Wearable Nano-Based Gas Sensors for Environmental Monitoring and Encountered Challenges in Optimization
Abstract
:1. Introduction
- Gas-Sensing Materials: This section delves into a variety of materials, including 2D nanostructures, carbon nanomaterials, conducting polymers (CPs), nanohybrids, and metal oxide semiconductors (MOSs).
- Wearable Substrates and Electrodes: Here, different substrates such as paper-based (PB) mediums, polymeric materials, textiles, and stretchable electronics have been explored that can serve as pivotal components in wearable sensors.
- Sensor Types: This section covers an in-depth analysis of diverse sensors—from colorimetric, chem-optical, and electrochemical, to transistors and chemiresistors. Emphasis is laid on the critical role these sensors play in monitoring environmental gaseous pollutants, including but not limited to ammonia (NH3), nitric oxide (NO), nitrous oxide (N2O), nitrogen dioxide (NO2), carbon monoxide (CO), CO2, H2S, sulfur dioxide (SO2), ozone (O3), hydrocarbons (CxHy), and hydrogen fluoride (HF). The significance of deploying proficient detection methods for these pollutants is accentuated.
- Challenges in Gas Sensor Optimization: Distinct from existing literature, this section offers a meticulous discussion on challenges that have remained largely unexplored. Topics such as circuit integration, real-time sensing, repeatability, power consumption, gas-sensitive material deposition, and stability, among others, are examined in detail.
2. Sensing Materials
2.1. 2D Nanostructures
2.2. Carbon Nanomaterials
2.2.1. Fullerenes
2.2.2. Carbon Nanotubes (CNTs)
2.2.3. Graphene
2.3. Conductive Polymers
2.4. Nanohybrids
2.5. Metal Oxide Semiconductors
3. Wearable Substrates and Conducting Electrodes
3.1. Paper-Based (PB)
3.2. Polymer-Based Sensors
3.3. Textiles
3.4. Stretchable Electronics
4. Sensor Types
4.1. Colorimetric
4.2. Optical
4.3. Electrochemical
4.4. Transistors
4.4.1. Gate Sensing
4.4.2. Channel Sensing
4.5. Chemiresistors
4.6. Self-Powered Triboelectric Gas Sensors
5. Environmental Gaseous Pollutants Monitoring
5.1. Ammonia (NH3)
5.2. Nitric Oxide (NO)
5.3. Nitrous Oxide (N2O)
5.4. Nitrogen Dioxide (NO2)
5.5. Carbon Monoxide (CO)
5.6. Carbon Dioxide (CO2)
5.7. Hydrogen Sulfide (H2S)
5.8. Sulfur Dioxide (SO2)
5.9. Ozone (O3)
5.10. Hydrogen Fluoride (HF)
5.11. Volatile Organic Compounds (VOCs)
6. Challenges in Optimization of Sensor Performance
6.1. Circuit Integration and Miniaturization
6.2. Real-Time Sensing
6.3. Repeatability and Reusability
6.4. Power Consumption
6.5. Gas-Sensitive Material Deposition
6.6. Selectivity and Sensitivity
6.7. Stability and Response/Recovery Time
7. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Miller, M.R. Oxidative Stress and the Cardiovascular Effects of Air Pollution. Free Radic. Biol. Med. 2020, 151, 69–87. [Google Scholar] [CrossRef] [PubMed]
- Nath, S.; Dey, A.; Pachal, P.; Sing, J.K.; Sarkar, S.K. Performance Analysis of Gas Sensing Device and Corresponding IoT Framework in Mines. Microsyst. Technol. 2021, 27, 3977–3985. [Google Scholar] [CrossRef]
- Sett, A.; Rana, T.; Rajaji, U.; Sha, R.; Liu, T.Y.; Bhattacharyya, T.K. Emergence of Two-Dimensional Nanomaterials-Based Breath Sensors for Non-Invasive Detection of Diseases. Sens. Actuators A Phys. 2022, 338, 113507. [Google Scholar] [CrossRef]
- Xu, K.; Ha, N.; Hu, Y.; Ma, Q.; Chen, W.; Wen, X.; Ou, R.; Trinh, V.; McConville, C.F.; Zhang, B.Y.; et al. A Room Temperature All-Optical Sensor Based on Two-Dimensional SnS2 for Highly Sensitive and Reversible NO2 Sensing. J. Hazard. Mater. 2022, 426, 127813. [Google Scholar] [CrossRef] [PubMed]
- Galstyan, V.; Moumen, A.; Kumarage, G.W.C.; Comini, E. Progress towards Chemical Gas Sensors: Nanowires and 2D Semiconductors. Sens. Actuators B Chem. 2022, 357, 131466. [Google Scholar] [CrossRef]
- Gardner, E.L.W.; Gardner, J.W.; Udrea, F. Micromachined Thermal Gas Sensors—A Review. Sensors 2023, 23, 681. [Google Scholar] [CrossRef]
- Yuvaraja, S.; Surya, S.G.; Chernikova, V.; Teja Vijjapu, M.; Shekhah, O.; Bhatt, P.M.; Chandra, S.; Eddaoudi, M.; Salama, K.N. Realization of an Ultrasensitive and Highly Selective OFET NO2 Sensor: The Synergistic Combination of PDVT-10 Polymer and Porphyrin−MOF. ACS Appl. Mater. Interfaces 2020, 12, 18748–18760. [Google Scholar] [CrossRef]
- Kassanos, P. Bioimpedance Sensors: A Tutorial. IEEE Sens. J. 2021, 21, 22190–22219. [Google Scholar] [CrossRef]
- Kang, S.; Zhao, K.; Yu, D.G.; Zheng, X.; Huang, C. Advances in Biosensing and Environmental Monitoring Based on Electrospun Nanofibers. Adv. Fiber Mater. 2022, 4, 404–435. [Google Scholar] [CrossRef]
- Patel, V.; Chesmore, A.; Legner, C.M.; Pandey, S. Trends in Workplace Wearable Technologies and Connected-Worker Solutions for Next-Generation Occupational Safety, Health, and Productivity. Adv. Intell. Syst. 2022, 4, 2100099. [Google Scholar] [CrossRef]
- Dai, J.; Ogbeide, O.; Macadam, N.; Sun, Q.; Yu, W.; Li, Y.; Su, B.-L.; Hasan, T.; Huang, X.; Huang, W. Printed Gas Sensors. Chem. Soc. Rev. 2020, 49, 1756–1789. [Google Scholar] [CrossRef]
- Lawaniya, S.D.; Kumar, S.; Yu, Y.; Rubahn, H.G.; Mishra, Y.K.; Awasthi, K. Functional Nanomaterials in Flexible Gas Sensors: Recent Progress and Future Prospects. Mater. Today Chem. 2023, 29, 101428. [Google Scholar] [CrossRef]
- Hermawan, A.; Septiani, N.L.W.; Taufik, A.; Yuliarto, B.; Suyatman; Yin, S. Advanced Strategies to Improve Performances of Molybdenum-Based Gas Sensors. Nano-Micro Lett. 2021, 13, 207. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Liu, X.; Zhang, J.; Kumar, M. Room-Temperature Gas Sensors Under Photoactivation: From Metal Oxides to 2D Materials. Nano-Micro Lett. 2020, 12, 164. [Google Scholar] [CrossRef] [PubMed]
- Ansari, H.R.; Mirzaei, A.; Shokrollahi, H.; Kumar, R.; Kim, J.Y.; Kim, H.W.; Kumar, M.; Kim, S.S. Flexible/Wearable Resistive Gas Sensors Based on 2D Materials. J. Mater. Chem. C 2023, 11, 6528–6549. [Google Scholar] [CrossRef]
- Ou, L.X.; Liu, M.Y.; Zhu, L.Y.; Zhang, D.W.; Lu, H.L. Recent Progress on Flexible Room-Temperature Gas Sensors Based on Metal Oxide Semiconductor. Nano-Micro Lett. 2022, 14, 1–42. [Google Scholar] [CrossRef]
- Paul, R.; Das, B.; Ghosh, R. Novel Approaches towards Design of Metal Oxide Based Hetero-Structures for Room Temperature Gas Sensor and Its Sensing Mechanism: A Recent Progress. J. Alloys Compd. 2023, 941, 168943. [Google Scholar] [CrossRef]
- Nadargi, D.Y.; Umar, A.; Nadargi, J.D.; Lokare, S.A.; Akbar, S.; Mulla, I.S.; Suryavanshi, S.S.; Bhandari, N.L.; Chaskar, M.G. Gas Sensors and Factors Influencing Sensing Mechanism with a Special Focus on MOS Sensors. J. Mater. Sci. 2023, 58, 559–582. [Google Scholar] [CrossRef]
- Sundriyal, P.; Bhattacharya, S. Textile-Based Supercapacitors for Flexible and Wearable Electronic Applications. Sci. Rep. 2020, 10, 13259. [Google Scholar] [CrossRef]
- Gil, B.; Anastasova, S.; Lo, B. Graphene Field-Effect Transistors Array for Detection of Liquid Conductivities in the Physiological Range through Novel Time-Multiplexed Impedance Measurements. Carbon 2022, 193, 394–403. [Google Scholar] [CrossRef]
- Keshavarz, M.; Chowdhury, A.K.M.R.H.; Kassanos, P.; Tan, B.; Venkatakrishnan, K. Self-Assembled N-Doped Q-Dot Carbon Nanostructures as a SERS-Active Biosensor with Selective Therapeutic Functionality. Sens. Actuators B Chem. 2020, 323, 128703. [Google Scholar] [CrossRef]
- Simonenko, E.P.; Simonenko, N.P.; Mokrushin, A.S.; Simonenko, T.L.; Gorobtsov, P.Y.; Nagornov, I.A.; Korotcenkov, G.; Sysoev, V.V.; Kuznetsov, N.T. Application of Titanium Carbide MXenes in Chemiresistive Gas Sensors. Nanomaterials 2023, 13, 850. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Zhu, K.; Wang, Y.; Qian, Z.; Zhang, Y.; Yang, Z.; Wang, Z.; Wu, L.; Zong, S.; Cui, Y. Ti3C2TxMXene-Loaded 3D Substrate toward On-Chip Multi-Gas Sensing with Surface-Enhanced Raman Spectroscopy (SERS) Barcode Readout. ACS Nano 2021, 15, 12996–13006. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Liu, Y.; Dai, J.; Chen, Q.; Huang, X.; Huang, W. Solution-Processed p-SnSe/n-SnSe2 Hetero-Structure Layers for Ultrasensitive NO2 Detection. Chem. A Eur. J. 2020, 26, 3870–3876. [Google Scholar] [CrossRef]
- Chueh, Y.L.; Tang, S.Y.; Yang, C.C.; Su, T.Y.; Yang, T.Y.; Wu, S.C.; Hsu, Y.C.; Chen, Y.Z.; Lin, T.N.; Shen, J.L.; et al. Design of Core−shell Quantum Dots−3D WS2 Nanowall Hybrid Nanostructures with High-Performance Bifunctional Sensing Applications. ACS Nano 2020, 14, 12668–12678. [Google Scholar] [CrossRef]
- Xu, Y.; Xie, J.; Zhang, Y.; Tian, F.H.; Yang, C.; Zheng, W.; Liu, X.; Zhang, J.; Pinna, N. Edge-Enriched WS2 Nanosheets on Carbon Nanofibers Boosts NO2 Detection at Room Temperature. J. Hazard. Mater. 2021, 411, 125120. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Xie, J.; Lou, C.; Zheng, W.; Liu, X.; Zhang, J. Flexible NO2 Sensors Based on WSe2 Nanosheets with Bifunctional Selectivity and Superior Sensitivity under UV Activation. Sens. Actuators B Chem. 2021, 333, 129571. [Google Scholar] [CrossRef]
- Alwin David, S.; Rajkumar, R.; Karpagavinayagam, P.; Fernando, J.; Vedhi, C. Sustainable Carbon Nanomaterial-Based Sensors: Future Vision for the next 20 Years. Carbon Nanomater. Sens. 2022, 429–443. [Google Scholar] [CrossRef]
- Rani, S.; Roy, S.C. Carbon-Based Nanomaterials for Chemical and Gas Sensing Applications. In Carbon Nanostructures; AIP Publishing LLC: New York, NY, USA, 2021; pp. 10–11. [Google Scholar] [CrossRef]
- Joseph, N.; Manoj, B. Nanomaterials-Based Chemical Sensing. Nanotechnol. Electron. Appl. 2022, 131–147. [Google Scholar] [CrossRef]
- Al Mamun, A.; Nafiujjaman, M.; Ahammad, A.J.S. Carbon Nanomaterial-Based Sensors in Air Pollution Remediation. Carbon Nanomater. Sens. 2022, 105–123. [Google Scholar] [CrossRef]
- Shetti, N.P.; Mishra, A.; Basu, S.; Aminabhavi, T.M. Versatile Fullerenes as Sensor Materials. Mater. Today Chem. 2021, 20, 100454. [Google Scholar] [CrossRef]
- Esrafili, M.D.; Abolghasemzadeh, S. Sc Functionalized Boron-Rich C60 Fullerene for Efficient Storage and Separation of CO2 Molecules: A DFT Investigation. Comput. Theor. Chem. 2022, 1208, 113557. [Google Scholar] [CrossRef]
- Zhou, J.; Bagheri, M.; Järvinen, T.; Pravda Bartus, C.; Kukovecz, A.; Komsa, H.P.; Kordas, K. C60Br24/SWCNT: A Highly Sensitive Medium to Detect H2S via Inhomogeneous Carrier Doping. ACS Appl. Mater. Interfaces 2021, 13, 59067–59075. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.Y.; Hou, P.X.; Zhang, F.; Liu, C.; Cheng, H.M. Gas Sensors Based on Single-Wall Carbon Nanotubes. Mol. 2022, 27, 5381. [Google Scholar] [CrossRef]
- Rathinavel, S.; Priyadharshini, K.; Panda, D. A Review on Carbon Nanotube: An Overview of Synthesis, Properties, Functionalization, Characterization, and the Application. Mater. Sci. Eng. B 2021, 268, 115095. [Google Scholar] [CrossRef]
- Sacco, L.; Forel, S.; Florea, I.; Cojocaru, C.S. Ultra-Sensitive NO2 Gas Sensors Based on Single-Wall Carbon Nanotube Field Effect Transistors: Monitoring from Ppm to Ppb Level. Carbon N. Y. 2020, 157, 631–639. [Google Scholar] [CrossRef]
- Inaba, M.; Kono, M.; Oda, T.; Phansiri, N.; Nakano, M.; Suehiro, J. Response Properties of Nitrogen Dioxide Gas Sensors with Tin Oxide Decorated Carbon Nanotube Channel Fabricated by Two-Step Dielectrophoretic Assembly. AIP Adv. 2020, 10, 055223. [Google Scholar] [CrossRef]
- Ahmad, Z.; Naseem; Manzoor, S.; Talib, M.; Islam, S.S.; Mishra, P. Self-Standing MWCNTs Based Gas Sensor for Detection of Environmental Limit of CO2. Mater. Sci. Eng. B 2020, 255, 114528. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, J.; Wang, Y.; Chen, Z. A Highly Sensitive and Room Temperature CNTs/SnO2/CuO Sensor for H2S Gas Sensing Applications. Nanoscale Res. Lett. 2020, 15, 40. [Google Scholar] [CrossRef]
- Thakur, V.K.; Blecha, T.; Smitka, V.; Bodnar, M.; Stulik, J. Simultaneous Detection of NH3 and NO2 by Modified Impedance Spectroscopy in Sensors Based on Carbon Nanotubes. Energies 2022, 15, 855. [Google Scholar] [CrossRef]
- Demon, S.Z.N.; Kamisan, A.I.; Abdullah, N.; Noor, S.A.M.; Khim, O.K.; Kasim, N.A.M.; Yahya, M.Z.A.; Manaf, N.A.A.; Azmi, A.F.M.; Halim, N.A. Graphene-Based Materials in Gas Sensor Applications: A Review. Sens. Mater. 2020, 32, 759–777. [Google Scholar] [CrossRef]
- Hasnat, M.A.; Hossain, M.I.; Ahsan, M.; Islam, M.F. Recent Developments in the Utilization of Nanomaterials for Sensing Platforms. ACS Symp. Ser. 2023, 1437, 61–99. [Google Scholar] [CrossRef]
- Kim, S.; Kwak, D.H.; Choi, I.; Hwang, J.; Kwon, B.; Lee, E.; Ye, J.; Lim, H.; Cho, K.; Chung, H.J.; et al. Enhanced Gas Sensing Properties of Graphene Transistor by Reduced Doping with Hydrophobic Polymer Brush as a Surface Modification Layer. ACS Appl. Mater. Interfaces 2020, 12, 55493–55500. [Google Scholar] [CrossRef]
- Niu, F.; Shao, Z.W.; Gao, H.; Tao, L.M.; Ding, Y. Si-Doped Graphene Nanosheets for NOx Gas Sensing. Sens. Actuators B Chem. 2021, 328, 129005. [Google Scholar] [CrossRef]
- Song, H.; Liu, J.; Lu, H.; Chen, C.; Ba, L. High Sensitive Gas Sensor Based on Vertical Graphene Field Effect Transistor. Nanotechnology 2020, 31, 165503. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Facchetti, A. The Journey of Conducting Polymers from Discovery to Application. Nat. Mater. 2020, 19, 922–928. [Google Scholar] [CrossRef]
- Akande, I.G.; Ajayi, S.A.; Fajobi, M.A.; Oluwole, O.O.; Fayomi, O.S.I. Advancement in the Production and Applications of Conductive Polymers (CPs). Key Eng. Mater. 2021, 886, 12–29. [Google Scholar] [CrossRef]
- Pavel, I.-A.; Lakard, S.; Lakard, B. Flexible Sensors Based on Conductive Polymers. Chemosensors 2022, 10, 97. [Google Scholar] [CrossRef]
- Namsheer, K.; Rout, C.S. Conducting Polymers: A Comprehensive Review on Recent Advances in Synthesis, Properties and Applications. RSC Adv. 2021, 11, 5659–5697. [Google Scholar]
- Lin, C.H.; Lin, J.H.; Chen, C.F.; Ito, Y.; Luo, S.C. Conducting Polymer-Based Sensors for Food and Drug Analysis. J. Food Drug Anal. 2021, 29, 544–558. [Google Scholar] [CrossRef]
- Yang, L.; Yang, L.; Wu, S.; Wei, F.; Hu, Y.; Xu, X.; Zhang, L.; Sun, D. Three-Dimensional Conductive Organic Sulfonic Acid Co-Doped Bacterial Cellulose/Polyaniline Nanocomposite Films for Detection of Ammonia at Room Temperature. Sens. Actuators B Chem. 2020, 323, 128689. [Google Scholar] [CrossRef]
- Umar, A.; Ibrahim, A.A.; Algadi, H.; Albargi, H.; Alsairi, M.A.; Wang, Y.; Akbar, S. Enhanced NO2 Gas Sensor Device Based on Supramolecularly Assembled Polyaniline/Silver Oxide/Graphene Oxide Composites. Ceram. Int. 2021, 47, 25696–25707. [Google Scholar] [CrossRef]
- Riyazi, S.; Araghi, M.E.A. Performance of Interdigitated Capacitive-Type CO2 Sensor Based on Polypyrrole/Copper Phthalocyanine Nanocomposite. J. Mater. Sci. Mater. Electron. 2020, 31, 3539–3548. [Google Scholar] [CrossRef]
- Farea, M.A.; Bhanuse, G.B.; Mohammed, H.Y.; Farea, M.O.; Sallam, M.; Shirsat, S.M.; Tsai, M.L.; Shirsat, M.D. Ultrahigh Sensitive and Selective Room-Temperature Carbon Monoxide Gas Sensor Based on Polypyrrole/Titanium Dioxide Nanocomposite. J. Alloys Compd. 2022, 917, 165397. [Google Scholar] [CrossRef]
- Shinde, R.B.; Padalkar, N.S.; Sadavar, S.V.; Kale, S.B.; Magdum, V.V.; Chitare, Y.M.; Kulkarni, S.P.; Patil, U.M.; Parale, V.G.; Park, H.-H.; et al. 2D–2D Lattice Engineering Route for Intimately Coupled Nanohybrids of Layered Double Hydroxide and Potassium Hexaniobate: Chemiresistive SO2 Sensor. J. Hazard. Mater. 2022, 432, 128734. [Google Scholar] [CrossRef]
- Shakeel, A.; Rizwan, K.; Farooq, U.; Iqbal, S.; Altaf, A.A. Advanced Polymeric/Inorganic Nanohybrids: An Integrated Platform for Gas Sensing Applications. Chemosphere 2022, 294, 133772. [Google Scholar] [CrossRef]
- Nadeem, M.; Yasin, G.; Arif, M.; Tabassum, H.; Bhatti, M.H.; Mehmood, M.; Yunus, U.; Iqbal, R.; Nguyen, T.A.; Slimani, Y.; et al. Highly Active Sites of Pt/Er Dispersed N-Doped Hierarchical Porous Carbon for Trifunctional Electrocatalyst. Chem. Eng. J. 2021, 409, 128205. [Google Scholar] [CrossRef]
- Sun, Y.; Li, X.; Liu, G. Enhanced Pollutants Removal and High-Value Cell Inclusions Accumulation with Fe2+ in Heavy Oil Refinery Treatment System Using Rhodopseudomonas and Pseudomonas. Chemosphere 2022, 294, 133520. [Google Scholar] [CrossRef]
- Manjakkal, L.; Szwagierczak, D.; Dahiya, R. Metal Oxides Based Electrochemical PH Sensors: Current Progress and Future Perspectives. Prog. Mater. Sci. 2020, 109, 100635. [Google Scholar] [CrossRef]
- Ghoorchian, A.; Amouzegar, Z.; Moradi, M.; Khalili, S.; Afkhami, A.; Madrakian, T.; Ahmadi, M. Use of Conductive Polymers in Detection Stage of Analysis/Miniaturization Devices. In Conductive Polymers in Analytical Chemistry; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 2022; Volume 1405, pp. 165–184. ISBN 9780841297869. [Google Scholar]
- Bhaduri, A.; Singh, S.; Thapa, K.B.; Yadav, B.C. Improved Room Temperature Liquefied Petroleum Gas Sensing Performance of Ni0.5Zn0.5Fe2O4@Cl–Doped Polypyrrole Nanoweb. Mater. Sci. Eng. B 2022, 279, 115660. [Google Scholar] [CrossRef]
- Shinde, R.B.; Patil, A.S.; Sadavar, S.V.; Chitare, Y.M.; Magdum, V.V.; Padalkar, N.S.; Patil, U.M.; Kochuveedu, S.T.; Parale, V.G.; Park, H.H.; et al. Polyoxotungstate Intercalated Self-Assembled Nanohybrids of Zn-Cr-LDH for Room Temperature Cl2 Sensing. Sens. Actuators B Chem. 2022, 352, 131046. [Google Scholar] [CrossRef]
- Teijido, R.; Ruiz-Rubio, L.; Echaide, A.G.; Vilas-Vilela, J.L.; Lanceros-Mendez, S.; Zhang, Q. State of the Art and Current Trends on Layered Inorganic-Polymer Nanocomposite Coatings for Anticorrosion and Multi-Functional Applications. Prog. Org. Coat. 2022, 163, 106684. [Google Scholar] [CrossRef]
- Rahman, M.A.; Habib, M.L.; Chisty, A.H.; Mallik, A.K.; Khan, M.N.; Haque, P.; Rahman, M.M. Organic–Inorganic Polymer Hybrids for Water and Wastewater Treatment. Environ. Footpr. Eco-Des. Prod. Process. 2022, 1, 29–54. [Google Scholar] [CrossRef]
- Luo, M.; Shaitan, K.; Qu, X.; Bonartsev, A.P.; Lei, B. Bioactive Rare Earth-Based Inorganic-Organic Hybrid Biomaterials for Wound Healing and Repair. Appl. Mater. Today 2022, 26, 101304. [Google Scholar] [CrossRef]
- Niu, G.; Wang, F. A Review of MEMS-Based Metal Oxide Semiconductors Gas Sensor in Mainland China. J. Micromech. Microeng. 2022, 32, 054003. [Google Scholar] [CrossRef]
- Fine, G.F.; Cavanagh, L.M.; Afonja, A.; Binions, R. Metal Oxide Semi-Conductor Gas Sensors in Environmental Monitoring. Sensors 2010, 10, 5469–5502. [Google Scholar] [CrossRef]
- Yasunaga, S.; Sunahara, S.; Ihokura, K. Effects of Tetraethyl Orthosilicate Binder on the Characteristics of AN SnO2 Ceramic-Type Semiconductor Gas Sensor. Sens. Actuators 1986, 9, 133–145. [Google Scholar] [CrossRef]
- Matsuura, Y.; Takahata, K.; Ihokura, K. Mechanism of Gas Sensitivity Change with Time of SnO2 Gas Sensors. Sens. Actuators 1988, 14, 223–232. [Google Scholar] [CrossRef]
- Zhao, C.; Gong, H.; Niu, G.; Wang, F. Ultrasensitive SO2 Sensor for Sub-Ppm Detection Using Cu-Doped SnO2 Nanosheet Arrays Directly Grown on Chip. Sens. Actuators B Chem. 2020, 324, 128745. [Google Scholar] [CrossRef]
- Ma, J.; Fan, H.; Zheng, X.; Wang, H.; Zhao, N.; Zhang, M.; Yadav, A.K.; Wang, W.; Dong, W.; Wang, S. Facile Metal-Organic Frameworks-Templated Fabrication of Hollow Indium Oxide Microstructures for Chlorine Detection at Low Temperature. J. Hazard. Mater. 2020, 387, 122017. [Google Scholar] [CrossRef]
- Li, Q.; Li, Z.; Zhang, Q.; Zheng, L.; Yan, W.; Liang, X.; Gu, L.; Chen, C.; Wang, D.; Peng, Q.; et al. Porous γ-Fe2O3 Nanoparticle Decorated with Atomically Dispersed Platinum: Study on Atomic Site Structural Change and Gas Sensor Activity Evolution. Nano Res. 2020, 14, 1435–1442. [Google Scholar] [CrossRef]
- Fu, H.; Yang, X.; Wu, Z.; He, P.; Xiong, S.; Han, D.; An, X. Gas-Sensing Performance of In2O3@MoO3 Hollow Core-Shell Nanospheres Prepared by a Two-Step Hydrothermal Method. Sens. Actuators B Chem. 2022, 352, 131007. [Google Scholar] [CrossRef]
- Zhai, Z.; Zhang, X.; Wang, J.; Li, H.; Sun, Y.; Hao, X.; Qin, Y.; Niu, B.; Li, C. Washable and Flexible Gas Sensor Based on UiO-66-NH2 Nanofibers Membrane for Highly Detecting SO2. Chem. Eng. J. 2022, 428, 131720. [Google Scholar] [CrossRef]
- Guo, X.; Ding, Y.; Yang, X.; Du, B.; Zhao, C.; Liang, C.; Ou, Y.; Kuang, D.; Wu, Z.; He, Y. 2D SnSe2 Nanoflakes Decorated with 1D ZnO Nanowires for Ppb-Level NO2 Detection at Room Temperature. J. Hazard. Mater. 2022, 426, 128061. [Google Scholar] [CrossRef]
- Godse, P.R.; Mane, A.T.; Navale, Y.H.; Navale, S.T.; Mulik, R.N.; Patil, V.B. Hydrothermally Grown 1D ZnO Nanostructures for Rapid Detection of NO2 Gas. SN Appl. Sci. 2021, 3, 360. [Google Scholar] [CrossRef]
- Li, P.; Zhang, Z.; Zhuang, Z.; Guo, J.; Fang, Z.; Fereja, S.L.; Chen, W. Pd-Doping-Induced Oxygen Vacancies in One-Dimensional Tungsten Oxide Nanowires for Enhanced Acetone Gas Sensing. Anal. Chem. 2021, 93, 7465–7472. [Google Scholar] [CrossRef]
- Zhang, W.H.; Ding, S.J.; Zhang, Q.S.; Yi, H.; Liu, Z.X.; Shi, M.L.; Guan, R.F.; Yue, L. Rare Earth Element-Doped Porous In2O3 Nanosheets for Enhanced Gas-Sensing Performance. Rare Met. 2021, 40, 1662–1668. [Google Scholar] [CrossRef]
- Umar, A.; Ammar, H.Y.; Kumar, R.; Ibrahim, A.A.; Al-Assiri, M.S. Square Disks-based Crossed Architectures of SnO2 for Ethanol Gas Sensing Applications—An Experimental and Theoretical Investigation. Sens. Actuators B Chem. 2020, 304, 127352. [Google Scholar] [CrossRef]
- Nguyen, H.T.T.; Truong, T.H.; Nguyen, T.D.; Dang, V.T.; Vu, T.V.; Nguyen, S.T.; Cu, X.P.; Nguyen, T.T.O. Ni-Doped WO3 Flakes-Based Sensor for Fast and Selective Detection of H2S. J. Mater. Sci. Mater. Electron. 2020, 31, 12783–12795. [Google Scholar] [CrossRef]
- Constantinoiu, I.; Viespe, C. ZnO Metal Oxide Semiconductor in Surface Acoustic Wave Sensors: A Review. Sensors 2020, 20, 5118. [Google Scholar] [CrossRef]
- Keshavarz, M.; Kassanos, P.; Tan, B.; Venkatakrishnan, K. Metal-Oxide Surface-Enhanced Raman Biosensor Template towards Point-of-Care EGFR Detection and Cancer Diagnostics. Nanoscale Horiz. 2020, 5, 294–307. [Google Scholar] [CrossRef]
- Hooshmand, S.; Kargozar, S.; Ghorbani, A.; Darroudi, M.; Keshavarz, M.; Baino, F.; Kim, H.-W. Materials Biomedical Waste Management by Using Nanophotocatalysts: The Need for New Options. Materials 2020, 13, 3511. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Su, R.; Teng, L.; Tian, Q.; Han, F.; Li, H.; Cao, Z.; Xie, R.; Li, G.; Liu, X.; et al. Recent Advances in Flexible and Wearable Sensors for Monitoring Chemical Molecules. Nanoscale 2022, 14, 1653–1669. [Google Scholar] [CrossRef] [PubMed]
- Nagamine, K.; Tokito, S. Organic-Transistor-Based Biosensors Interfaced with Human Skin for Non-Invasive Perspiration Analysis. Sens. Actuators B Chem. 2021, 34, 130778. [Google Scholar] [CrossRef]
- Mirjalali, S.; Peng, S.; Fang, Z.; Wang, C.H.; Wu, S. Wearable Sensors for Remote Health Monitoring: Potential Applications for Early Diagnosis of COVID-19. Adv. Mater. Technol. 2022, 7, 2100545. [Google Scholar] [CrossRef]
- De Fazio, R.; Al-Hinnawi, A.R.; De Vittorio, M.; Visconti, P. An Energy-Autonomous Smart Shirt Employing Wearable Sensors for Users’ Safety and Protection in Hazardous Workplaces. Appl. Sci. 2022, 12, 2926. [Google Scholar] [CrossRef]
- Wang, L.; Fu, X.; He, J.; Shi, X.; Chen, T.; Chen, P.; Wang, B.; Peng, H. Application Challenges in Fiber and Textile Electronics. Adv. Mater. 2020, 32, 1901971. [Google Scholar] [CrossRef]
- Bag, A.; Lee, N.E. Recent Advancements in Development of Wearable Gas Sensors. Adv. Mater. Technol. 2021, 6, 2000883. [Google Scholar] [CrossRef]
- Macdougall, S.; Bayansal, F.; Ahmadi, A. Emerging Methods of Monitoring Volatile Organic Compounds for Detection of Plant Pests and Disease. Biosensors 2022, 12, 239. [Google Scholar] [CrossRef]
- Tomić, M.; Šetka, M.; Vojkůvka, L.; Vallejos, S. Vocs Sensing by Metal Oxides, Conductive Polymers, and Carbon-Based Materials. Nanomaterials 2021, 11, 552. [Google Scholar] [CrossRef]
- Qin, X.; Wu, T.; Zhu, Y.; Shan, X.; Liu, C.; Tao, N.; Tao, N. A Paper Based Milli-Cantilever Sensor for Detecting Hydrocarbon Gases via Smartphone Camera. Anal. Chem. 2020, 92, 8480–8486. [Google Scholar] [CrossRef] [PubMed]
- Muthusamy, S.; Charles, J.; Renganathan, B.; Ganesan, A.R. Ternary Polypyrrole/Prussian Blue/TiO2 Nanocomposite Wrapped Poly-Methyl Methacrylate Fiber Optic Gas Sensor to Detect Volatile Gas Analytes. Optik 2021, 230, 166289. [Google Scholar] [CrossRef]
- Li, Z.; Chen, J.; Chen, L.; Guo, M.; Wu, Y.; Wei, Y.; Wang, J.; Wang, X. Hollow Au/Polypyrrole Capsules to Form Porous and Neural Network-Like Nanofibrous Film for Wearable, Super-Rapid, and Ultrasensitive NH3 Sensor at Room Temperature. ACS Appl. Mater. Interfaces 2020, 12, 55056–55063. [Google Scholar] [CrossRef] [PubMed]
- Abdel Rahman, N.S.; Greish, Y.E.; Mahmoud, S.T.; Qamhieh, N.N.; El-Maghraby, H.F.; Zeze, D. Fabrication and Characterization of Cellulose Acetate-Based Nanofibers and Nanofilms for H2S Gas Sensing Application. Carbohydr. Polym. 2021, 258, 117643. [Google Scholar] [CrossRef]
- Schiliro, M.; Bartman, C.M.; Pabelick, C. Understanding Hydrogen Sulfide Signaling in Neonatal Airway Disease. Expert Rev. Respir. Med. 2021, 15, 351–372. [Google Scholar] [CrossRef]
- Yang, K.; Yuan, W.; Hua, Z.; Tang, Y.; Yin, F.; Xia, D. Triazine-Based Two-Dimensional Organic Polymer for Selective NO2 Sensing with Excellent Performance. ACS Appl. Mater. Interfaces 2020, 12, 3919–3927. [Google Scholar] [CrossRef]
- Sun, M.; Lv, J.; Xu, H.; Zhang, L.; Zhong, Y.; Chen, Z.; Sui, X.; Wang, B.; Feng, X.; Mao, Z. Smart Cotton Fabric Screen-Printed with Viologen Polymer: Photochromic, Thermochromic and Ammonia Sensing. Cellulose 2020, 27, 2939–2952. [Google Scholar] [CrossRef]
- Jung, W.T.; Jeon, J.W.; Jang, H.-S.; Kim, D.Y.; Lee, H.-K.; Kim, B.H. Commercial Silk-Based Electronic Textiles for NO2 Sensing. Sens. Actuators B Chem. 2020, 307, 127596. [Google Scholar] [CrossRef]
- Cho, S.; Chang, T.; Yu, T.; Lee, C.H. Smart Electronic Textiles for Wearable Sensing and Display. Biosensors 2022, 12, 222. [Google Scholar] [CrossRef]
- Libanori, A.; Chen, G.; Zhao, X.; Zhou, Y.; Chen, J. Smart Textiles for Personalized Healthcare. Nat. Electron. 2022, 5, 142–156. [Google Scholar] [CrossRef]
- Lee, S.W.; Lee, W.; Kim, I.; Lee, D.; Park, D.; Kim, W.; Park, J.; Lee, J.H.; Lee, G.; Yoon, D.S. Bio-Inspired Electronic Textile Yarn-Based NO2 Sensor Using Amyloid–Graphene Composite. ACS Sens. 2021, 6, 777–785. [Google Scholar] [CrossRef]
- Lee, S.W.; Jung, H.G.; Kim, I.; Lee, D.; Kim, W.; Kim, S.H.; Lee, J.-H.; Park, J.; Lee, J.H.; Lee, G.; et al. Highly Conductive and Flexible Dopamine–Graphene Hybrid Electronic Textile Yarn for Sensitive and Selective NO2 Detection. ACS Appl. Mater. Interfaces 2020, 12, 46629–46638. [Google Scholar] [CrossRef]
- Park, Y.K.; Oh, H.J.; Bae, J.H.; Lim, J.Y.; Lee, H.D.; Hong, S.I.; Son, H.S.; Kim, J.H.; Lim, S.J.; Lee, W. Colorimetric Textile Sensor for the Simultaneous Detection of NH3 and HCl Gases. Polymers 2020, 12, 2595. [Google Scholar] [CrossRef]
- Lee, S.W.; Jung, H.G.; Jang, J.W.; Park, D.; Lee, D.; Kim, I.; Kim, Y.; Cheong, D.Y.; Hwang, K.S.; Lee, G.; et al. Graphene-Based Electronic Textile Sheet for Highly Sensitive Detection of NO2 and NH3. Sens. Actuators B Chem. 2021, 345, 130361. [Google Scholar] [CrossRef]
- Kassanos, P.; Yang, G.Z.; Yeatman, E. An Interdigital Strain Sensor through Laser Carbonization of PI and PDMS Transfer. In Proceedings of the 2021 IEEE International Conference on Flexible and Printable Sensors and Systems, Online, 16–19 August 2021. [Google Scholar] [CrossRef]
- Moorthy, V.; Kassanos, P.; Burdet, E.; Yeatman, E. Stencil Printing of Low-Cost Carbon-Based Stretchable Strain Sensors. In Proceedings of the 2022 IEEE Sensors, Dallas, TX, USA, 30 October–2 November 2022. [Google Scholar] [CrossRef]
- Treratanakulchai, S.; Franco, E.; Garriga-Casanovas, A.; Minghao, H.; Kassanos, P.; Baena, F.R.Y. Development of a 6 DOF Soft Robotic Manipulator with Integrated Sensing Skin. IEEE Int. Conf. Intell. Robot. Syst. 2022, 2022, 6944–6951. [Google Scholar] [CrossRef]
- Hu, M.; Kassanos, P.; Keshavarz, M.; Yeatman, E.; Lo, B. Electrical and Mechanical Characterization of Carbon-Based Elastomeric Composites for Printed Sensors and Electronics. In Proceedings of the 2021 IEEE International Conference on Flexible and Printable Sensors and Systems, Online, 16–19 August 2021. [Google Scholar] [CrossRef]
- Yin, L.; Lv, J.; Wang, J. Structural Innovations in Printed, Flexible, and Stretchable Electronics. Adv. Mater. Technol. 2020, 5, 2000694. [Google Scholar] [CrossRef]
- Yang, L.; Ji, H.; Meng, C.; Li, Y.; Zheng, G.; Chen, X.; Niu, G.; Yan, J.; Xue, Y.; Guo, S.; et al. Intrinsically Breathable and Flexible NO2Gas Sensors Produced by Laser Direct Writing of Self-Assembled Block Copolymers. ACS Appl. Mater. Interfaces 2022, 14, 17818–17825. [Google Scholar] [CrossRef]
- Hanif, A.; Bag, A.; Zabeeb, A.; Moon, D.B.; Kumar, S.; Shrivastava, S.; Lee, N.E. A Skin-Inspired Substrate with Spaghetti-Like Multi-Nanofiber Network of Stiff and Elastic Components for Stretchable Electronics. Adv. Funct. Mater. 2020, 30, 2003540. [Google Scholar] [CrossRef]
- Yue, X.; Yang, J.; Gao, J.; Xu, X.; Jing, Y.; Wang, X.; Li, W.; Li, X. Wearable Hydroxylated MWCNTs/Ecoflex Composite Strain Sensor with High Comprehensive Performance Based on Electron Irradiation. Compos. Sci. Technol. 2022, 226, 109537. [Google Scholar] [CrossRef]
- Qi, D.; Zhang, K.; Tian, G.; Jiang, B.; Huang, Y.; Qi, D.P.; Zhang, K.Y.; Tian, G.W.; Jiang, B.; Huang, Y.D. Stretchable Electronics Based on PDMS Substrates. Adv. Mater. 2020, 33, 2003155. [Google Scholar] [CrossRef]
- Yi, N.; Cheng, Z.; Li, H.; Yang, L.; Zhu, J.; Zheng, X.; Chen, Y.; Liu, Z.; Zhu, H.; Cheng, H. Stretchable, Ultrasensitive, and Low-Temperature NO2 Sensors Based on MoS2@rGO Nanocomposites. Mater. Today Phys. 2020, 15, 100265. [Google Scholar] [CrossRef]
- Cho, S.H.; Suh, J.M.; Eom, T.H.; Kim, T.; Jang, H.W. Colorimetric Sensors for Toxic and Hazardous Gas Detection: A Review. Electron. Mater. Lett. 2021, 17, 1–17. [Google Scholar] [CrossRef]
- Davidson, C.E.; Dixon, M.M.; Williams, B.R.; Kilper, G.K.; Lim, S.H.; Martino, R.A.; Rhodes, P.; Hulet, M.S.; Miles, R.W.; Samuels, A.C.; et al. Detection of Chemical Warfare Agents by Colorimetric Sensor Arrays. ACS Sens. 2020, 5, 1102–1109. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.-H.; Cha, J.-H.; Lim, J.Y.; Bae, J.; Lee, W.; Yoon, K.R.; Kim, C.; Jang, J.-S.; Hwang, W.; Kim, I.-D. Colorimetric Dye-Loaded Nanofiber Yarn: Eye-Readable and Weavable Gas Sensing Platform. ACS Nano 2020, 14, 16907–16918. [Google Scholar] [CrossRef] [PubMed]
- Vahora, S.; Chhalotiya, U.K.; Kachhiya, H.; Tandel, J.; Shah, D. Simultaneous Quantification of Brexpiprazole and Sertraline HCl in Synthetic Mixture by Thin-Layer Chromatography Method. J. Planar Chromatogr. Mod. TLC 2021, 34, 549–557. [Google Scholar] [CrossRef]
- Zhao, H.; Wang, Z.; Li, Y.; Yang, M. Single-Sided and Integrated Polyaniline/ Poly(Vinylidene Fluoride) Flexible Membrane with Micro/Nanostructures as Breathable, Nontoxic and Fast Response Wearable Humidity Sensor. J. Colloid Interface Sci. 2022, 607, 367–377. [Google Scholar] [CrossRef] [PubMed]
- Mousa, S.A.; Noby, S.Z.; Shalan, A.E. Graphene and Its Nanocomposites Derivatives: Synthesis, Properties, and Their Applications in Water Treatment, Gas Sensor, and Solar Cell Fields. In Advances in Nanocomposite Materials for Environmental and Energy Harvesting Applications. Engineering Materials; Springer: Cham, Switzerland, 2022; pp. 95–128. [Google Scholar] [CrossRef]
- He, T.; Li, X.; Wang, Q.; Zhou, Y.; Wang, X.; Wang, Z.; Tavajohi, N.; Cui, Z. Poly(Vinylidene Fluoride) (PVDF) Membrane Fabrication with an Ionic Liquid via Non-Solvent Thermally Induced Phase Separation (N-TIPs). Appl. Water Sci. 2022, 12, 42. [Google Scholar] [CrossRef]
- Xu, Y.; Aljasar, S.A.; Qasaimeh, M.R. One Step Formation of Laser Reduced Graphene Oxide Fabrication and Characterization on Novel Flexible PET Based Sensitive Sensor. In Proceedings of the 2022 4th International Youth Conference on Radio Electronics, Electrical and Power Engineering, Moscow, Russia, 17–19 March 2022; pp. 1–4. [Google Scholar] [CrossRef]
- Li, B.; Feng, C.; Wu, H.; Jia, S.; Dong, L. Calibration-Free Mid-Infrared Exhaled Breath Sensor Based on BF-QEPAS for Real-Time Ammonia Measurements at Ppb Level. Sens. Actuators B Chem. 2022, 358, 131510. [Google Scholar] [CrossRef]
- Chen, G.; Li, J.; Meng, F. Formic Acid Gas Sensor Based on Coreless Optical Fiber Coated by Molybdenum Disulfide Nanosheet. J. Alloys Compd. 2022, 896, 163063. [Google Scholar] [CrossRef]
- Jha, R.K. Non-Dispersive Infrared Gas Sensing Technology: A Review. IEEE Sens. J. 2022, 22, 6–15. [Google Scholar] [CrossRef]
- Milam-Guerrero, J.A.; Yang, B.; To, D.T.; Myung, N.V. Nitrous Oxide Is No Laughing Matter: A Historical Review of Nitrous Oxide Gas-Sensing Capabilities Highlighting the Need for Further Exploration. ACS Sens. 2022, 7, 3598–3610. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Jiang, Y.; Wu, J.; Wang, C.; Von Gratowski, S.; Gu, X.; Pan, L. Multiplex-Gas Detection Based on Non-Dispersive Infrared Technique: A Review. Sens. Actuators A Phys. 2023, 356, 114318. [Google Scholar] [CrossRef]
- Wastine, B.; Hummelgård, C.; Bryzgalov, M.; Rödjegård, H.; Martin, H.; Schröder, S. Compact Non-Dispersive Infrared Multi-Gas Sensing Platform for Large Scale Deployment with Sub-Ppm Resolution. Atmosphere 2022, 13, 1789. [Google Scholar] [CrossRef]
- Yi, H.; Laurent, O.; Schilt, S.; Ramonet, M.; Gao, X.; Dong, L.; Chen, W. Simultaneous Monitoring of Atmospheric CH4, N2O, and H2O Using a Single Gas Sensor Based on Mid-IR Quartz-Enhanced Photoacoustic Spectroscopy. Anal. Chem. 2022, 94, 17522–17532. [Google Scholar] [CrossRef]
- Alaloul, M.; Al-Ani, A.M.; As’ham, K.; Khurgin, J.B.; Hattori, H.T.; Miroshnichenko, A.E. Mid-Wave Infrared Graphene Photodetectors With High Responsivity for On-Chip Gas Sensors. IEEE Sens. J. 2023, 23, 2040–2046. [Google Scholar] [CrossRef]
- Tan, G.L.; Tang, D.; Wang, X.M.; Yin, X.T. Overview of the Recent Advancements in Graphene-Based H2S Sensors. ACS Appl. Nano Mater. 2022, 2022, 12300–12319. [Google Scholar] [CrossRef]
- Shen, Y.; Tissot, A.; Serre, C. Recent Progress on MOF-Based Optical Sensors for VOC Sensing. Chem. Sci. 2022, 13, 13978–14007. [Google Scholar] [CrossRef]
- Wang, J.; Liu, M.; Yun, K.; Liu, Y.; Li, C.; Yang, C.; Xia, P. A Novel Method of Curvature Demodulation for Mach-Zehnder Interferometer Optical Fiber Curvature Sensors. Measurement 2022, 200, 111607. [Google Scholar] [CrossRef]
- Lu, H.; He, B.; Gao, B. Emerging Electrochemical Sensors for Life Healthcare. Eng. Regen. 2021, 2, 175–181. [Google Scholar] [CrossRef]
- Mathew, R.; Das, A. Recent Advances in ZnO Based Electrochemical Ethylene Gas Sensors for Evaluation of Fruit Maturity. In Advanced Functional Materials and Devices; Springer Proceedings in Materials; Springer: Singapore, 2022; pp. 213–225. [Google Scholar] [CrossRef]
- Isailović, J.; Vidović, K.; Hočevar, S.B. Simple Electrochemical Sensors for Highly Sensitive Detection of Gaseous Hydrogen Peroxide Using Polyacrylic-Acid-Based Sensing Membrane. Sens. Actuators B Chem. 2022, 352, 131053. [Google Scholar] [CrossRef]
- Zhang, H.; Yi, J.; Zhang, Z.; Zhang, H. The Relation between Mixed-Potential Hydrogen Response and Electrochemical Activities for Perovskite Oxides. Sens. Actuators B Chem. 2022, 352, 130988. [Google Scholar] [CrossRef]
- Saleem, H.; Zaidi, S.J.; Ismail, A.F.; Goh, P.S. Nanotechnology in Air Pollution Remediation. In Nanotechnology for Environmental Remediation; Springer: Berlin/Heidelberg, Germany, 2022; pp. 59–76. [Google Scholar] [CrossRef]
- Gil, B.; Lo, B.; Yang, G.Z.; Anastasova, S. Smart Implanted Access Port Catheter for Therapy Intervention with PH and Lactate Biosensors. Mater. Today Bio 2022, 15, 100298. [Google Scholar] [CrossRef] [PubMed]
- Jiang, G.; Cumberland, T.; Fu, X.; Li, M.; Zhang, J.; Xu, P.; Delaat, S.; Xiao, M.; Hemmati, S.; Li, J.; et al. Highly Stable Low-Cost Electrochemical Gas Sensor with an Alcohol-Tolerant N,S-Codoped Non-Precious Metal Catalyst Air Cathode. ACS Sensors 2021, 6, 752–763. [Google Scholar] [CrossRef] [PubMed]
- Gorbova, E.; Tzorbatzoglou, F.; Molochas, C.; Chloros, D.; Demin, A.; Tsiakaras, P. Fundamentals and Principles of Solid-State Electrochemical Sensors for High Temperature Gas Detection. Catalyst 2021, 12, 1. [Google Scholar] [CrossRef]
- Zhang, Y.; Gu, T.; Liu, F.; Jiang, L.; Lv, S.; Wang, J.; Pan, S.; Jia, X.; Sun, P.; Gao, Y.; et al. Room Temperature Mixed-Potential Solid-Electrolyte NO2 Sensor for Environmental Monitoring. Sens. Actuators B Chem. 2023, 390, 133943. [Google Scholar] [CrossRef]
- Ma, N.; Halley, S.; Ramaiyan, K.; Garzon, F.; Tsui, L. Comparison of Machine Learning Algorithms for Natural Gas Identification with Mixed Potential Electrochemical Sensor Arrays. ECS Sens. Plus 2023, 2, 011402. [Google Scholar] [CrossRef]
- Halley, S.; Ramaiyan, K.; Garzon, F.; Tsui, L. kun Massive Enhancement in Sensitivity of Mixed Potential Sensors towards Methane and Natural Gas through Magnesia Stabilized Zirconia Low Ionic Conductivity Substrate. Sens. Actuators B Chem. 2023, 392, 134031. [Google Scholar] [CrossRef]
- Lv, S.; Liu, Z.; Liu, F.; Jiang, L.; Zhang, Y.; Wang, T.; Jia, X.; Sun, P.; Wang, L.; Lu, G. YSZ-Based Mixed Potential Sensor Attached with NiSb2O6 Electrode for Methanol Monitoring. Sens. Actuators B Chem. 2023, 392, 134088. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, J.; Wang, T.; Li, W.; Lu, Q.; Sun, H.; Huang, L.; Liang, X.; Liu, F.; Liu, F.; et al. Machine Learning-Assisted Volatile Organic Compound Gas Classification Based on Polarized Mixed-Potential Gas Sensors. ACS Appl. Mater. Interfaces 2023, 15, 6047–6057. [Google Scholar] [CrossRef]
- Sharma, A.; Ahmed, A.; Singh, A.; Oruganti, S.K.; Khosla, A.; Arya, S. Review—Recent Advances in Tin Oxide Nanomaterials as Electrochemical/Chemiresistive Sensors. J. Electrochem. Soc. 2021, 168, 27505. [Google Scholar] [CrossRef]
- Tan, P.-H.; Hsu, C.-H.; Shen, Y.-C.; Wang, C.-P.; Liou, K.-L.; Shih, J.-R.; Lin, C.J.; Lee, L.; Wang, K.; Wu, H.-M.; et al. Complementary Metal–Oxide–Semiconductor Compatible 2D Layered Film-Based Gas Sensors by Floating-Gate Coupling Effect. Adv. Funct. Mater. 2022, 32, 2108878. [Google Scholar] [CrossRef]
- Wang, J.; Ren, Y.; Liu, H.; Li, Z.; Liu, X.; Deng, Y.; Fang, X.; Wang, J.; Liu, H.; Li, Z.L.; et al. Ultrathin 2D NbWO6 Perovskite Semiconductor Based Gas Sensors with Ultrahigh Selectivity under Low Working Temperature. Adv. Mater. 2022, 34, 2104958. [Google Scholar] [CrossRef] [PubMed]
- Kwon, E.H.; Kim, M.; Lee, C.Y.; Kim, M.; Park, Y.D. Metal-Organic-Framework-Decorated Carbon Nanofibers with Enhanced Gas Sensitivity When Incorporated into an Organic Semiconductor-Based Gas Sensor. ACS Appl. Mater. Interfaces 2022, 14, 10637–10647. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.; Li, Z.; John, A.; Karawdeniya, B.I.; Li, Z.; Zhang, F.; Vora, K.; Tan, H.H.; Jagadish, C.; Murugappan, K.; et al. Semiconductor Nanowire Arrays for High-Performance Miniaturized Chemical Sensing. Adv. Funct. Mater. 2022, 32, 2107596. [Google Scholar] [CrossRef]
- Hong, S.; Wu, M.; Hong, Y.; Jeong, Y.; Jung, G.; Shin, W.; Park, J.; Kim, D.; Jang, D.; Lee, J.H. FET-Type Gas Sensors: A Review. Sens. Actuators B Chem. 2021, 330, 129240. [Google Scholar] [CrossRef]
- Liu, C.; Hu, J.; Wu, G.; Cao, J.; Zhang, Z.; Zhang, Y. Carbon Nanotube-Based Field-Effect Transistor-Type Sensor with a Sensing Gate for Ppb-Level Formaldehyde Detection. ACS Appl. Mater. Interfaces 2021, 13, 56319. [Google Scholar] [CrossRef]
- Kwon, B.; Bae, H.; Lee, H.; Kim, S.; Hwang, J.; Lim, H.; Lee, J.H.; Cho, K.; Ye, J.; Lee, S.; et al. Ultrasensitive N-Channel Graphene Gas Sensors by Nondestructive Molecular Doping. ACS Nano 2022, 16, 2176–2187. [Google Scholar] [CrossRef]
- Zhang, Y.; He, G.; Wang, L.; Wang, W.; Xu, X.; Liu, W. Ultraviolet-Assisted Low-Thermal-Budget-Driven α-InGaZnO Thin Films for High-Performance Transistors and Logic Circuits. ACS Nano 2022, 16, 4961–4971. [Google Scholar] [CrossRef]
- Vijjapu, M.T.; Surya, S.G.; Yuvaraja, S.; Salama, K.N. A Multi-Bit Fully Integrated Thin-Film Transistor NO2 Gas Detector at Room Temperature. IEEE Sens. Lett. 2020, 4, 1–4. [Google Scholar] [CrossRef]
- Shin, E.-S.; Go, J.-Y.; Ryu, G.-S.; Liu, A.; Noh, Y.-Y. Highly Reliable Organic Field-Effect Transistors with Molecular Additives for a High-Performance Printed Gas Sensor. ACS Appl. Mater. Interfaces 2021, 13, 4278–4283. [Google Scholar] [CrossRef]
- Forel, S.; Sacco, L.; Castan, A.; Florea, I.; Cojocaru, C.S. Simple and Rapid Gas Sensing Using a Single-Walled Carbon Nanotube Field-Effect Transistor-Based Logic Inverter. Nanoscale Adv. 2021, 3, 1582–1587. [Google Scholar] [CrossRef] [PubMed]
- Zong, B.; Li, Q.; Chen, X.; Liu, C.; Li, L.; Ruan, J.; Mao, S. Highly Enhanced Gas Sensing Performance Using a 1T/2H Heterophase MoS2 Field-Effect Transistor at Room Temperature. ACS Appl. Mater. Interfaces 2020, 12, 50610–50618. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Park, H.; Choo, S.; Baek, S.; Kwon, Y.; Liu, N.; Yang, J.Y.; Yang, C.-W.; Yoo, G.; Kim, S. Active-Matrix Monolithic Gas Sensor Array Based on MoS2 Thin-Film Transistors. Commun. Mater. 2020, 1, 86. [Google Scholar] [CrossRef]
- Falak, A.; Tian, Y.; Yan, L.; Xu, L.; Song, Z.; Hu, H.; Dong, F.; Adamu, B.I.; Zhao, M.; Chen, P.; et al. Ultrathin MoOx/Graphene Hybrid Field Effect Transistor Sensors Prepared Simply by a Shadow Mask Approach for Selective Ppb-Level NH3 Sensing with Simultaneous Superior Response and Fast Recovery. Adv. Mater. Interfaces 2020, 7, 1902002. [Google Scholar] [CrossRef]
- Behi, S.; Casanova-Chafer, J.; González, E.; Bohli, N.; Llobet, E.; Abdelghani, A. Metal Loaded Nano-Carbon Gas Sensor Array for Pollutant Detection. Nanotechnology 2022, 33, 195501. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Bu, M.; Hu, N.; Zhao, L. An Overview on Room-Temperature Chemiresistor Gas Sensors Based on 2D Materials: Research Status and Challenge. Compos. Part B Eng. 2023, 248, 110378. [Google Scholar] [CrossRef]
- Kumar, S.; Pavelyev, V.; Mishra, P.; Tripathi, N. Thin Film Chemiresistive Gas Sensor on Single-Walled Carbon Nanotubes-Functionalized with Polyethylenimine (PEI) for NO2 Gas Sensing. Bull. Mater. Sci. 2020, 43, 61. [Google Scholar] [CrossRef]
- Domènech-Gil, G.; Samà, J.; Fàbrega, C.; Gràcia, I.; Cané, C.; Barth, S.; Romano-Rodríguez, A. Highly Sensitive SnO2 Nanowire Network Gas Sensors. Sens. Actuators B Chem. 2023, 383, 133545. [Google Scholar] [CrossRef]
- Freddi, S.; Vergari, M.; Pagliara, S.; Sangaletti, L. A Chemiresistor Sensor Array Based on Graphene Nanostructures: From the Detection of Ammonia and Possible Interfering VOCs to Chemometric Analysis. Sensors 2023, 23, 882. [Google Scholar] [CrossRef]
- Chang, A.; Uy, C.; Xiao, X.; Chen, J. Self-Powered Environmental Monitoring via a Triboelectric Nanogenerator. Nano Energy 2022, 98, 107282. [Google Scholar] [CrossRef]
- Huo, Z.; Wei, Y.; Wang, Y.; Wang, Z.L.; Sun, Q. Integrated Self-Powered Sensors Based on 2D Material Devices. Adv. Funct. Mater. 2022, 32, 2206900. [Google Scholar] [CrossRef]
- Joo, H.; Lee, K.Y.; Lee, J.H. Piezo/Triboelectric Effect Driven Self-Powered Gas Sensor for Environmental Sensor Networks. Energy Technol. 2022, 10, 2200113. [Google Scholar] [CrossRef]
- Yang, Y.; Guo, X.; Zhu, M.; Sun, Z.; Zhang, Z.; He, T.; Lee, C. Triboelectric Nanogenerator Enabled Wearable Sensors and Electronics for Sustainable Internet of Things Integrated Green Earth. Adv. Energy Mater. 2023, 13, 2203040. [Google Scholar] [CrossRef]
- Liu, B.; Wang, S.; Yuan, Z.; Duan, Z.; Zhao, Q.; Zhang, Y.; Su, Y.; Jiang, Y.; Xie, G.; Tai, H. Novel Chitosan/ZnO Bilayer Film with Enhanced Humidity-Tolerant Property: Endowing Triboelectric Nanogenerator with Acetone Analysis Capability. Nano Energy 2020, 78, 105256. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, D.; Tang, M.; Zhang, H.; Chen, F.; Wang, T.; Li, Z.; Zhao, P. Rotating Triboelectric-Electromagnetic Nanogenerator Driven by Tires for Self-Powered MXene-Based Flexible Wearable Electronics. Chem. Eng. J. 2022, 446, 136914. [Google Scholar] [CrossRef]
- Wu, Z.; Wang, H.; Ding, Q.; Tao, K.; Shi, W.; Liu, C.; Chen, J.; Wu, J. A Self-Powered, Rechargeable, and Wearable Hydrogel Patch for Wireless Gas Detection with Extraordinary Performance. Adv. Funct. Mater. 2023, 33, 2300046. [Google Scholar] [CrossRef]
- Chang, C.Y.; Cheng, Y.H.; Ho, C.Y. Surface Engineering of a Triboelectric Nanogenerator for Room Temperature High-Performance Self-Powered Formaldehyde Sensors. J. Mater. Chem. A 2022, 10, 22373–22389. [Google Scholar] [CrossRef]
- Tai, H.; Duan, Z.; Wang, Y.; Wang, S.; Jiang, Y. Paper-Based Sensors for Gas, Humidity, and Strain Detections: A Review. ACS Appl. Mater. Interfaces 2020, 12, 31037–31053. [Google Scholar] [CrossRef]
- Meng, W.; Dai, L.; Li, Y.; He, Z.; Meng, W.; Zhou, H.; Wang, L. Mixed Potential NH3 Sensor Based on La9.95K0.05Si5Al1O26.45 Electrolyte and Ag Doped BiVO4 Sensing Electrode. Sens. Actuators B Chem. 2020, 316, 128206. [Google Scholar] [CrossRef]
- Cai, S.; Chen, L.; Zhang, J.; Ke, Y.; Fu, X.; Yang, H.; Li, H.; Long, Y.; Liu, X. Facile Fabrication of PANI/Zn-Tpps4 Flexible NH3 Sensor Based on the “Bridge” of Zn-Tpps4. Sens. Actuators B Chem. 2020, 321, 128476. [Google Scholar] [CrossRef]
- Arunragsa, S.; Seekaew, Y.; Pon-On, W.; Wongchoosuk, C. Hydroxyl Edge-Functionalized Graphene Quantum Dots for Gas-Sensing Applications. Diam. Relat. Mater. 2020, 105, 107790. [Google Scholar] [CrossRef]
- Chu, J.; Han, Y.; Li, Y.; Jia, P.; Cui, H.; Duan, S.; Feng, P.; Peng, X. Study o f the Structural Evolution and Gas Sensing Properties of PECVD-Synthesized Graphene Nanowalls. J. Phys. D Appl. Phys. 2020, 53, 9. [Google Scholar] [CrossRef]
- Ansari, N.; Yaseen Lone, M. Trace Level Toxic Ammonia Gas Sensing of Single-Walled Carbon Nanotubes Wrapped Polyaniline Nanofibers. J. Appl. Phys 2020, 127, 44902. [Google Scholar] [CrossRef]
- Kumar, R.; Kumar, A.; Singh, R.; Kashyap, R.; Kumar, D.; Goel, R.; Kumar, M. Investigation of Sheet Resistance Variation with Annealing Temperature and Development of Highly Sensitive and Selective Room Temperature Ammonia Gas Sensor Using Functionalized Graphene Oxide. J. Mater. Sci. Mater. Electron. 2021, 32, 1716–1728. [Google Scholar] [CrossRef]
- Gai, S.; Wang, B.; Wang, X.; Zhang, R.; Miao, S.; Wu, Y. Ultrafast NH3 Gas Sensor Based on Phthalocyanine-Optimized Non-Covalent Hybrid of Carbon Nanotubes with Pyrrole. Sens. Actuators B Chem. 2022, 357, 131352. [Google Scholar] [CrossRef]
- Vatandoust, L.; Habibi, A.; Naghshara, H.; Aref, S.M. Fabrication of ZnO-MWCNT Nanocomposite Sensor and Investigation of Its Ammonia Gas Sensing Properties at Room Temperature. Synth. Met. 2021, 273, 116710. [Google Scholar] [CrossRef]
- Wang, Y.; Cheng, T.; Lou, C.; Liu, X.; Li, X.; Huang, L.; Yao, J.; Liu, X. Carbon-Based Light-Induced Thermoelastic Spectroscopy for Ammonia Gas Sensing. Microw. Opt. Technol. Lett. 2023, 65, 1086–1092. [Google Scholar] [CrossRef]
- Novikov, A.V.; Kuznetsova, L.I.; Dremova, N.N.; Parfenov, A.A.; Troshin, P.A. Environment-Friendly Aqueous Processing of [60]Fullerene Semiconducting Films for Truly Green Organic Electronics. J. Mater. Chem. C 2020, 8, 495–499. [Google Scholar] [CrossRef]
- Serafini, M.; Mariani, F.; Gualandi, I.; Decataldo, F.; Possanzini, L.; Tessarolo, M.; Fraboni, B.; Tonelli, D.; Scavetta, E. A Wearable Electrochemical Gas Sensor for Ammonia Detection. Sensors 2021, 21, 7905. [Google Scholar] [CrossRef]
- Hailili, R.; Wang, Z.-Q.; Ji, H.; Chen, C.; Gong, X.-Q.; Sheng, H.; Zhao, J. Mechanistic Insights into the Photocatalytic Reduction of Nitric Oxide to Nitrogen on Oxygen-Deficient Quasi-Two-Dimensional Bismuth-Based Perovskites. Environ. Sci. Nano 2022, 9, 1453–1465. [Google Scholar] [CrossRef]
- Cui, Z.; Wang, X.; Ding, Y.; Li, E.; Bai, K.; Zheng, J.; Liu, T. Adsorption of CO, NH3, NO, and NO2 on Pristine and Defective g-GaN: Improved Gas Sensing and Functionalization. Appl. Surf. Sci. 2020, 530, 147275. [Google Scholar] [CrossRef]
- Jeong, D.W.; Kim, K.H.; Kim, B.S.; Byun, Y.T. Characteristics of Highly Sensitive and Selective Nitric Oxide Gas Sensors Using Defect-Functionalized Single-Walled Carbon Nanotubes at Room Temperature. Appl. Surf. Sci. 2021, 550, 149250. [Google Scholar] [CrossRef]
- Song, I.; Lee, H.; Jeon, S.W.; Ibrahim, I.A.M.; Kim, J.; Byun, Y.; Koh, D.J.; Han, J.W.; Kim, D.H. Simple Physical Mixing of Zeolite Prevents Sulfur Deactivation of Vanadia Catalysts for NOx Removal. Nat. Commun. 2021, 12, 901. [Google Scholar] [CrossRef] [PubMed]
- Inomata, Y.; Kubota, H.; Hata, S.; Kiyonaga, E.; Morita, K.; Yoshida, K.; Sakaguchi, N.; Toyao, T.; Shimizu, K.; Ishikawa, S.; et al. Bulk Tungsten-Substituted Vanadium Oxide for Low-Temperature NOx Removal in the Presence of Water. Nat. Commun. 2021, 12, 557. [Google Scholar] [CrossRef] [PubMed]
- Vadalkar, S.; Chodvadiya, D.; Som, N.N.; Vyas, K.N.; Jha, P.K.; Chakraborty, B. An Ab-Initio Study of the C18 Nanocluster for Hazardous Gas Sensor Application. ChemistrySelect 2022, 7, e202103874. [Google Scholar] [CrossRef]
- Jia, X.; An, L.; Chen, T. Adsorption of Nitrogen Oxides on Al-Doped Carbon Nanotubes: The First Principles Study. Adsorption 2020, 26, 587–595. [Google Scholar] [CrossRef]
- Song, B.Y.; Li, C.; Lv, M.S.; Zhang, X.F.; Chen, G.L.; Deng, Z.P.; Xu, Y.M.; Huo, L.H.; Gao, S. Graphitic Carbon-Doped SnO2 Nanosheets-Wrapped Tubes for Chemiresitive Ppb-Level Nitric Oxide Sensors Operated near Room Temperature. Sens. Actuators B Chem. 2023, 374, 132822. [Google Scholar] [CrossRef]
- Jha, R.K.; Nanda, A.; Avasthi, P.; Arya, N.; Yadav, A.; Balakrishnan, V.; Bhat, N. Scalable Approach to Develop High Performance Chemiresistive Nitric Oxide Sensor. IEEE Trans. Nanotechnol. 2022, 21, 177–184. [Google Scholar] [CrossRef]
- Censabella, M.; Iacono, V.; Scandurra, A.; Moulaee, K.; Neri, G.; Ruffino, F.; Mirabella, S. Low Temperature Detection of Nitric Oxide by CuO Nanoparticles Synthesized by Pulsed Laser Ablation. Sens. Actuators B Chem. 2022, 358, 131489. [Google Scholar] [CrossRef]
- Theerthagiri, J.; Lee, S.J.; Karuppasamy, K.; Arulmani, S.; Veeralakshmi, S.; Ashokkumar, M.; Choi, M.Y. Application of Advanced Materials in Sonophotocatalytic Processes for the Remediation of Environmental Pollutants. J. Hazard. Mater. 2021, 412, 125245. [Google Scholar] [CrossRef]
- Ramu, A.G.; Umar, A.; Gopi, S.; Algadi, H.; Albargi, H.; Ibrahim, A.A.; Alsaiari, M.A.; Wang, Y.; Choi, D. Tetracyanonickelate (II)/KOH/Reduced Graphene Oxide Fabricated Carbon Felt for Mediated Electron Transfer Type Electrochemical Sensor for Efficient Detection of N2O Gas at Room Temperature. Environ. Res. 2021, 201, 111591. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Wang, R.; Peng, J.; Liu, K.; Chen, W.; Wang, G.; Gao, X. Humidity Enhanced N2O Photoacoustic Sensor with a 4.53 Μm Quantum Cascade Laser and Kalman Filter. Photoacoustics 2021, 24, 100303. [Google Scholar] [CrossRef] [PubMed]
- Zifarelli, A.; De Palo, R.; Patimisco, P.; Giglio, M.; Sampaolo, A.; Blaser, S.; Butet, J.; Landry, O.; Müller, A.; Spagnolo, V. Multi-Gas Quartz-Enhanced Photoacoustic Sensor for Environmental Monitoring Exploiting a Vernier Effect-Based Quantum Cascade Laser. Photoacoustics 2022, 28, 100401. [Google Scholar] [CrossRef] [PubMed]
- Perumal, S.; Moon, I.S. Sustainable NO Removal and Its Sensitive Monitoring at Room Temperature by Electrogenerated Ni (I) Electron Mediator. Chemosphere 2021, 265, 129122. [Google Scholar] [CrossRef]
- Ogen, Y. Assessing Nitrogen Dioxide (NO2) Levels as a Contributing Factor to Coronavirus (COVID-19) Fatality. Sci. Total Environ. 2020, 726, 138605. [Google Scholar] [CrossRef]
- Ng, S.; Prášek, J.; Zazpe, R.; Pytlíček, Z.; Spotz, Z.; Pereira, J.R.; Michalička, J.; Přikryl, J.; Krbal, M.; Sopha, H.; et al. Atomic Layer Deposition of SnO2-Coated Anodic One-Dimensional TiO2 Nanotube Layers for Low Concentration NO2 Sensing. ACS Appl. Mater. Interfaces 2020, 12, 33386–33396. [Google Scholar] [CrossRef]
- Zhang, B.; Bao, N.; Wang, T.; Xu, Y.; Dong, Y.; Ni, Y.; Yu, P.; Wei, Q.; Wang, J.; Guo, L.; et al. High-Performance Room Temperature NO2 Gas Sensor Based on Visible Light Irradiated In2O3 Nanowires. J. Alloys Compd. 2021, 867, 159076. [Google Scholar] [CrossRef]
- Patil, D.B.; Patil, V.L.; Patil, S.S.; Dongale, T.D.; Desai, N.D.; Patil, P.R.; Mane, R.M.; Bhosale, P.N.; Patil, P.S.; Kadam, P.M.; et al. Facile Synthesis of MoO3 Nanoplates Based NO2 Gas Sensor: Ultra-Selective and Sensitive. Chem. Phys. Lett. 2021, 782, 139025. [Google Scholar] [CrossRef]
- Morais, P.V.; Suman, P.H.; Silva, R.A.; Orlandi, M.O. High Gas Sensor Performance of WO3 Nanofibers Prepared by Electrospinning. J. Alloys Compd. 2021, 864, 158745. [Google Scholar] [CrossRef]
- Cheng, Y.; Li, Z.; Tang, T.; Xu, K.; Yu, H.; Tao, X.; Hung, C.M.; Hoa, N.D.; Fang, Y.; Ren, B.; et al. 3D Micro-Combs Self-Assembled from 2D N-Doped In2S3 for Room-Temperature Reversible NO2 Gas Sensing. Appl. Mater. Today 2022, 26, 101355. [Google Scholar] [CrossRef]
- Ding, Y.; Guo, X.; Kuang, D.; Hu, X.; Zhou, Y.; He, Y.; Zang, Z. Hollow Cu2O Nanospheres Loaded with MoS2/Reduced Graphene Oxide Nanosheets for Ppb-Level NO2 Detection at Room Temperature. J. Hazard. Mater. 2021, 416, 126218. [Google Scholar] [CrossRef] [PubMed]
- Gasso, S.; Sohal, M.K.; Mahajan, A. MXene Modulated SnO2 Gas Sensor for Ultra-Responsive Room-Temperature Detection of NO2. Sens. Actuators B Chem. 2022, 357, 131427. [Google Scholar] [CrossRef]
- Jaiswal, J.; Singh, P.; Chandra, R. Low-Temperature Highly Selective and Sensitive NO2 Gas Sensors Using CdTe-Functionalized ZnO Filled Porous Si Hybrid Hierarchical Nanostructured Thin Films. Sens. Actuators B Chem. 2021, 327, 128862. [Google Scholar] [CrossRef]
- Das, S.; Girija, K.G.; Debnath, A.K.; Vatsa, R.K. Enhanced NO2 and SO2 Sensor Response under Ambient Conditions by Polyol Synthesized Ni Doped SnO2 Nanoparticles. J. Alloys Compd. 2021, 854, 157276. [Google Scholar] [CrossRef]
- He, T.; Liu, W.; Lv, T.; Ma, M.; Liu, Z.; Vasiliev, A.; Li, X. MXene/SnO2 Heterojunction Based Chemical Gas Sensors. Sens. Actuators B Chem. 2021, 329, 129275. [Google Scholar] [CrossRef]
- Sohal, M.K.; Mahajan, A.; Gasso, S.; Bedi, R.K.; Singh, R.C.; Debnath, A.K.; Aswal, D.K. Ultrasensitive Yttrium Modified Tin Oxide Thin Film Based Sub-Ppb Level NO2 Detector. Sens. Actuators B Chem. 2021, 329, 129169. [Google Scholar] [CrossRef]
- Sohal, M.K.; Mahajan, A.; Gasso, S.; Nahirniak, S.V.; Dontsova, T.A.; Singh, R.C. Modification of SnO2 Surface Oxygen Vacancies through Er Doping for Ultralow NO2 Detection. Mater. Res. Bull. 2021, 133, 111051. [Google Scholar] [CrossRef]
- Larionov, K.B.; Zenkov, A.V.; Mishakov, I.V.; Gromov, A.A. Decrease in Carbon Monoxide Release and Incomplete Burning of Fuel during Activated Combustion of Coal. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2020; Volume 1675. [Google Scholar]
- Manisalidis, I.; Stavropoulou, E.; Stavropoulos, A.; Bezirtzoglou, E. Environmental and Health Impacts of Air Pollution: A Review. Front. Public Health 2020, 8, 14. [Google Scholar] [CrossRef]
- Dhall, S.; Mehta, B.R.; Tyagi, A.K.; Sood, K. A Review on Environmental Gas Sensors: Materials and Technologies. Sensors Int. 2021, 2, 100116. [Google Scholar] [CrossRef]
- Utari, L.; Septiani, N.L.W.; Suyatman; Nugraha; Nur, L.O.; Wasisto, H.S.; Yuliarto, B. Wearable Carbon Monoxide Sensors Based on Hybrid Graphene/ZnO Nanocomposites. IEEE Access 2020, 8, 49169–49179. [Google Scholar] [CrossRef]
- Mao, Q.; Kawaguchi, A.T.; Mizobata, S.; Motterlini, R.; Foresti, R.; Kitagishi, H. Sensitive Quantification of Carbon Monoxide in Vivo Reveals a Protective Role of Circulating Hemoglobin in CO Intoxication. Commun. Biol. 2021, 4, 425. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.; Shin, G. Fabrication of a Flexible, Wireless Micro-Heater on Elastomer for Wearable Gas Sensor Applications. Polymers 2022, 14, 1557. [Google Scholar] [CrossRef] [PubMed]
- Bhowmick, T.; Ghosh, A.; Nag, S.; Majumder, S.B. Sensitive and Selective CO2 Gas Sensor Based on CuO/ZnO Bilayer Thin-Film Architecture. J. Alloys Compd. 2022, 903, 163871. [Google Scholar] [CrossRef]
- Amarnath, M.; Gurunathan, K. Highly Selective CO2 Gas Sensor Using Stabilized NiO-In2O3 Nanospheres Coated Reduced Graphene Oxide Sensing Electrodes at Room Temperature. J. Alloys Compd. 2021, 857, 157584. [Google Scholar] [CrossRef]
- Kazanskiy, N.L.; Butt, M.A.; Khonina, S.N. Carbon Dioxide Gas Sensor Based on Polyhexamethylene Biguanide Polymer Deposited on Silicon Nano-Cylinders Metasurface. Sensors 2021, 21, 378. [Google Scholar] [CrossRef]
- Escobedo, P.; Fernández-Ramos, M.D.; López-Ruiz, N.; Moyano-Rodríguez, O.; Martínez-Olmos, A.; de Vargas-Sansalvador, I.M.P.; Carvajal, M.A.; Capitán-Vallvey, L.F.; Palma, A.J. Smart Facemask for Wireless CO2 Monitoring. Nat. Commun. 2022, 13, 72. [Google Scholar] [CrossRef]
- Dubey, S.K.; Kumar, A.; Dayal, G.; Pathak, A.; Srivastava, S.K. Polarization Insensitive Metamaterial Based Electromagnetic Multiband Absorber in the Long-Wave Infrared (LWIR) Region. Opt. Laser Technol. 2022, 156, 108511. [Google Scholar] [CrossRef]
- Tipparaju, V.V.; Mora, S.J.; Yu, J.; Tsow, F.; Xian, X. Wearable Transcutaneous CO Monitor Based on Miniaturized Nondispersive Infrared Sensor. IEEE Sens. J. 2021, 21, 17327–17334. [Google Scholar] [CrossRef]
- Zhang, X.; Hao, X.; Zhai, Z.; Wang, J.; Li, H.; Sun, Y.; Qin, Y.; Niu, B.; Li, C. Flexible H2S Sensors: Fabricated by Growing NO2-UiO-66 on Electrospun Nanofibers for Detecting Ultralow Concentration H2S. Appl. Surf. Sci. 2022, 573, 151446. [Google Scholar] [CrossRef]
- Engel, L.; Benito-Altamirano, I.; Tarantik, K.R.; Pannek, C.; Dold, M.; Prades, J.D.; Wöllenstein, J. Printed Sensor Labels for Colorimetric Detection of Ammonia, Formaldehyde and Hydrogen Sulfide from the Ambient Air. Sens. Actuators B Chem. 2021, 330, 129281. [Google Scholar] [CrossRef]
- Tian, X.; Li, Y.; Zhao, J.; Tao, J. A Silver-Based Miniature Gas Sensor for Hydrogen Sulfide Detection. IEEE Sens. J. 2023, 23, 3469–3474. [Google Scholar] [CrossRef]
- Khan, M.A.H.; Thomson, B.; Yu, J.; Debnath, R.; Motayed, A.; Rao, M.V. Scalable Metal Oxide Functionalized GaN Nanowire for Precise SO2 Detection. Sens. Actuators B Chem. 2020, 318, 128223. [Google Scholar] [CrossRef]
- Zhang, X.; Zhai, Z.; Wang, J.; Hao, X.; Sun, Y.; Yu, S.; Lin, X.; Qin, Y.; Li, C. Zr-MOF Combined with Nanofibers as an Efficient and Flexible Capacitive Sensor for Detecting. ChemNanoMat 2021, 7, 1117–1124. [Google Scholar] [CrossRef]
- Lou, C.-W.; Zhang, X.; Wang, Y.; Zhang, X.; Shiu, B.-C.; Li, T.-T.; Lin, J.-H. Study on the Preparation and Performance of Flexible Sulfur Dioxide Gas Sensors Based on Metal-Organic Framework. J. Polym. Res. 2022, 29, 114. [Google Scholar] [CrossRef]
- Xu, H.; Li, J.; Li, P.; Shi, J.; Gao, X.; Luo, W. Highly Efficient SO2 Sensing by Light-Assisted Ag/PANI/SnO2 at Room Temperature and the Sensing Mechanism. ACS Appl. Mater. Interfaces 2021, 13, 49194–49205. [Google Scholar] [CrossRef]
- Sui, N.; Wei, X.; Cao, S.; Zhang, P.; Zhou, T.; Zhang, T. Nanoscale Bimetallic AuPt-Functionalized Metal Oxide Chemiresistors: Ppb-Level and Selective Detection for Ozone and Acetone. ACS Sens. 2022, 7, 2178–2187. [Google Scholar] [CrossRef]
- Zhao, Z.; Deng, Z.; Zhang, R.; Klamchuen, A.; He, Y.; Horprathum, M.; Chang, J.; Mi, L.; Li, M.; Wang, S.; et al. Sensitive and Selective Ozone Sensor Based on CuCo2O4 Synthesized by a Facile Solution Combustion Method. Sens. Actuators B Chem. 2023, 375, 132912. [Google Scholar] [CrossRef]
- Roy, D.; Hossain, M.R.; Hossain, M.K.; Hossain, M.A.; Ahmed, F. Density Functional Theory Study of the Sensing of Ozone Gas Molecules by Using Fullerene-like Group-III Nitride Nanostructures. Phys. B Condens. Matter 2023, 650, 414553. [Google Scholar] [CrossRef]
- Barreto, D.N.; Silva, W.R.; Mizaikoff, B.; da Silveira Petruci, J.F. Monitoring Ozone Using Portable Substrate-Integrated Hollow Waveguide-Based Absorbance Sensors in the Ultraviolet Range. ACS Meas. Sci. Au 2022, 2, 39–45. [Google Scholar] [CrossRef]
- Krebs, R.; Owens, J.; Luckarift, H. Formation and Detection of Hydrogen Fluoride Gas during Fire Fighting Scenarios. Fire Saf. J. 2022, 127, 103489. [Google Scholar] [CrossRef]
- Zhai, C.; Fang, G.; Liu, W.; Wu, T.; Miao, L.; Zhang, L.; Ma, J.; Zhang, Y.; Zong, C.; Zhang, S.; et al. Robust Scalable-Manufactured Smart Fabric Surfaces Based on Azobenzene-Containing Maleimide Copolymers for Rewritable Information Storage and Hydrogen Fluoride Visual Sensor. ACS Appl. Mater. Interfaces 2021, 13, 42024–42034. [Google Scholar] [CrossRef]
- Mishra, G.P.; Kumar, D.; Chaudhary, V.S.; Kumar, S. Design and Sensitivity Improvement of Microstructured-Core Photonic Crystal Fiber Based Sensor for Methane and Hydrogen Fluoride Detection. IEEE Sens. J. 2022, 22, 1265–1272. [Google Scholar] [CrossRef]
- Khatib, M.; Haick, H. Sensors for Volatile Organic Compounds. ACS Nano 2021, 16, 7080–7115. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Liu, Y.; Zhang, X.; Han, H.; Li, Z.; Han, T. Fabricating a Mechanochromic AIE Luminogen into a Wearable Sensor for Volatile Organic Compound (VOC) Detection. Dye. Pigment. 2021, 192, 109393. [Google Scholar] [CrossRef]
- Frampton, T.H.; Tiele, A.; Covington, J.A. Development of a Personalised Environmental Quality Monitoring System (PONG). IEEE Sens. J. 2021, 21, 15230–15236. [Google Scholar] [CrossRef]
- Li, M.-Z.; Han, S.-T.; Zhou, Y. Recent Advances in Flexible Field-Effect Transistors toward Wearable Sensors. Adv. Intell. Syst. 2020, 2, 2000113. [Google Scholar] [CrossRef]
- Chen, W.Y.; Jiang, X.; Lai, S.N.; Peroulis, D.; Stanciu, L. Nanohybrids of a MXene and Transition Metal Dichalcogenide for Selective Detection of Volatile Organic Compounds. Nat. Commun. 2020, 11, 1302. [Google Scholar] [CrossRef]
- Alzate-Carvajal, N.; Park, J.; Bargaoui, I.; Rautela, R.; Comeau, Z.J.; Scarfe, L.; Ménard, J.M.; Darling, S.B.; Lessard, B.H.; Luican-Mayer, A. Arrays of Functionalized Graphene Chemiresistors for Selective Sensing of Volatile Organic Compounds. ACS Appl. Electron. Mater. 2022, 5, 1514–1520. [Google Scholar] [CrossRef]
- Wang, H.; Jiménez-Calvo, P.; Hepp, M.; Isaacs, M.A.; Otieno Ogolla, C.; Below-Lutz, I.; Butz, B.; Strauss, V. Laser-Patterned Porous Carbon/ZnO Nanostructure Composites for Selective Room-Temperature Sensing of Volatile Organic Compounds. ACS Appl. Nano Mater. 2023, 6, 966–975. [Google Scholar] [CrossRef]
- Palacio, F.; Fonollosa, J.; Burgues, J.; Gomez, J.M.; Marco, S. Pulsed-Temperature Metal Oxide Gas Sensors for Microwatt Power Consumption. IEEE Access 2020, 8, 70938–70946. [Google Scholar] [CrossRef]
- Vilouras, A.; Christou, A.; Manjakkal, L.; Dahiya, R. Ultrathin Ion-Sensitive Field-Effect Transistor Chips with Bending-Induced Performance Enhancement. ACS Appl. Electron. Mater. 2020, 2, 2601–2610. [Google Scholar] [CrossRef] [PubMed]
- Malik, M.H.; Tsiamis, A.; Zangl, H.; Binder, A.; Mitra, S.; Roshanghias, A. Die-Level Thinning for Flip-Chip Integration on Flexible Substrates. Electronics 2022, 11, 849. [Google Scholar] [CrossRef]
- Gebregiorgis, A.; Singh, A.; Yousefzadeh, A.; Wouters, D.; Bishnoi, R.; Catthoor, F.; Hamdioui, S. Tutorial on Memristor-Based Computing for Smart Edge Applications. Mem. Mater. Devices Circuits Syst. 2023, 4, 100025. [Google Scholar] [CrossRef]
- Kumar, S.; Wang, X.; Strachan, J.P.; Yang, Y.; Lu, W.D. Dynamical Memristors for Higher-Complexity Neuromorphic Computing. Nat. Rev. Mater. 2022, 7, 575–591. [Google Scholar] [CrossRef]
- Zhou, G.; Wang, Z.; Sun, B.; Zhou, F.; Sun, L.; Zhao, H.; Hu, X.; Peng, X.; Yan, J.; Wang, H.; et al. Volatile and Nonvolatile Memristive Devices for Neuromorphic Computing. Adv. Electron. Mater. 2022, 8, 2101127. [Google Scholar] [CrossRef]
- Chen, A.; Zhang, J.; Zhao, L.; Rhoades, R.D.; Kim, D.Y.; Wu, N.; Liang, J.; Chae, J. Machine-Learning Enabled Wireless Wearable Sensors to Study Individuality of Respiratory Behaviors. Biosens. Bioelectron. 2021, 173, 112799. [Google Scholar] [CrossRef]
- Kassanos, P. Analog-Digital Computing Let Robots Go through the Motions. Sci. Robot. 2020, 5, eabe6818. [Google Scholar] [CrossRef]
- Filipovic, L.; Selberherr, S. Application of Two-Dimensional Materials towards CMOS-Integrated Gas Sensors. Nanomaterials 2022, 12, 3651. [Google Scholar] [CrossRef]
- Hopper, R.; Popa, D.; Udrea, F.; Ali, S.Z.; Stanley-Marbell, P. Miniaturized Thermal Acoustic Gas Sensor Based on a CMOS Microhotplate and MEMS Microphone. Sci. Rep. 2022, 12, 1690. [Google Scholar] [CrossRef]
- Van Tran, V.; Park, D.; Lee, Y.C. Indoor Air Pollution, Related Human Diseases, and Recent Trends in the Control and Improvement of Indoor Air Quality. Int. J. Environ. Res. Public Health 2020, 17, 2927. [Google Scholar] [CrossRef]
- Huang, P.; Chen, M.; Chen, K.; Zhang, H.; Yu, L.; Liu, C. A Combined Real-Time Intelligent Fire Detection and Forecasting Approach through Cameras Based on Computer Vision Method. Process Saf. Environ. Prot. 2022, 164, 629–638. [Google Scholar] [CrossRef]
- Choi, S.-J.; Kim, I.-D.; Park, H.J. 2D Layered Mn and Ru Oxide Nanosheets for Real-Time Breath Humidity Monitoring. Appl. Surf. Sci. 2022, 573, 151481. [Google Scholar] [CrossRef]
- Al Mamun, M.A.; Yuce, M.R. Recent Progress in Nanomaterial Enabled Chemical Sensors for Wearable Environmental Monitoring Applications. Adv. Funct. Mater. 2020, 30, 2005703. [Google Scholar] [CrossRef]
- Yuan, Z.; Yang, F.; Meng, F.; Zuo, K.; Li, J. Research of Low-Power MEMS-Based Micro Hotplates Gas Sensor: A Review. IEEE Sens. J. 2021, 21, 18368–18380. [Google Scholar] [CrossRef]
- Yuan, Z.; Yang, F.; Meng, F. Research Progress on Coating of Sensitive Materials for Micro-Hotplate Gas Sensor. Micromachines 2022, 13, 491. [Google Scholar] [CrossRef]
- Cho, I.; Lee, K.; Sim, Y.C.; Jeong, J.-S.; Cho, M.; Jung, H.; Kang, M.; Cho, Y.-H.; Ha, S.C.; Yoon, K.-J.; et al. Deep-Learning-Based Gas Identification by Time-Variant Illumination of a Single Micro-LED-Embedded Gas Sensor. Light Sci. Appl. 2023, 12, 95. [Google Scholar] [CrossRef]
- Majhi, S.M.; Mirzaei, A.; Kim, H.W.; Kim, S.S.; Kim, T.W. Recent Advances in Energy-Saving Chemiresistive Gas Sensors: A Review. Nano Energy 2021, 79, 105369. [Google Scholar] [CrossRef]
- Jung, S.; Hauert, R.; Haluska, M.; Roman, C.; Hierold, C. Understanding and Improving Carbon Nanotube-Electrode Contact in Bottom-Contacted Nanotube Gas Sensors. Sens. Actuators B Chem. 2021, 331, 129406. [Google Scholar] [CrossRef]
- Wusiman, M.; Taghipour, F. Methods and Mechanisms of Gas Sensor Selectivity. Crit. Rev. Solid State Mater. Sci. 2021, 47, 416–435. [Google Scholar] [CrossRef]
- Rasch, F.; Postica, V.; Schütt, F.; Mishra, Y.K.; Nia, A.S.; Lohe, M.R.; Feng, X.; Adelung, R.; Lupan, O. Highly Selective and Ultra-Low Power Consumption Metal Oxide Based Hydrogen Gas Sensor Employing Graphene Oxide as Molecular Sieve. Sens. Actuators B Chem. 2020, 320, 128363. [Google Scholar] [CrossRef]
- Şenocak, A.; Ivanova, V.; Ganesan, A.; Klyamer, D.; Basova, T.; Makhseed, S.; Demirbas, E.; Durmuş, M. Hybrid Material Based on Single Walled Carbon Nanotubes and Cobalt Phthalocyanine Bearing Sixteen Pyrene Moieties as a Sensing Layer for Hydrogen Sulfide Detection. Dye. Pigment. 2023, 209, 110903. [Google Scholar] [CrossRef]
- Vasquez, S.; Costa Angeli, M.A.; Petrelli, M.; Ahmad, M.; Shkodra, B.; Salonikidou, B.; Sporea, R.A.; Rivadeneyra, A.; Lugli, P.; Petti, L. Comparison of Printing Techniques for the Fabrication of Flexible Carbon Nanotube-Based Ammonia Chemiresistive Gas Sensors. Flex. Print. Electron. 2023, 8, 035012. [Google Scholar] [CrossRef]
- Wang, Y.; Pan, Y.; Jiang, Y.; Xu, M.; Jiang, J. Wearable Electrochemical Gas Sensor for Methanol Leakage Detection. Microchem. J. 2023, 190, 108715. [Google Scholar] [CrossRef]
- Zuliani, I.; Fattori, A.; Svigelj, R.; Dossi, N.; Grazioli, C.; Bontempelli, G.; Toniolo, R. Amperometric Detection of Ethanol Vapors by Screen Printed Electrodes Modified by Paper Crowns Soaked with Room Temperature Ionic Liquids. Electroanalysis 2023, 35, e202200150. [Google Scholar] [CrossRef]
- Beniwal, A.; Ganguly, P.; Gond, R.; Rawat, B.; Li, C. Room Temperature Operated PEDOT: PSS Based Flexible and Disposable NO2 Gas Sensor. IEEE Sensors Lett. 2023, 7, 1–14. [Google Scholar] [CrossRef]
- Zhang, T.; Tan, R.; Shen, W.; Lv, D.; Yin, J.; Chen, W.; Fu, H.; Song, W. Inkjet-Printed ZnO-Based MEMS Sensor Array Combined with Feature Selection Algorithm for VOCs Gas Analysis. Sens. Actuators B Chem. 2023, 382, 133555. [Google Scholar] [CrossRef]
- Yin, J.; Lv, D.; Zhao, J.; Shen, W.; Hu, P.; Song, W. ZnO-MEMS Sensor-Cell Prepared by Inkjet Printing for Low Concentration Acetone Detection. Mater. Lett. 2023, 340, 134152. [Google Scholar] [CrossRef]
- Sidhu, J.S.; Misra, A.; Bhardwaj, A. Fabrication of Carbon Nanotube Components Using 3D Printing: Review. Mater. Today Proc. 2023, in press. [Google Scholar] [CrossRef]
- Jiang, Y.; Islam, M.N.; He, R.; Huang, X.; Cao, P.F.; Advincula, R.C.; Dahotre, N.; Dong, P.; Wu, H.F.; Choi, W. Recent Advances in 3D Printed Sensors: Materials, Design, and Manufacturing. Adv. Mater. Technol. 2023, 8, 2200492. [Google Scholar] [CrossRef]
- Tseng, S.F.; Chen, P.S.; Hsu, S.H.; Hsiao, W.T.; Peng, W.J. Investigation of Fiber Laser-Induced Porous Graphene Electrodes in Controlled Atmospheres for ZnO Nanorod-Based NO2 Gas Sensors. Appl. Surf. Sci. 2023, 620, 156847. [Google Scholar] [CrossRef]
- Martins, L.; Kulyk, B.; Theodosiou, A.; Ioannou, A.; Moreirinha, C.; Kalli, K.; Santos, N.; Costa, F.; Pereira, S.O.; Marques, C. Laser-Induced Graphene from Commercial Polyimide Coated Optical Fibers for Sensor Development. Opt. Laser Technol. 2023, 160, 109047. [Google Scholar] [CrossRef]
- Cheng, T.; Shao, J.; Wang, Z.L. Triboelectric Nanogenerators. Nat. Rev. Methods Prim. 2023, 3, 39. [Google Scholar] [CrossRef]
- Garland, N.T.; Kaveti, R.; Bandodkar, A.J. Biofluid-Activated Biofuel Cells, Batteries, and Supercapacitors—A Comprehensive Review. Adv. Mater. 2023, 2303197. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Jiang, Y.; Xie, G.; Duan, Z.; Yuan, Z.; Zhang, Y.; Zhao, Q.; Cao, Z.; Dong, F.; Tai, H. Lever-Inspired Triboelectric Respiration Sensor for Respiratory Behavioral Assessment and Exhaled Hydrogen Sulfide Detection. Chem. Eng. J. 2023, 471, 144795. [Google Scholar] [CrossRef]
- Zhang, M.; Duan, Z.; Zhang, B.; Yuan, Z.; Zhao, Q.; Jiang, Y.; Tai, H. Electrochemical Humidity Sensor Enabled Self-Powered Wireless Humidity Detection System. Nano Energy 2023, 115, 108745. [Google Scholar] [CrossRef]
- Duan, Z.; Li, J.; Yuan, Z.; Jiang, Y.; Tai, H. Capacitive Humidity Sensor Based on Zirconium Phosphate Nanoplates Film with Wide Sensing Range and High Response. Sens. Actuators B Chem. 2023, 394, 134445. [Google Scholar] [CrossRef]
- Danila, O.; Gross, B.M. Towards Highly Efficient Nitrogen Dioxide Gas Sensors in Humid and Wet Environments Using Triggerable-Polymer Metasurfaces. Polymers 2023, 15, 545. [Google Scholar] [CrossRef]
- Papaconstantinou, R.; Demosthenous, M.; Bezantakos, S.; Hadjigeorgiou, N.; Costi, M.; Stylianou, M.; Symeou, E.; Savvides, C.; Biskos, G. Field Evaluation of Low-Cost Electrochemical Air Quality Gas Sensors under Extreme Temperature and Relative Humidity Conditions. Atmos. Meas. Tech. 2023, 16, 3313–3329. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, Y.; Yu, J.; Zhou, C.; Yang, C.; Wang, L.; Wang, L.; Ma, L.; Wang, L.J. Highly-Sensitive Organic Field Effect Transistor Sensors for Dual Detection of Humidity and NO2. Sens. Actuators B Chem. 2023, 374, 132815. [Google Scholar] [CrossRef]
- Martínez, P.; Romero, L.F.; Robbiani, S.; Lotesoriere, B.J.; Dellacà, R.L.; Capelli, L. Physical Confounding Factors Affecting Gas Sensors Response: A Review on Effects and Compensation Strategies for Electronic Nose Applications. Chemosensensors 2023, 11, 514. [Google Scholar] [CrossRef]
- Liu, C.; Duan, Z.; Zhang, B.; Zhao, Y.; Yuan, Z.; Zhang, Y.; Wu, Y.; Jiang, Y.; Tai, H. Local Gaussian Process Regression with Small Sample Data for Temperature and Humidity Compensation of Polyaniline-Cerium Dioxide NH3 Sensor. Sens. Actuators B Chem. 2023, 378, 133113. [Google Scholar] [CrossRef]
- Kang, M.; Cho, I.; Park, N. Application of Deep Learning Network for Humidity Compensation of Semiconductor Metal Oxide Gas Sensors. Proc. IEEE Int. Conf. Micro Electro Mech. Syst. 2023, 2023, 99–802. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, Y.; Yuan, Z.; Liu, B.; Zhao, Q.; Huang, Q.; Li, Z.; Zeng, W.; Duan, Z.; Tai, H. Synergistic Effect of Electron Scattering and Space Charge Transfer Enabled Unprecedented Room Temperature NO2 Sensing Response of SnO2. Small 2023, 2303631. [Google Scholar] [CrossRef] [PubMed]
- Acharyya, S.; Ghosh, A.; Nag, S.; Majumder, S.B.; Guha, P.K. Smart and Selective Gas Sensor System Empowered with Machine Learning over IoT Platform. IEEE Internet Things J. 2023. [Google Scholar] [CrossRef]
- Xuan, W.; Zheng, L.; Cao, L.; Miao, S.; Hu, D.; Zhu, L.; Zhao, Y.; Qiang, Y.; Gu, X.; Huang, S. Machine Learning-Assisted Sensor Based on CsPbBr3@ZnO Nanocrystals for Identifying Methanol in Mixed Environments. ACS Sens. 2023, 8, 1252–1260. [Google Scholar] [CrossRef] [PubMed]
- Zaeri, N.; Qasim, R.R. Intelligent Wireless Sensor Network for Gas Classification Using Machine Learning. IEEE Syst. J. 2023, 17, 1765–1776. [Google Scholar] [CrossRef]
- Se, H.; Song, K.; Liu, H.; Zhang, W.; Wang, X.; Liu, J. A Dual Drift Compensation Framework Based on Subspace Learning and Cross-Domain Adaptive Extreme Learning Machine for Gas Sensors. Knowl.-Based Syst. 2023, 259, 110024. [Google Scholar] [CrossRef]
Gaseous Pollutant | Sensing Material | Substrate | Type of Sensor | Form Factor | Connectivity | Sensing Linear Range | Limit of Detection | Sensitivity | Ref. |
---|---|---|---|---|---|---|---|---|---|
H2S | CNTs/SnO2/CuO | Silica | Chemiresistor | Interdigitated electrodes (IDE) | Electronic | 10–80 ppm | 10 ppm | 19% | [40] |
NH3 | NA | NA | 4.1% | ||||||
CO | NA | NA | 0.2% | ||||||
SO2 | NA | NA | 0.1% | ||||||
NH3 | Pyrene/MWCNT (25%)SWCNT (75%) | Polyethene terephthalate (PET) | Chemiresistor | IDE on ceramic | Electronic | NA | 40 ppm | NA | [41] |
NO2 | NA | 10 ppm | NA | ||||||
NO2 | Polystyrene brush graphene | SiO2/Si | Field-effect transistor (FET) | IDE | Electronic | 0.1–1 ppm | 4.8 ppb | 45.11% | [44] |
NH3 | NA | NA | 13.38% | ||||||
CO2 | NA | NA | 0.28% | ||||||
NO2 | SiGNS-400 | Au | Chemiresistor | IDE on a ceramic | Electronic | 18 ppb–300 ppm | 18 ppb | 21.5%–50 ppm | [45] |
NH3 | Graphene | Polyvinylidene fluoride (PVDF) | Vertical graphene (VGr) FET | Silicon chip | Electronic | 0–100 ppm | 86 ppb | 0.0195 ppm | [46] |
NH3 | BSA and PAMPS co-doped PANI layer | Bacterial cellulose nanofiber | Chemiresistor | Nanocomposite film | Wired | 10–150 ppm | 200 ppb | NA | [52] |
NO2 | PANI/Ag2O/GO | Interdigitated electrodes | Chemiresistor | Nanocomposite film | Electronic | 5–50 ppm | 25 ppm | 5.85 for 25 ppm | [53] |
CO | PPy/TiO2 | Cu-interdigitated electrodes | Chemiresistor | Nanocomposite film | Electronic | 1–320 ppm | 1 ppm | 93 at 270 ppm | [55] |
BTEX | Polyethylene | Paper | Cantilever | Film | Phone camera | 0–150 ppm | 3–5 ppm | 0.134 (±0.0027) μM ppm−1 | [93] |
NH3 | Ppy/Au | Polyvinyl pyrrolidone | Chemiresistor | Flexible porous fiber | Wireless | 1–800 ppm | 1 ppm | 2.3 ppm−1 | [95] |
H2S | Ppy/WO3 | Cellulose acetate | Chemiresistor | Nanofibers and nanofilms | Electronic | 1–50 ppm | 1 ppm | NA | [96] |
NO2 | rGO/Triazine | PET | Chemiresistor | Film | Electronic | Up to 1000 ppm | 2.2 ppb | 452.6 ppm−1 | [98] |
NO2 | Graphene/GO | Polyester | Chemiresistor | Sheets | Electronic | 0–100 ppm | NA | 0.34 μA/ppm | [106] |
NH3 | 0.16 μA/ppm | ||||||||
NO2 | GO | Amyloid nanofibrils | Chemiresistor | Nanofibrils | Electronic | 0–100 ppm | 3–5 ppm | 20.6 ± 0.07 nA/ppm | [103] |
NO2 | Dopamine/Graphene | Cotton | Chemiresistor | Nanofiber | Electronic | 0–100 ppm | 1 ppm | 0.02 μA/ppm | [104] |
NH3 | 5′,9′-dihydro-3H-spiro[isobenzofuran-1,15′-pyrano [2,3-b:6,5-b’]dicarbazol]-3-one (RhYK) | Polyester | Colorimetric/pH-sensitive | Stretchable textile | Visual | 0–100 ppm | 5 ppm | NA | [105] |
NO2 | SnO2/Pt/Ti | SiO2/Si | Electrochemical | Film | Electronic | 10–400 μM | 1.7 μM | [150] | |
NO2 | SnSe2 | Si | FGMOS | Silicon chip | Wired | 1–25 ppm | 1 ppm | 15.42% ppm−1 | [151] |
NH3 | 102.3 mV ppm−1 | ||||||||
HCHO | 10/10 nm-thick Pd/Au film | Si | Gate-sensing FET | Silicon chip | Wired | 10–800 ppb | 10–20 ppb | 2.9–5.4% ppb−1 | [155] |
NO2 | n-doped graphene | Polyethylene naphthalate (PEN) | Chemiresistor and channel-sensing FET | Flexible film | Wired | 0.83 ppq–0.4 ppm | 0.83 ppq | −23% ppm−1 | [156] |
SO2 | |||||||||
NO2 | IGZO | Si | Channel-sensing FET | Silicon chip | Wired | 100 ppb–5 ppm | 100 ppb | ~30% ppm−1 | [158] |
NH3 | IDT-BT with TCNQ and ABN | PEN | Channel-sensing FET | Flexible film | Wired/Wireless | NA | 10 ppm | 23.14% ppm−1 | [159] |
NO2 | SWCNT | Si | Channel-sensing FET | Silicon chip | Wired | 0.56–10 ppm | 0.92 ppm | 1.97% ppm−1 | [160] |
NO2 | MoS2 | Si | Channel-sensing FET | Silicon chip | Wired | 25 ppb–1 ppm | 25 ppb | 12.5% ppm−1 | [161] |
NO2 | MoS2 | Si | Channel-sensing FET | Silicon chip | Wired | 1–256 ppm | 1 ppm | NA | [162] |
NH3 | MoOx/Graphene | Si | Channel-sensing FET | Silicon chip | Wired | 12–96 ppm | 0.31–2.2 ppm | 0.05–0.1% ppm−1 | [163] |
NH3 | Hydroxyl-functionalized graphene quantum dots (OH-GQDs) | Alumina | Chemiresistor | Ni IDE | Electronic | 10–500 ppm | NA | 0.1459 ppm−1 | [180] |
NH3 | Graphene nanowalls | Si | FET | Ti/Au electrodes | Electronic | 2–50 ppm | 2 ppm | 4.53% at 10 ppm | [181] |
NH3 | Polyaniline nanofibers/SWCNT | Glass | Chemiresistor | Ag electrodes | Electronic | 2–15 ppm | 10 ppm | 2.4% ppm | [182] |
NH3 | CNT | Quartz tuning fork (QTF) | Photoelectric | Piezoelectric transducer | Light-induced thermoelastic spectroscopy (LITES) | 1–300 ppm | 7.27 ppm for rGO | 33.76 mV | [186] |
GO | 34.81 mV | ||||||||
rGO | 47.89 mV | ||||||||
NH3 | Meta-toluic acid/GO | Si/SiO2 | Chemiresistor | Nanosheets | Electronic | 100–3000 ppm | NA | 32.7% at 100 ppm | [183] |
NH3 | Pyrrole/phthalocyanine/MWCNT | Au | Chemiresistor | IDE | Electronic | 1–100 ppm | 11.3 ppb | 26.2% to 50 ppm | [184] |
NH3 | ZnO/MWCNT | SiO2 | Chemiresistor | Ti/Au IDE | Electronic | 10–20 ppm | 10 ppm | 1.022 at 10 ppm | [185] |
NH3 | Sulfur-containing C60 fullerene | Glass | Organic field-effect transistor (OFET) | IDE | Electronic | NA | 1 ppm | NA | [187] |
NH3 | Poly(3,4-ethylene dioxythiophene): poly(styrene sulfonate) (PEDOT: PSS)/iridium oxide (IrOx) | PET | Chemiresistor | Flexible film | Bluetooth | 17–7899 ppm | 8 ppm | 0.8% ppm−1 | [188] |
CO | Hybrid graphene/ZnO | Flexible cotton fabric | Resistive | Flexible | Visual | 10–90 ppm | 9 ppm | NA | [220] |
CO2 | Hydroxypropyl methylcellulose | PET | Opto-chemical | Flexible | Wireless smart phone | 500–48,000 ppm | 221 ppm | 100 ppm | [226] |
H2S | NO2-UiO-66/CNT | Polyacrylonitrile | Chemiresistor | Flexible | Electronic | 0–100 ppm | 10 ppb | 10 ppb | [229] |
NH3 | Copper (II) complex of the azo dye 1-(2-pyridylazo)-2-naphtol (Cu-PAN) | Paper | Colorimetric/pH sensitive | Printed paper | Wireless/Phone camera | 5–100 ppm | >100 ppm | 1.3%/ppm | [230] |
Formaldehyde | NA | NA | |||||||
H2S | |||||||||
SO2 | UiO-66-NH2 | Polyvinylidene fluoride | Chemiresistor | Nanofibers | Electronic | 1–150 ppm | 1 ppm | 85% at 50 ppm | [233] |
O3 | NA | Aluminum-coated iHWG | Photoelectric | Hand-held | USB connection | 0.4–21 ppm | 29 ppb | NA | [239] |
VOC | Mechanochromic AIE luminogen | Cellulose | Mechanochromic | Wearable | Visual | NA | 5 ppm | NA | [244] |
VOC | NA | NA | Chemiresistor | Wearable | Wireless | 0–10 ppm | 5 ppm | NA | [245] |
HF | Maleimide | Cotton | Chemiresistor | Fabric | Visual | NA | NA | NA | [241] |
NH3 | Au-doped SnO2 | Si | Micro-hotplate chemiresistive | Silicon chip on RFID tag PCB | RFID | 2–70 ppm | 2 ppm | 0.2–0.8 ppm−1 | [250] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hooshmand, S.; Kassanos, P.; Keshavarz, M.; Duru, P.; Kayalan, C.I.; Kale, İ.; Bayazit, M.K. Wearable Nano-Based Gas Sensors for Environmental Monitoring and Encountered Challenges in Optimization. Sensors 2023, 23, 8648. https://doi.org/10.3390/s23208648
Hooshmand S, Kassanos P, Keshavarz M, Duru P, Kayalan CI, Kale İ, Bayazit MK. Wearable Nano-Based Gas Sensors for Environmental Monitoring and Encountered Challenges in Optimization. Sensors. 2023; 23(20):8648. https://doi.org/10.3390/s23208648
Chicago/Turabian StyleHooshmand, Sara, Panagiotis Kassanos, Meysam Keshavarz, Pelin Duru, Cemre Irmak Kayalan, İzzet Kale, and Mustafa Kemal Bayazit. 2023. "Wearable Nano-Based Gas Sensors for Environmental Monitoring and Encountered Challenges in Optimization" Sensors 23, no. 20: 8648. https://doi.org/10.3390/s23208648
APA StyleHooshmand, S., Kassanos, P., Keshavarz, M., Duru, P., Kayalan, C. I., Kale, İ., & Bayazit, M. K. (2023). Wearable Nano-Based Gas Sensors for Environmental Monitoring and Encountered Challenges in Optimization. Sensors, 23(20), 8648. https://doi.org/10.3390/s23208648