The Microwave Temperature and Humidity Profiler: Description and Preliminary Results
Abstract
:1. Introduction
2. Instrument Description
2.1. Antenna Cylinder Assembly Description
2.2. 60 GHz Receiver
2.3. 183 GHz Receiver
2.4. Receivers Characterization: Noise Equivalent Temperature
3. Calibration Strategy
- Two consecutive measurements of the lower-side band (51–55 GHz) are averaged together and concatenated to two consecutive measurements of the upper-side band (55–59 GHz), which are also averaged together.
- Four rotations of the 183 GHz channel are averaged together.
4. TI3GER Campaign Measurements
4.1. Campaign Overview
4.2. Preliminary Results
4.3. Radio Frequency Interference
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Space Studies Board; National Academies of Sciences, Engineering, and Medicine. Thriving on Our Changing Planet: A Decadal Strategy for Earth Observation from Space. In Thriving on Our Changing Planet; The National Academies Press: Washington, WA, USA, 2018; pp. 1–694. [Google Scholar] [CrossRef]
- Turbulence Structure in the Convective Boundary Layer in: Journal of the Atmospheric Sciences Volume 33 Issue 11 (1976). Available online: https://journals.ametsoc.org/view/journals/atsc/33/11/1520-0469_1976_033_2152_tsitcb_2_0_co_2.xml (accessed on 7 June 2022).
- Teixeira, J.; Piepmeier, J.R.; Nehrir, A.R.; Ao, C.O.; Chen, S.S.; Clayson, C.A.; Fridlind, A.M.; Lebsock, M.; Mccarty, W.; Salmun, H.; et al. Toward a Global Planetary Boundary Layer Observing System: The NASA PBL Incubation Study Team Report; NASA: Washington, WA, USA, 2021.
- Palm, S.P.; Selmer, P.; Yorks, J.; Nicholls, S.; Nowottnick, E. Planetary Boundary Layer Height Estimates from ICESat-2 and CATS Backscatter Measurements. Front. Remote Sens. 2021, 2, 29. [Google Scholar] [CrossRef]
- Millán, L.; Lebsock, M.; Livesey, N.; Tanelli, S.; Stephens, G. Differential Absorption Radar Techniques: Surface Pressure. Atmos. Meas. Tech. 2014, 7, 3959–3970. [Google Scholar] [CrossRef]
- Differential Absorption Radar: An Emerging Technology for Remote Sounding of Water Vapor Within Clouds—NASA/ADS. Available online: https://ui.adsabs.harvard.edu/abs/2017AGUFM.A33J.05L/abstract (accessed on 7 June 2022).
- Ye, J.; Liu, L.; Wang, Q.; Hu, S.; Li, S. A Novel Machine Learning Algorithm for Planetary Boundary Layer Height Estimation Using AERI Measurement Data. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Vittorioso, F.; Guidard, V.; Fourrié, N. An Infrared Atmospheric Sounding Interferometer—New Generation (IASI-NG) Channel Selection for Numerical Weather Prediction. Q. J. R. Meteorol. Soc. 2021, 147, 3297–3317. [Google Scholar] [CrossRef]
- Brown, S.; Lambrigtsen, B.; Tanner, A.; Oswald, J.; Dawson, D.; Denning, R. Observations of Tropical Cyclones with a 60, 118 and 183 GHz Microwave Sounder. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Barcelona, Spain, 23–28 July 2007; pp. 3317–3320. [Google Scholar] [CrossRef]
- Cimini, D.; Westwater, E.R.; Gasiewski, A.J.; Klein, M.; Leuski, V.Y.; Dowlatshahi, S.G. The Ground-Based Scanning Radiometer: A Powerful Tool for Study of the Arctic Atmosphere. IEEE Trans. Geosci. Remote Sens. 2007, 45, 2759–2777. [Google Scholar] [CrossRef]
- Piepmeier, J.R.; Gasiewski, A.J. Polarimetric Scanning Radiometer for Airborne Microwave Imaging Studies. In Proceedings of the IGARSS ’96. 1996 International Geoscience and Remote Sensing Symposium, Lincoln, NE, USA, 31 May 1996; pp. 1120–1122. [Google Scholar]
- Stähli, O.; Murk, A.; Kämpfer, N.; Mätzler, C.; Eriksson, P. Microwave Radiometer to Retrieve Temperature Profiles from the Surface to the Stratopause. Atmos. Meas. Tech. 2013, 6, 2477–2494. [Google Scholar] [CrossRef]
- Lim, B.; Bendig, R.; Denning, R.; Pandian, P.; Read, W.; Tanner, A. The Microwave Temperature and Humidity Profiler Instrument Airborne Shakeout Performance. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 4530–4533. [Google Scholar] [CrossRef]
- UCAR/NCAR Earth Observing Laboratory. Available online: https://doi.org/10.5065/D6DR2SJP (accessed on 5 July 2023).
- Lim, B.; Mahoney, M.; Haggerty, J.; Denning, R. The Microwave Temperature Profiler Performance in Recent Airborne Campaigns. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Melbourne, Australia, 21–26 July 2013; pp. 3363–3366. [Google Scholar] [CrossRef]
- Denning, R.F.; Guidero, S.L.; Parks, G.S.; Gary, B.L. Instrument Description of the Airborne Microwave Temperature Profiler. J. Geophys. Res. 1989, 94, 16757–16765. [Google Scholar] [CrossRef]
- Heckl, M.; Fix, A.; Jirousek, M.; Schreier, F.; Xu, J.; Rapp, M. Measurement Characteristics of an Airborne Microwave Temperature Profiler (MTP). Atmos. Meas. Tech. 2021, 14, 1689–1713. [Google Scholar] [CrossRef]
- Mahoney, M.J.; Denning, R. A State-of-the-Art Airborne Microwave Temperature Profiler (MTP). In Proceedings of the 33rd International Symposium on the Remote Sensing of the Environment, Stresa, Italy, 4–9 May 2009. [Google Scholar]
- Sahoo, S.; Bosch-Lluis, X.; Reising, S.C.; Vivekanandan, J. Radiometric Information Content for Water Vapor and Temperature Profiling in Clear Skies between 10 and 200 GHz. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 859–871. [Google Scholar] [CrossRef]
- P19800B-4GHz Spectrometer ASIC. Available online: www.pacificmicrochip.com (accessed on 5 June 2023).
- Federal Communications Commission. FCC ONLINE TABLE OF FREQUENCY ALLOCATIONS 47 C.F.R. § 2.106. 2022. Available online: https://transition.fcc.gov/oet/spectrum/table/fcctable.pdf (accessed on 5 June 2023).
- Ulaby, F.T.; Long, D.G.; Blackwell, W.J.; Elachi, C.; Fung, A.K.; Ruf, C.; Sarabandi, K.; Zebker, H.A.; Van Zyl, J. Microwave Radar and Radiometric Remote Sensing; The University of Michigan Press: Ann Arbor, MI, USA, 2014; ISBN 0472119354. [Google Scholar]
- Tanner, A.B.; Riley, A.L. Design and Performance of a High-Stability Water Vapor Radiometer. Radio Sci. 2003, 38, 15-1–15-11. [Google Scholar] [CrossRef]
- Racette, P.; Lang, R.H. Radiometer Design Analysis Based upon Measurement Uncertainty. Radio Sci. 2005, 40, 1–22. [Google Scholar] [CrossRef]
- Aksoy, M.; Racette, P.E. A Preliminary Study of Three-Point Onboard External Calibration for Tracking Radiometric Stability and Accuracy. Remote Sens. 2019, 11, 2790. [Google Scholar] [CrossRef]
- Bosch-Lluis, J.; Munoz-Martin, J. Microwave Temperature and Humidity Profiler (MTHP) Data. Version 1.1. UCAR/NCAR—Earth Observing Laboratory. 2023. Available online: https://doi.org/10.26023/KH90-45VV-V905 (accessed on 5 June 2023).
- Buehler, S.A.; Mendrok, J.; Eriksson, P.; Perrin, A.; Larsson, R.; Lemke, O. ARTS, the Atmospheric Radiative Transfer Simulator—Version 2.2, the Planetary Toolbox Edition. Geosci. Model Dev. 2018, 11, 1537–1556. [Google Scholar] [CrossRef]
- Blackwell, W.J.; Bickmeier, L.J.; Leslie, R.V.; Pieper, M.L.; Samra, J.E.; Surussavadee, C.; Upham, C.A. Hyperspectral Microwave Atmospheric Sounding. IEEE Trans. Geosci. Remote Sens. 2011, 49, 128–142. [Google Scholar] [CrossRef]
- Aires, F.; Prigent, C.; Orlandi, E.; Milz, M.; Eriksson, P.; Crewell, S.; Lin, C.; Kangas, V. Microwave Hyperspectral Measurements for Temperature and Humidity Atmospheric Profiling from Satellite: The Clear-sky Case. J. Geophys. Res. Atmos. 2015, 120, 11,334–11,351. [Google Scholar] [CrossRef]
Frequency | 60 GHz | 183 GHz | ||||
---|---|---|---|---|---|---|
51–55 GHz | 55–59 GHz | 183 GHz | 182.8 GHz | 182.6 GHz | 179 GHz | |
Power measurement @ 293 K [dBm] | −14.75 | −16.30 | −21.24 | −20.99 | −21.60 | −23.68 |
Power measurement @ 80 K [dBm] | −16.04 | −17.60 | −21.98 | −21.76 | −22.37 | −24.39 |
Y-factor [dB] | 1.29 | 1.30 | 0.78 | 0.74 | 0.77 | 0.77 |
Receiver Temperature [K] | 535.9 | 530.4 | 1066.6 | 1018.0 | 1018.0 | 1119.3 |
Channels | 60 GHz | 183 GHz | ||||
---|---|---|---|---|---|---|
51–55 GHz | 55–59 GHz | 183 GHz | 182.8 GHz | 182.6 GHz | 179 GHz | |
NETD [K] | 3.63 | 3.60 | 0.89 | 0.83 | 0.83 | 0.86 |
Parameter | Value |
---|---|
Altitude | 10 km |
View angles | 0° to 180° (5° bins) |
Frequencies | 51 to 59 GHz in 31.25 MHz bins ( MHz) |
Surface reflectivity | 0.5 |
Atmospheric Profile | Flight dependant: #6: CIRA86 latitude 45°/April #7: CIRA86 Kona Island, latitude 15°/April #8: Radiosonde |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Munoz-Martin, J.F.; Bosch-Lluis, X.; Pradhan, O.; Brown, S.T.; Kangaslahti, P.P.; Tanner, A.B.; Ogut, M.; Misra, S.; Lim, B.H. The Microwave Temperature and Humidity Profiler: Description and Preliminary Results. Sensors 2023, 23, 8554. https://doi.org/10.3390/s23208554
Munoz-Martin JF, Bosch-Lluis X, Pradhan O, Brown ST, Kangaslahti PP, Tanner AB, Ogut M, Misra S, Lim BH. The Microwave Temperature and Humidity Profiler: Description and Preliminary Results. Sensors. 2023; 23(20):8554. https://doi.org/10.3390/s23208554
Chicago/Turabian StyleMunoz-Martin, Joan Francesc, Xavier Bosch-Lluis, Omkar Pradhan, Shannon T. Brown, Pekka P. Kangaslahti, Alan B. Tanner, Mehmet Ogut, Sidharth Misra, and Boon H. Lim. 2023. "The Microwave Temperature and Humidity Profiler: Description and Preliminary Results" Sensors 23, no. 20: 8554. https://doi.org/10.3390/s23208554
APA StyleMunoz-Martin, J. F., Bosch-Lluis, X., Pradhan, O., Brown, S. T., Kangaslahti, P. P., Tanner, A. B., Ogut, M., Misra, S., & Lim, B. H. (2023). The Microwave Temperature and Humidity Profiler: Description and Preliminary Results. Sensors, 23(20), 8554. https://doi.org/10.3390/s23208554