Ultrasonic Thickness Measurement Method and System Implementation Based on Sampling Reconstruction and Phase Feature Extraction
Abstract
:1. Introduction
2. Improved Sampling Reconstruction Technique
3. Thickness Measurement System Hardware Design
3.1. Hardware System Design
3.2. Analog Multiplier Circuit
4. System Software Design and Implementation
4.1. System Software Design Process
4.2. Wavelet Noise Reduction Method for Ultrasound Echo Signals
4.3. Algorithm for Feature Extraction of Echo Signals
4.3.1. FFT Rough Estimation Algorithm
4.3.2. Calculation of the Wrap Phase of a Moving Sine Fit
4.3.3. Calculation of TOF
5. Ultrasonic Thickness Measurement Results and Analysis
5.1. Velocity of Sound Calibration and Calculation of TOF
5.2. Determination of Thickness Measurement Range
5.3. Thickness Measurement Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, Y.; Yang, S.; Gan, C. A Novel Laser Ultrasonic Thickness Measurement Method for Metal Plate Based on Spectral Analysis. In Proceedings of the 2015 12th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), Goyang, Republic of Korea, 28–30 October 2015; pp. 324–329. [Google Scholar]
- Liu, H.; Wang, Y.; Jia, Z.; Guo, D. Integration strategy of on-machine measurement (OMM) and numerical control (NC) machining for the large thin-walled parts with surface correlative constraint. Int. J. Adv. Manuf. Technol. 2015, 80, 1721–1731. [Google Scholar] [CrossRef]
- Liu, H.; Wang, Y.; Lian, M.; Zhang, T.; Liu, B. Thickness Measurement using Ultrasonic Scanning Method for Large Aerospace Thin-Walled Parts. In Proceedings of the 2019 IEEE 5th International Workshop on Metrology for AeroSpace (MetroAeroSpace), Torino, Italy, 19–21 June 2019; pp. 243–247. [Google Scholar]
- Kanai, H.; Koiwa, Y. Measurement of Propagation Speed of Pulsive Wave in Heart Wall at End-Systole. In Proceedings of the 2002 IEEE Ultrasonics Symposium, Munich, Germany, 8–11 October 2002; Volume 1312, pp. 1313–1316. [Google Scholar]
- Mihaljević, M.; Markučič, D.; Runje, B.; Keran, Z. Measurement uncertainty evaluation of ultrasonic wall thickness measurement. Measurement 2019, 137, 179–188. [Google Scholar] [CrossRef]
- Hermann, M.; Pentek, T.; Otto, B. Design Principles for Industrie 4.0 Scenarios. In Proceedings of the 2016 49th Hawaii International Conference on System Sciences (HICSS), Koloa, HI, USA, 5–8 January 2016; pp. 3928–3937. [Google Scholar]
- Langenberg, K.-J.; Marklein, R.; Mayer, K. Ultrasonic Nondestructive Testing of Materials: Theoretical Foundations; Routledge: London, UK, 2012. [Google Scholar]
- Jen, C.K.; Wu, K.T.; Kobayashi, M. Ultrasonic probes having three orthogonal polarizations. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2010, 57, 189–192. [Google Scholar] [CrossRef] [PubMed]
- Zhai, L.; Xu, B.; Haiyan, X.; Jin, N. Simultaneous measurement of velocity profile and liquid film thickness in horizontal gas–liquid slug flow by using ultrasonic Doppler method. Chin. J. Chem. Eng. 2023, 58, 323–340. [Google Scholar] [CrossRef]
- Geng, T.; Meng, Q.; Xu, X.; Wang, P.; Yuan, X. An extended ultrasonic time-of-flight method for measuring lubricant film thickness. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2015, 229, 861–869. [Google Scholar] [CrossRef]
- Kim, Y.H.; Song, S.-J.; Lee, J.-K. Technique for Measurements of Elastic Wave Velocities and Thickness of Solid Plate from Access on Only One Side. Jpn. J. Appl. Phys. 2005, 44, 5240. [Google Scholar] [CrossRef]
- Jenot, F.; Ouaftouh, M.; Duquennoy, M.; Ourak, M. Corrosion thickness gauging in plates using Lamb wave group velocity measurements. Meas. Sci. Technol. 2001, 12, 1287. [Google Scholar] [CrossRef]
- Kazys, R.; Tumsys, O.; Pagodinas, D. Ultrasonic detection of defects in strongly attenuating structures using the Hilbert–Huang transform. NDT E Int. 2008, 41, 457–466. [Google Scholar] [CrossRef]
- Ma, C.; Chen, H.; Ma, L. An Efficient Design of High-Accuracy and Low-Cost FFT. In Proceedings of the IET International Radar Conference 2013, Xi’an, China, 14–16 April 2013; pp. 1–4. [Google Scholar]
- Yang, J.; Liu, S.; Zhu, C.; Hao, F.; Ma, J. Equivalent Sampling Oscilloscope with External Delay Embedded System. In Proceedings of the 2011 IEEE International Conference on High Performance Computing and Communications, Banff, AB, Canada, 2–4 September 2011; pp. 195–201. [Google Scholar]
- Ivchenko, V.G.; Kalashnikov, A.N.; Challis, R.E.; Hayes-Gill, B.R. High-Speed Digitizing of Repetitive Waveforms Using Accurate Interleaved Sampling. IEEE Trans. Instrum. Meas. 2007, 56, 1322–1328. [Google Scholar] [CrossRef]
- Mak, T.M. Jitters in high performance microprocessors. In Proceedings of the 2008 IEEE International Test Conference, Santa Clara, CA, USA, 28–30 October 2008; pp. 1–6. [Google Scholar]
- Cheng, M.; Yang, L.; Ding, Z.; Li, S.; Lei, J. Circuit Design of a Novel Analog Multiplier. In Proceedings of the 2023 9th International Conference on Control Science and Systems Engineering (ICCSSE), Shenzhen, China, 16–18 June 2023; pp. 386–390. [Google Scholar]
- Kendrick, P.; Cox, T.J.; Li, F.F.; Fazenda, B.M.; Jackson, I.R. Automatic detection of microphone handling noise. In Proceedings of the 2014 4th International Workshop on Cognitive Information Processing (CIP), Copenhagen, Denmark, 26–28 May 2014; pp. 1–6. [Google Scholar]
- Misol, M.; Algermissen, S.; Rose, M.; Monner, H.P. Aircraft Lining Panels with Low-Cost Hardware for Active Noise Reduction. In Proceedings of the 2018 Joint Conference—Acoustics, Ustka, Poland, 11–14 September 2018; pp. 1–6. [Google Scholar]
- Roetzheim, W.H. Noise reduction during digital signal generation. In Proceedings of the Eighth Annual International Phoenix Conference on Computers and Communications, 1989 Conference Proceedings, Scottsdale, AZ, USA, 22–24 March 1989; pp. 45–48. [Google Scholar]
- Chen, H.; Zuo, M.; Wang, X.; Hoseini, M. An adaptive Morlet wavelet filter for time-of-flight estimation in ultrasonic damage assessment. Measurement 2010, 43, 570–585. [Google Scholar] [CrossRef]
- Mojškerc, B.; Ravnikar, D.; Šturm, R. Experimental characterisation of laser surface remelting via acoustic emission wavelet decomposition. J. Mater. Res. Technol. 2021, 15, 3365–3374. [Google Scholar] [CrossRef]
- Lucarini, S.; Upadhyay, M.V.; Segurado, J. FFT based approaches in micromechanics: Fundamentals, methods and applications. Model. Simul. Mater. Sci. Eng. 2022, 30, 023002. [Google Scholar] [CrossRef]
- Wang, X.; Luo, Y.; Zhai, Z.; Yang, L.; He, T. Algorithm for Sine Wave Cure Fit Based on Frequency Precise Estimation. In Proceedings of the 2017 International Conference on Mechanical, System and Control Engineering (ICMSC), St. Petersburg, Russia, 19–21 May 2017; pp. 357–361. [Google Scholar]
Threshold Methods | SNR (dB) | RMSE |
---|---|---|
Fixed threshold | 8.72 | 0.071 |
Unbiased risk estimation threshold | 10.02 | 0.061 |
Heuristic threshold | 9.70 | 0.068 |
The max–min criterion threshold | 9.74 | 0.067 |
Multiresolution threshold | 10.86 | 0.055 |
Test Block Number | Calibration Thickness Value/Mm | TOF/μs | The Actual Measured Value of This Experiment/mm | The Algorithmic Measurement Error of This Experiment/mm | Measurements of Hilbert Autocorrelation/mm | Hilbert Autocorrelation Measurement Errors/mm |
---|---|---|---|---|---|---|
7A-1 | 0.994 | 0.319 | 0.948 | −0.046 | 1.090 | 0.096 |
7A-2 | 1.512 | 0.518 | 1.538 | 0.026 | 1.437 | −0.075 |
7A-3 | 2.007 | 0.681 | 2.021 | 0.014 | 2.004 | 0.033 |
7A-4 | 4.013 | 1.351 | 4.007 | −0.006 | 3.996 | −0.017 |
7C-1 | 5.568 | 1.875 | 5.560 | −0.008 | 5.589 | 0.021 |
7A-5 | 5.992 | 2.019 | 5.987 | −0.005 | 5.969 | −0.023 |
7C-2 | 7.447 | 2.514 | 7.454 | 0.007 | 7.465 | 0.018 |
7A-6 | 8.004 | 2.702 | 8.012 | 0.008 | 8.031 | 0.027 |
7C-3 | 9.010 | 3.036 | 9.001 | −0.009 | 8.986 | −0.024 |
7C-4 | 11.598 | 3.914 | 11.604 | 0.006 | 11.613 | 0.015 |
7B-2 | 12.512 | 4.218 | 12.505 | −0.007 | 12.490 | −0.022 |
7C-5 | 15.415 | 5.203 | 15.425 | 0.010 | 15.428 | 0.013 |
7C-6 | 17.582 | 5.934 | 17.591 | 0.009 | 17.610 | 0.028 |
7C-7 | 19.952 | 6.727 | 19.942 | −0.010 | 19.921 | −0.031 |
7B-4 | 29.981 | 10.123 | 30.008 | 0.027 | 30.025 | 0.044 |
7B-5 | 36.039 | 12.147 | 36.006 | −0.033 | 35.998 | −0.041 |
7B-6 | 42.045 | 14.197 | 42.083 | 0.038 | 42.127 | 0.082 |
7B-7 | 47.950 | 16.193 | 47.999 | 0.049 | 48.042 | 0.092 |
Sampling Reconstruction Response Time/ms | Multi-Resolution Threshold Noise Reduction Response Time/ms | FFT Transform Response Time/ms | Moving Sine Fitting Response Time/ms |
---|---|---|---|
8.375 | 25.26 | 3.17 | 1.37 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, W.; Wang, X.; Yang, Z.; Zhai, Z.; Feng, W.; Liu, D. Ultrasonic Thickness Measurement Method and System Implementation Based on Sampling Reconstruction and Phase Feature Extraction. Sensors 2023, 23, 9072. https://doi.org/10.3390/s23229072
Gong W, Wang X, Yang Z, Zhai Z, Feng W, Liu D. Ultrasonic Thickness Measurement Method and System Implementation Based on Sampling Reconstruction and Phase Feature Extraction. Sensors. 2023; 23(22):9072. https://doi.org/10.3390/s23229072
Chicago/Turabian StyleGong, Wenqiang, Xuanze Wang, Zhenyu Yang, Zhongsheng Zhai, Wei Feng, and Da Liu. 2023. "Ultrasonic Thickness Measurement Method and System Implementation Based on Sampling Reconstruction and Phase Feature Extraction" Sensors 23, no. 22: 9072. https://doi.org/10.3390/s23229072
APA StyleGong, W., Wang, X., Yang, Z., Zhai, Z., Feng, W., & Liu, D. (2023). Ultrasonic Thickness Measurement Method and System Implementation Based on Sampling Reconstruction and Phase Feature Extraction. Sensors, 23(22), 9072. https://doi.org/10.3390/s23229072