Intelligent Health: Progress and Benefit of Artificial Intelligence in Sensing-Based Monitoring and Disease Diagnosis
Abstract
:1. Introduction
2. Method
3. Literature Review
3.1. Technological Progress and the Role of Data in the Medical Field
3.1.1. Biosensors’ History
3.1.2. The Importance of Working with Data Sets for the Betterment of the Medical Practice
4. Technology in the Medical Practice
4.1. The Innovative Medicine of the Future: The Importance of Artificial Intelligence and an Overview of the Progress in Medicine
4.2. Increasing the Use of Artificial Intelligence in Various Medical Areas
4.2.1. Metabolic System
4.2.2. Neurological and Mental Areas
4.2.3. Cardiovascular Sphere
5. Discussion
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bhalla, N.; Jolly, P.; Formisano, N.; Estrela, P. Introduction to biosensors. Essays Biochem. 2016, 60, 1–8. [Google Scholar] [PubMed]
- Naresh, V.; Lee, N. A Review on Biosensors and Recent Development of Nanostructured Materials-Enabled Biosensors. Sensors 2021, 21, 1109. [Google Scholar] [PubMed]
- Pillai, S.; Upadhyay, A.; Sayson, D.; Nguyen, B.H.; Tran, S.D. Advances in Medical Wearable Biosensors: Design, Fabrication and Materials Strategies in Healthcare Monitoring. Molecules 2021, 27, 165. [Google Scholar] [PubMed]
- Mehrotra, P. Biosensors and their applications—A review. J. Oral Biol. Craniofacial Res. 2016, 6, 153–159. [Google Scholar]
- Haleem, A.; Javaid, M.; Singh, R.P.; Suman, R.; Rab, S. Biosensors applications in medical field: A brief review. Sens. Int. 2021, 2, 100100. [Google Scholar]
- Mohan, V.; Anand, H.V. Biosensor: An Emerging Analytical Tool. J. Biosens. Bioelectron. 2019, 10, 2. [Google Scholar]
- Asif, M.; Ajmal, M.; Ashraf, G.; Muhammad, N.; Aziz, A.; Iftikhar, T.; Wang, J.; Liu, H. The role of biosensors in coronavirus disease-2019 outbreak. Curr. Opin. Electrochem. 2020, 23, 174–184. [Google Scholar]
- Mujawar, M.A.; Gohel, H.; Bhardwaj, S.K.; Srinivasan, S.; Hickman, N.; Kaushik, A. Nano-enabled biosensing systems for intelligent healthcare: Towards COVID-19 management. Mater. Today Chem. 2020, 17, 100306. [Google Scholar]
- Smith, A.A.; Li, R.; Tse, Z.T.H. Reshaping healthcare with wearable biosensors. Sci. Rep. 2023, 13, 4998. [Google Scholar]
- Palavicini, G. Medicine, health and the human side: Responsibility in medical practice. Med. Health Care Philos. 2022, 25, 289–297. [Google Scholar]
- Gray, M.; Meehan, J.; Ward, C.; Langdon, S.P.; Kunkler, I.H.; Murray, A.; Argyle, D. Implantable biosensors and their contribution to the future of precision medicine. Vet. J. 2018, 239, 21–29. [Google Scholar] [CrossRef]
- Boundas, C.V. Gilles Deleuze and his Readers: A Touch of Voluntarism and an Excess of Out-Worldliness [Review of Gilles Deleuze: An Introduction; Deleuze and the Philosophy of Creation: Out of this World, by T. May & P. Hallward]. Deleuze Stud. 2007, 1, 167–194. [Google Scholar]
- Bruns, G.L. Becoming-Animal (Some Simple Ways). New Lit. Hist. 2007, 38, 703–720. [Google Scholar] [CrossRef]
- De’, R.; Pandey, N.; Pal, A. Impact of digital surge during COVID-19 pandemic: A viewpoint on research and practice. Int. J. Inf. Manag. 2020, 55, 102171. [Google Scholar] [CrossRef]
- Albadri, H.A. The Convergence of Traditional Media to the Digital Communicative Environment-The Reality and Gap. Inf. Sci. Lett. 2023, 12, 1827–1839. [Google Scholar]
- Kurzweil, R. The Singularity is Near, 1st ed.; Viking: New York, NY, USA, 2006; pp. 1–652. [Google Scholar]
- Deleuze, G.; Parnet, C. Dialogues, 1st ed.; Columbia University Press: New York, NY, USA, 1987; pp. 1–155. [Google Scholar]
- Vaesen, K.; Houkes, W. Complexity and technological evolution: What everybody knows? Biol. Philos. 2017, 32, 1245–1268. [Google Scholar] [CrossRef]
- Ordoñez, L. El desarrollo tecnológico en la historia. Areté Rev. Filos. 2007, 19, 187–209. [Google Scholar] [CrossRef]
- Battistoni, C.; Giraldo Nohra, C.; Barbero, S. A Systemic Design Method to Approach Future Complex Scenarios and Research Towards Sustainability: A Holistic Diagnosis Tool. Sustainability 2019, 11, 4458. [Google Scholar] [CrossRef]
- Volti, R. Reuniting History and Sociology through Research on Technological Change. Bull. Sci. Technol. Soc. 2003, 23, 459–464. [Google Scholar] [CrossRef]
- Scherer, K.R. Emotional experience is subject to social and technological change: Extrapolating to the future. Soc. Sci. Inf. 2001, 40, 125–151. [Google Scholar] [CrossRef]
- Polat, E.O.; Cetin, M.M.; Tabak, A.F.; Bilget Güven, E.; Uysal, B.Ö.; Arsan, T.; Kabbani, A.; Hamed, H.; Gül, S.B. Transducer Technologies for Biosensors and Their Wearable Applications. Biosensors 2022, 12, 385. [Google Scholar] [CrossRef] [PubMed]
- Giorgi, G.; Tonello, S. Wearable Biosensor Standardization: How to Make Them Smarter. Standards 2022, 2, 366–384. [Google Scholar] [CrossRef]
- Palchetti, I.; Mascini, M. Biosensor Technology: A Brief History. In Sensors and Microsystems; Lecture Notes in Electrical Engineering; Malcovati, P., Baschirotto, A., d’Amico, A., Natale, C., Eds.; Springer: Dordrecht, The Netherlands, 2010; Volume 54, pp. 15–23. [Google Scholar]
- Das, T.R.; Patra, S.; Govender, P.P.; Shukla, S.K. Biosensors: Principle, fundamentals history, recent trends and applications. In Biosensors for Emerging and Re-Emerging Infectious Diseases; Das, J., Dave, S., Radhakrishnan, S., Mohanty, P., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 1–18. [Google Scholar]
- Renneberg, R.; Pfeiffer, D.; Lisdat, F.; Wilson, G.; Wollenberger, U.; Ligler, F.; Turner, A.P.F. Frieder Scheller and the Short History of Biosensors. In Biosensing for the 21st Century; Renneberg, R., Lisdat, F., Eds.; Advances in Biochemical Engineering/Biotechnology; Springer: Berlin/Heidelberg, Germany, 2007; Volume 109, pp. 1–18. [Google Scholar]
- Pirzada, M.; Altintas, Z. Historical development of sensing technology. In Fundamentals of Sensor Technology, 1st ed.; Barhoum, A., Altintas, Z., Eds.; Woodhead Publishing Series in Electronic and Optical Materials; Woodhead Publishing: Sawston, UK, 2023; pp. 3–16. [Google Scholar]
- Guilbault, G.G.; Montalvo, J. Urea-specific enzyme electrode. J. Am. Chem. Soc. 1969, 91, 2164–2569. [Google Scholar] [CrossRef] [PubMed]
- Scheller, F.W.; Schubert, F.; Neumann, B.; Pfeiffer, D.; Hintsche, R.; Dransfeld, I.; Wollenberger, U.; Renneberg, R.; Warsinke, A.; Johansson, G. Second generation biosensors. Biosens. Bioelectron. 1991, 6, 245–253. [Google Scholar] [CrossRef]
- Wang, J. Electrochemical glucose biosensors. Chem. Rev. 2008, 108, 814–825. [Google Scholar] [CrossRef]
- Putzbach, W.; Ronkainen, N.J. Immobilization Techniques in the Fabrication of Nanomaterial-Based Electrochemical Biosensors: A Review. Sensors 2013, 13, 4811–4840. [Google Scholar] [CrossRef]
- Dede, S.; Altay, F. Biosensors from the First Generation to Nano-biosensors. Int. Adv. Res. Eng. J. 2018, 2, 200–207. [Google Scholar]
- Nor, N.M.; Ridhuan, N.S.; Razak, K.A. Generations of Glucose Biosensors. Encyclopedia. Available online: https://encyclopedia.pub/entry/38722 (accessed on 12 October 2023).
- Andryukov, B.G.; Lyapun, I.N.; Matosova, E.V.; Somova, L.M. Biosensor Technologies in Medicine: From Detection of Biochemical Markers to Research into Molecular Targets (Review). Sovrem. Tekhnologii V Meditsine 2021, 12, 70–83. [Google Scholar] [CrossRef]
- Thimbleby, H. Technology and the future of healthcare. J. Public Health Res. 2013, 2, 160–167. [Google Scholar] [CrossRef]
- Losee, J. Theories of Scientific Progress, 1st ed.; Routledge: London, UK, 2004; pp. 1–192. [Google Scholar]
- Păvăloaia, V.D.; Necula, S.C. Artificial Intelligence as a Disruptive Technology—A Systematic Literature Review. Electronics 2023, 12, 1102. [Google Scholar] [CrossRef]
- Shiohira, K. Understanding the Impact of Artificial Intelligence on Skills Development, 1st ed.; United Nations Educational, Scientific and Cultural Organization: Bonn, Germany, 2021; pp. 1–55. [Google Scholar]
- Liu, Y. Application of Digital Technology in Intangible Cultural Heritage Protection. Mob. Inf. Syst. 2022, 2022, 7471121. [Google Scholar]
- BBVA OpenMind. Cómo la Cultura Determina el Desarrollo Tecnológico. Available online: https://www.bbvaopenmind.com/humanidades/cultura/como-la-cultura-determina-el-desarrollo-tecnologico/ (accessed on 12 October 2023).
- Ayala, A.; Endocrinologist and Internal Medicine, Mexico City, Mexico. Personal Conversation, December 2022.
- Raghupathi, W.; Raghupathi, V. Big data analytics in healthcare: Promise and potential. Health Inf. Sci. Syst. 2014, 2, 3. [Google Scholar] [CrossRef] [PubMed]
- Kwok, C.S.; Muntean, E.A.; Mallen, C.D.; Borovac, J.A. Data Collection Theory in Healthcare Research: The Minimum Dataset in Quantitative Studies. Clin. Pract. 2022, 12, 832–844. [Google Scholar] [CrossRef]
- Chen, H.; Hailey, D.; Wang, N.; Yu, P. A review of data quality assessment methods for public health information systems. Int. J. Environ. Res. Public Health 2014, 11, 5170–5207. [Google Scholar]
- Ehrenstein, V.; Kharrazi, H.; Lehmann, H.; Overby, C. Obtaining Data From Electronic Health Records. In Tools and Technologies for Registry Interoperability, Registries for Evaluating Patient Outcomes: A User’s Guide, 3rd ed.; Gliklich, R.E., Leavy, M.B., Dreyer, N.A., Eds.; Addendum 2; Agency for Healthcare Research and Quality (US): Rockville, MD, USA, 2019. [Google Scholar]
- Wolters Kluwer. Incorporar el Sistema de Apoyo de Decisiones Clínicas a la HCD: Las Mejores Prácticas y Lecciones Aprendidas; Wolters Kluwer: Alphen aan den Rijn, The Netherlands, 2016. [Google Scholar]
- Nass, S.J.; Levit, L.A.; Gostin, L.O. (Eds.) Institute of Medicine (US) Committee on Health Research and the Privacy of Health Information: The HIPAA Privacy Rule. In Beyond the HIPAA Privacy Rule: Enhancing Privacy, Improving Health through Research; The Value, Importance, and Oversight of Health Research; National Academies Press (US): Washington, DC, USA, 2009. Available online: https://www.ncbi.nlm.nih.gov/books/NBK9571/ (accessed on 25 October 2023).
- Pastorino, R.; De Vito, C.; Migliara, G.; Glocker, K.; Binenbaum, I.; Ricciardi, W.; Boccia, S. Benefits and challenges of Big Data in healthcare: An overview of the European initiatives. Eur. J. Public Health 2019, 29, 23–37. [Google Scholar] [CrossRef] [PubMed]
- Kerr, W.T.; Lau, E.P.; Owens, G.E.; Trefler, A. The future of medical diagnostics: Large digitised databases. Yale J. Biol. Med. 2012, 85, 363–377. [Google Scholar] [PubMed]
- DesRoches, C.M.; Campbell, E.G.; Vogeli, C.; Zheng, J.; Rao, S.R.; Shields, A.E.; Donelan, K.; Rosenbaum, S.; Bristol, S.J.; Jha, A.K. Electronic health records’ limited successes suggest more targeted uses. Health Aff. 2010, 29, 639–646. [Google Scholar] [CrossRef]
- Harland, T.; Hocken, C.; Schröer, T.; Stich, V. Towards a Democratization of Data in the Context of Industry 4.0. Sci 2022, 4, 29. [Google Scholar] [CrossRef]
- Holly, J.M.P.; Biernacka, K.; Maskell, N.; Perks, C.M. Obesity, Diabetes and COVID-19: An Infectious Disease Spreading From the East Collides With the Consequences of an Unhealthy Western Lifestyle. Front. Endocrinol. 2020, 11, 582870. [Google Scholar]
- Flanagan, K.L.; MacIntyre, C.R.; McIntyre, P.B.; Nelson, M.R. SARS-CoV-2 Vaccines: Where Are We Now? J. Allergy Clin. Immunology. Pract. 2021, 9, 3535–3543. [Google Scholar]
- Sacristán, J.A.; Dilla, T. No big data without small data: Learning health care systems begin and end with the individual patient. J. Eval. Clin. Pract. 2015, 21, 1014–1017. [Google Scholar] [CrossRef] [PubMed]
- Dash, S.; Shakyawar, S.K.; Sharma, M.; Kaushik, S. Big data in healthcare: Management, analysis and future prospects. J. Big Data 2019, 6, 54. [Google Scholar] [CrossRef]
- Andersen, T.O.; Langstrup, H.; Lomborg, S. Experiences With Wearable Activity Data During Self-Care by Chronic Heart Patients: Qualitative Study. J. Med. Internet Res. 2020, 22, e15873. [Google Scholar] [CrossRef] [PubMed]
- Bohr, A.; Memarzadeh, K. The rise of artificial intelligence in healthcare applications. In Artificial Intelligence in Healthcare; Academic Press: Cambridge, MA, USA, 2020; pp. 25–60. [Google Scholar]
- Sorrentino, F.S.; Jurman, G.; De Nadai, K.; Campa, C.; Furlanello, C.; Parmeggiani, F. Application of Artificial Intelligence in Targeting Retinal Diseases. Curr. Drug Targets 2020, 21, 1208–1215. [Google Scholar]
- Giordano, C.; Brennan, M.; Mohamed, B.; Rashidi, P.; Modave, F.; Tighe, P. Accessing Artificial Intelligence for Clinical Decision-Making. Front. Digit. Health 2021, 3, 645232. [Google Scholar]
- Wojtaszek, M. Dreaming-machine. Diurnal Insomnia in Digital Wonderland. Angl. Fr. Perspect. Angloph. World 2018, 7, 1–18. [Google Scholar]
- Xu, Y.; Liu, X.; Cao, X.; Huang, C.; Liu, E.; Qian, S.; Liu, X.; Wu, Y.; Dong, F.; Qiu, C.W.; et al. Artificial intelligence: A powerful paradigm for scientific research. Innovation 2021, 2, 1–20. [Google Scholar]
- Kurzweil, R. The Law of Accelerated Returns. 2001. Available online: https://www.thekurzweillibrary.com/the-law-of-accelerating-returns (accessed on 12 October 2023).
- Ahuja, A.S. The impact of artificial intelligence in medicine on the future role of the physician. PeerJ 2019, 7, e7702. [Google Scholar] [CrossRef]
- Siemens, G.; Marmolejo-Ramos, F.; Gabriel, F.; Medeiros, K.; Marrone, R.; Joksimovic, S.; de Laat, M. Human and artificial cognition. Comput. Educ. Artif. Intell. 2022, 3, 100107. [Google Scholar] [CrossRef]
- Oracle. ¿Qué es la Inteligencia Artificial? Obtén más Información Sobre la Inteligencia Artificial. Available online: https://www.oracle.com/mx/artificial-intelligence/what-is-ai/ (accessed on 12 October 2023).
- Misa, T.J. Theories of Technological Change: Parameters and Purposes. Sci. Technol. Hum. Values 1992, 17, 3–12. [Google Scholar] [CrossRef]
- Smith, D.W. The Deleuzian Revolution: Ten Innovations in Difference and Repetition. Deleuze Guatarri Stud. 2020, 14, 34–49. [Google Scholar] [CrossRef]
- Huang, S.; Yang, J.; Lijian, T.; Simon, F.; Qi, Z. Current Medical Imaging and Artificial Intelligence and its Future. In Current Medical Imaging and Artificial Intelligence and Its Future, 1st ed.; Huang, S., Yang, J., Eds.; Bentham Science Publisher: Sharjah, United Arab Emirates, 2021; Volume 23, pp. 59–81. [Google Scholar]
- Liu, P.R.; Lu, L.; Zhang, J.Y.; Huo, T.T.; Liu, S.X.; Ye, Z.W. Application of Artificial Intelligence in Medicine: An Overview. Curr. Med. Sci. 2021, 41, 1105–1115. [Google Scholar] [PubMed]
- Russell, R.; Chen, T.; Hill, R. A Case Study of Diabetes Diagnosis Using a Neuro-Fuzzy System. In Artificial Intelligence in Health Care. Recent Applications and Developments, 1st ed.; Chen, T., Carter, J., Mufti, M., Singh, A.K., Eds.; Springer: Singapore, 2022; pp. 277–298. [Google Scholar]
- Qureshi, I.; Sharif, M.; Mussarat, Y.; Mudassar, R.; Muhammad, J.Y. Computer Aided Systems for Diabetic Retinopathy Detection Using Digital Fundus Images: A Survey. Curr. Med. Imaging 2016, 12, 234–241. [Google Scholar] [CrossRef]
- Pan American Health Organization. Available online: https://www.paho.org/en/topics/epilepsy (accessed on 12 October 2023).
- Socialmediatica. Available online: https://socialmediatica.com/embrace-la-pulsera-inteligente-para-detectar-ataques-epilepticos/#:~:text=La%20pulsera%20Embrace%2C%20no%20es%20un,aprender%20a%20manejar%20mejor%20las%20situaciones.&text=La%20pulsera%20Embrace%2C%20no,manejar%20mejor%20las%20 (accessed on 12 October 2023).
- Clínica del Cerebro Estímulo Magnético Cerebral. Available online: www.clinicadelcerebro.com (accessed on 12 October 2023).
- Dash, B.; Chen, T.; Hill, R. Effective Diagnosis of Parkinson’s Disease Using Machine Learning Techniques. In Artificial Intelligence in Health Care. Recent Applications and Developments, 1st ed.; Chen, T., Carter, J., Mufti, M., Singh, A.K., Eds.; Springer: Singapore, 2022; pp. 107–124. [Google Scholar]
- Zawad, R.S.; Haque, Y.; Kaiser, M.S.; Mahmud, M.; Chen, T. Computational depression in depression detection. In Artificial Intelligence in Health Care. Recent Applications and Developments, 1st ed.; Chen, T., Carter, J., Mufti, M., Singh, A.K., Eds.; Springer: Singapore, 2022; pp. 145–163. [Google Scholar]
- Vélez, J.M.; Vélez, J.J. Nanodispositivos para la prevención y tratamiento de enfermedades cardiovasculares. Gac. Medica Mex. 2018, 154, 358–367. [Google Scholar]
- Gutiérrez, E. Evolución de los marcapasos y de la estimulación eléctrica del corazón. Arch. Cardiol. México 2005, 75, 247–251. [Google Scholar]
- Bayoumy, K.; Gaber, M.; Elshafeey, A.; Mhaimeed, O.; Dineen, E.H.; Marvel, F.A.; Martin, S.S.; Muse, E.D.; Turakhia, M.P.; Tarakji, K.G.; et al. Smart wearable devices in cardiovascular care: Where we are and how to move forward. Nat. Rev. Cardiol. 2021, 18, 581–599. [Google Scholar] [CrossRef]
- Mizuno, A.; Changolkar, S.; Patel, M.S. Wearable Devices to Monitor and Reduce the Risk of Cardiovascular Disease: Evidence and Opportunities. Annu. Rev. Med. 2021, 72, 459–471. [Google Scholar] [CrossRef]
- Williams, G.J.; Al-Baraikan, A.; Rademakers, F.E.; Ciravegna, F.; van de Vosse, F.N.; Lawrie, A.; Rothman, A.; Ashley, E.A.; Wilkins, M.R.; Lawford, P.V.; et al. Wearable technology and the cardiovascular system: The future of patient assessment. Lancet Digit. Health 2023, 5, 467–476. [Google Scholar] [CrossRef]
Project Acronym | Full Title | Coordinator Country | Start Date | End Date |
---|---|---|---|---|
FATE | Fall detector for the elderly | Spain | 1 March 2012 | 31 May 2015 |
MIRRI | Microbial resource research infrastructure | Germany | 1 November 2012 | 30 April 2016 |
EXPOSOMICS | Enhanced exposure assessment and omic profiling for high priority environmental exposures in Europe | UK | 1 November 2012 | 30 April 2017 |
ADMOS | Advertising monitoring system development for outdoor media analytics | Hungary | 1 September 2013 | 31 August 2015 |
DRIVE-AB | Driving re-investment in R&D and responsible antibiotic use | Sweden | 1 October 2014 | 31 December 2017 |
MARIO | Managing active and healthy aging with use of caring service robots | Ireland | 1 February 2015 | 31 January 2018 |
METASPACE | Bioinformatics for spatial metabolomics | Germany | 1 July 2015 | 30 April 2018 |
ComPat | Computing patterns for high performance multiscale computing | Netherlands | 1 October 2015 | 30 September 2018 |
City4Age | Elderly friendly city services for active and healthy ageing | Italy | 1 December 2015 | 30 November 2018 |
i-PROGNOSIS | Intelligent Parkinson early detection Guiding Novel Supportive Interventions | Greece | 1 February 2016 | 31 January 2020 |
ROADMAP | Real world outcomes across the AD spectrum for better care: multimodal data Access Platform | UK | 1 November 2016 | 31 October 2018 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palavicini, G. Intelligent Health: Progress and Benefit of Artificial Intelligence in Sensing-Based Monitoring and Disease Diagnosis. Sensors 2023, 23, 9053. https://doi.org/10.3390/s23229053
Palavicini G. Intelligent Health: Progress and Benefit of Artificial Intelligence in Sensing-Based Monitoring and Disease Diagnosis. Sensors. 2023; 23(22):9053. https://doi.org/10.3390/s23229053
Chicago/Turabian StylePalavicini, Gabriela. 2023. "Intelligent Health: Progress and Benefit of Artificial Intelligence in Sensing-Based Monitoring and Disease Diagnosis" Sensors 23, no. 22: 9053. https://doi.org/10.3390/s23229053
APA StylePalavicini, G. (2023). Intelligent Health: Progress and Benefit of Artificial Intelligence in Sensing-Based Monitoring and Disease Diagnosis. Sensors, 23(22), 9053. https://doi.org/10.3390/s23229053