Rapid and Efficient NO2 Sensing Performance of TeO2 Nanowires
Abstract
:1. Introduction
2. Experimental Details
2.1. Sample Preparation
2.2. Phase Analysis Method
2.3. Gas Analysis Method
3. Results and Discussion
3.1. Sample Characterization
3.2. Gas-Sensing Character
4. Mechanism Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pan, Z.; Zhang, Y.; Cheng, Z.; Liang, B.; Zhang, J.; Li, X.; Wang, X.; Liu, D.; Yang, A.; Rong, M.; et al. A high-integration sensor array sensitive to oxynitride mixture. Sens. Actuators B Chem. 2017, 245, 183–188. [Google Scholar] [CrossRef]
- Choi, M.S.; Kim, M.Y.; Mirzaei, A.; Kim, H.S.; Kim, S.I.; Baek, S.H.; Chun, D.W.; Jin, C.H.; Lee, K.H. Selective, sensitive, and stable NO2 gas sensor based on porous ZnO nanosheets. Appl. Surf. Sci. 2021, 568, 150910. [Google Scholar] [CrossRef]
- Kim, J.H.; Kim, J.Y.; Lee, J.H.; Mirzaei, A.; Kim, H.W.; Hishita, S.; Kim, S.S. Indiumimplantation-induced enhancement of gas sensing behaviors of SnO2 nanowires by the formation of homo-core-shell structure. Sens. Actuators B Chem. 2020, 321, 128475. [Google Scholar] [CrossRef]
- Yamazoe, N. Toward innovations of gas sensor technology. Sens. Actuators B Chem. 2005, 108, 2–4. [Google Scholar] [CrossRef]
- Eranna, G.; Joshi, B.C.; Runthala, D.P.; Gupta, R.P. Oxide materials for development of integrated gas sensors—A comprehensive reviewCrit. Rev. Solid State Mater. Sci. 2004, 29, 111–188. [Google Scholar]
- Yamazoe, N. New approaches for improving semiconductor gas sensors. Sens. Actuators B Chem. 1991, 5, 7–9. [Google Scholar] [CrossRef]
- Comini, E.; Faglia, G.; Sberveglieri, G.; Pan, Z.W.; Wang, Z.L. Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts. Appl. Phys. Lett. 2002, 81, 1869–1871. [Google Scholar] [CrossRef]
- Comini, E.; Faglia, G.; Sberveglieri, G.; Calestani, D.; Zanotti, L.; Zha, M. Tin oxide nanobelts electrical and sensing properties. Sens. Actuators B Chem. 2005, 111, 2–6. [Google Scholar] [CrossRef]
- Wan, Q.; Li, Q.H.; Chen, Y.J.; Wang, T.H.; He, X.L.; Li, J.P.; Lin, C.L. Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors. Appl. Phys. Lett. 2004, 84, 3654–3656. [Google Scholar] [CrossRef]
- Sawicka, K.M.; Prasad, A.K.; Gouma, P.I. Metal oxide nanowires for use in chemical sensing applications. Sens. Lett. 2005, 3, 31–35. [Google Scholar] [CrossRef]
- Ponzoni, A.; Comini, E.; Sberveglieri, G.; Zhou, J.; Deng, S.Z.; Xu, N.S.; Ding, Y.; Wang, Z.L. Ultrasensitive and highly selective gas sensors using three-dimensional tungsten oxide nanowire networks. Appl. Phys. Lett. 2006, 88, 203101. [Google Scholar] [CrossRef]
- Feng, P.; Xue, X.Y.; Liu, Y.G.; Wan, Q.; Wang, T.H. Achieving fast oxygen response in individual beta-Ga2O3 nanowires by ultraviolet illumination. Appl. Phys. Lett. 2006, 89, 112114. [Google Scholar] [CrossRef]
- Li, C.; Zhang, D.H.; Liu, X.L.; Han, S.; Tang, T.; Han, J.; Zhou, C.W. Chemical gating of In2O3 nanowires by organic and biomolecules. Appl. Phys. Lett. 2003, 83, 4014–4016. [Google Scholar] [CrossRef]
- Raut, B.T.; Godse, P.R.; Pawar, S.G.; Chougule, M.A.; Bandgar, D.K.; Patil, V.B. Novel method for fabrication of polyaniline-CdS sensor for H2S gas detection. Measurement 2012, 45, 94–100. [Google Scholar] [CrossRef]
- Sonker, R.K.; Sabhajeet, S.R.; Singh, S.; Yadav, B.C. Synthesis of ZnO nanopetals and its application as NO2 gas sensor. Mater. Lett. 2015, 152, 189–191. [Google Scholar] [CrossRef]
- Ma, H.; Yu, L.; Yuan, X.; Li, Y.; Li, C.; Yin, M.; Fan, X. Room temperature photoelectric NO2 gas sensor based on direct growth of walnut-like In2O3 nanostructures. J. Alloys Compd. 2019, 782, 1121–1126. [Google Scholar] [CrossRef]
- Jiang, Z.Y.; Xie, Z.X.; Zhang, X.H.; Xie, S.Y.; Huang, R.B.; Zheng, L.S. Inorg. Synthesis of silver nanotubes by electroless deposition in porous anodic aluminium oxide templates. Chem. Commun. 2004, 9, 1106–1107. [Google Scholar]
- Mebougna, L.D.; Stephen, U.E.; Ifechukwude, O.O.; Dominique, E.J.; Anwar, H.; Ralph, B.J. Analysis of Te and TeO2 on CdZnTe Nuclear Detectors Treated with Hydrogen Bromide and Ammonium-Based Solutions. J. Mater. Sci. Chem. Eng. 2017, 5, 9–18. [Google Scholar]
- Warner, A.W.; White, D.L.; Bonner, W.A. Acousto-optic light deflectors using optical activity in paratellurite. J. Appl. Phys. 1972, 43, 4489–4495. [Google Scholar] [CrossRef]
- Antonov, S.N. Acoustooptic nonpolar light controlling devices and polarization modulators based on paratellurite crystals. Tech. Phys. 2004, 49, 1329–1334. [Google Scholar] [CrossRef]
- Gupta, N.; Voloshinov, V. Hyperspectral imaging performance of a TeO2 acousto-optic tunable filter in the ultraviolet region. Opt. Lett. 2005, 30, 985–987. [Google Scholar] [CrossRef] [PubMed]
- Rao, V.N.; Sairam, P.K.; Kim, M.-D.; Rezakazemi, M.; Aminabhavi, T.M.; Ahn, C.W.; Yang, J.-M. CdS/TiO2 nano hybrid heterostructured materials for superior hydrogen production and gas sensor applications. J. Environ. Manag. 2023, 340, 117895. [Google Scholar]
- Rao, V.N.; Ravi, P.; Sathish, M.; Cheralathan, K.K.; Neppolian, B.; Kumari, M.M.; Shankar, M.V. Manifestation of enhanced and durable photocatalytic H2 production using hierarchically structured Pt@Co3O4/TiO2 ternary nanocomposite. Ceram. Int. 2021, 47, 10226–103235. [Google Scholar]
- El-Sayyad, G.S.; Mosallam, F.M.; El-Sayed, S.S.; El-Batal, A.I. Facile Biosynthesis of Tellurium Dioxide Nanoparticles by Streptomyces cyaneus Melanin Pigment and Gamma Radiation for Repressing Some Aspergillus Pathogens and Bacterial Wound Cultures. J. Clust. Sci. 2020, 31, 147–159. [Google Scholar] [CrossRef]
- Oum, W.; Mirzaei, A.; Hussain, T.; Bang, J.H.; Ha, S.; Shin, K.Y.; Yu, D.J.; Kang, S.; Kaewmaraya, T.; Kim, S.S.; et al. Room temperature NO2 sensing performance of a-C-decorated TeO2 nanowires. Sens. Actuators: B Chem. 2022, 363, 131853. [Google Scholar] [CrossRef]
- Zhu, H.L.; Chen, J.H.; Fan, L.; Liu, H.; Wei, Q.C.; Hu, M.D.; Kong, L.J.; Zhang, J.W.; Yan, S.C. Photoelectric properties of tellurium nanowires by a green thermal solvothermal method. Mater. Express 2022, 12, 511–517. [Google Scholar] [CrossRef]
- Kim, S.S.; Park, J.Y.; Choi, S.W.; Na, H.G.; Yang, J.C.; Kwak, D.S.; Nam, H.J.; Hwangbo, C.K.; Kim, H.W. Drastic change in shape of tetragonal TeO2 nanowires and their application to transparent chemical gas sensors. Appl. Surf. Sci. 2011, 258, 510–516. [Google Scholar] [CrossRef]
- Zhao, H.; Ge, W.Y.; Tian, Y.; Wang, P.T.; Li, X.; Liu, Z.F. Pr2Sn2O7/NiO heterojunction for ultra-fast and low operating temperature to NO2 gas sensing. Sens. Actuators A Phys. 2023, 349, 114100. [Google Scholar] [CrossRef]
- Behera, B.; Chandra, S. Synthesis of WO3 nanorods by thermal oxidation technique for NO2 gas sensing application. Mater. Sci. Semicond. Process. 2018, 86, 79–84. [Google Scholar] [CrossRef]
- D’Urso, L.; Compagnini, G.; Puglisi, O. sp/sp2 bonding ratio in sp rich amorphous carbon thin films. Carbon 2006, 44, 2093–2096. [Google Scholar] [CrossRef]
- Choi, M.S.; Na, H.G.; Bang, J.H.; Mirzaei, A.; Han, S.; Lee, H.Y.; Kim, S.S.; Kim, H.W.; Jin, C. SnO2 nanowires decorated by insulating amorphous carbon layers for improved room-temperature NO2 sensing. Sens. Actuators B Chem. 2021, 326, 128801. [Google Scholar] [CrossRef]
- Han, T.H.; Bak, S.Y.; Kim, S.; Lee, S.H.; Han, Y.J.; Yi, M. Decoration of CuO NWs Gas Sensor with ZnO NPs for Improving NO2 Sensing Characteristics. Sensors 2021, 21, 2103. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.F.; Yamazaki, T.; Shen, Y.; Kikuta, T.; Nakatani, N.; Kawabata, T. Room temperature gas sensing of p-type TeO2 nanowires. Appl. Phys. Lett. 2007, 90, 173119. [Google Scholar] [CrossRef]
- Shen, Y.B.; Wei, D.Z.; Ma, J.W.; Zhang, B.Q. Preparation and room-temperature NO2 sensing properties of TeO2 nanowires. J. Northeast. Univ. 2014, 35, 1019–1022. [Google Scholar]
Sensing Materials | Gas | Concentration | Response | Response Time | Recovery Time | Reference |
---|---|---|---|---|---|---|
TeO2 nanowires | NO2 | 10 ppm | 1.6 | 10 s | 6 s | This work |
Pr2Sn2O7/NiO | NO2 | 60 ppm | 7.6 | 22 s | 53 s | [28] |
WO3 nanorods | NO2 | 50 ppm | 2.02 | 96 s | 81 s | [29] |
CoFe2O4 | NO2 | 100 ppm | 110 | 15 s | 18 s | [30] |
a-C-decorated SnO2 | NO2 | 10 ppm | 13 | 800 s | 3000 s | [31] |
ZnO NPs-decorated CuO NWs | NO2 | 100 ppm | 4 | 570 s | 150 s | [32] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, Y.; Wang, K.; Liu, H.; Chen, L.; Jin, Z.; Yan, S. Rapid and Efficient NO2 Sensing Performance of TeO2 Nanowires. Sensors 2023, 23, 9097. https://doi.org/10.3390/s23229097
Shen Y, Wang K, Liu H, Chen L, Jin Z, Yan S. Rapid and Efficient NO2 Sensing Performance of TeO2 Nanowires. Sensors. 2023; 23(22):9097. https://doi.org/10.3390/s23229097
Chicago/Turabian StyleShen, Yunkun, Kaili Wang, Hao Liu, Liping Chen, Zhihan Jin, and Shancheng Yan. 2023. "Rapid and Efficient NO2 Sensing Performance of TeO2 Nanowires" Sensors 23, no. 22: 9097. https://doi.org/10.3390/s23229097
APA StyleShen, Y., Wang, K., Liu, H., Chen, L., Jin, Z., & Yan, S. (2023). Rapid and Efficient NO2 Sensing Performance of TeO2 Nanowires. Sensors, 23(22), 9097. https://doi.org/10.3390/s23229097