26.0541 | ||||
26.0733 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guan, Y.; Xu, F.; Sun, L.; Luo, Y.; Cheng, R.; Zou, Y.; Liao, L.; Cao, Z. Hydrogen Peroxide Electrochemical Sensor Based on Ag/Cu Bimetallic Nanoparticles Modified on Polypyrrole. Sensors 2023, 23, 8536. https://doi.org/10.3390/s23208536
Guan Y, Xu F, Sun L, Luo Y, Cheng R, Zou Y, Liao L, Cao Z. Hydrogen Peroxide Electrochemical Sensor Based on Ag/Cu Bimetallic Nanoparticles Modified on Polypyrrole. Sensors. 2023; 23(20):8536. https://doi.org/10.3390/s23208536
Chicago/Turabian StyleGuan, Yanxun, Fen Xu, Lixian Sun, Yumei Luo, Riguang Cheng, Yongjin Zou, Lumin Liao, and Zhong Cao. 2023. "Hydrogen Peroxide Electrochemical Sensor Based on Ag/Cu Bimetallic Nanoparticles Modified on Polypyrrole" Sensors 23, no. 20: 8536. https://doi.org/10.3390/s23208536
APA StyleGuan, Y., Xu, F., Sun, L., Luo, Y., Cheng, R., Zou, Y., Liao, L., & Cao, Z. (2023). Hydrogen Peroxide Electrochemical Sensor Based on Ag/Cu Bimetallic Nanoparticles Modified on Polypyrrole. Sensors, 23(20), 8536. https://doi.org/10.3390/s23208536