Enhancing the Localization Accuracy of UAV Images under GNSS Denial Conditions
Abstract
:1. Introduction
2. Principles and Methods
2.1. Approximate Location Retrieval of UAV Sequence Images
2.1.1. Image Pre-Processing
2.1.2. UAV Sequence Image Extraction
2.1.3. Calculation of Approximate Location
2.2. Accurate Matching and Accuracy Improvement of UAV Images
2.2.1. Feature Point Extraction Based on SuperPoint Network
2.2.2. Feature Point Matching Based on SuperGlue Network
2.3. Error Elimination and Optimization
3. Experimental Results and Analysis
3.1. Dataset and Experimental Environment
3.1.1. Satellite Image Dataset
3.1.2. Aerial Image Dataset
3.1.3. Experimental Environment
3.2. Image Approximate Location Estimation
3.3. Feature Extraction and Matching
3.4. Number of Control Points before and after RANSAC Rejection
3.5. UAV Image Localization Accuracy Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Candiago, S.; Remondino, F.; De Giglio, M.; Dubbini, M.; Gattelli, M. Evaluating multispectral images and vegetation indices for precision farming applications from UAV images. Remote Sens. 2015, 7, 4026–4047. [Google Scholar] [CrossRef]
- Akhloufi, M.A.; Castro, N.A.; Couturier, A. UAVs for wildland fires. In Proceedings of the Autonomous Systems: Sensors, Vehicles, Security, and the Internet of Everything, Orlando, FL, USA, 16–18 April 2018; Volume 10643. [Google Scholar] [CrossRef]
- Akhloufi, M.A.; Castro, N.A.; Couturier, A. Unmanned aerial systems for wildland and forest fires: Sensing, perception, cooperation and assistance. Drones 2021, 5, 15. [Google Scholar] [CrossRef]
- Mokrova, M.I. Studying the effect of difficult fire conditions on the quality of observation and safety of UAV flight. Izv. YuFU. Tekhnicheskie Nauk. 2021, 1, 112–124. [Google Scholar] [CrossRef]
- Jordan, S.; Moore, J.; Hovet, S.; Box, J.; Perry, J.; Kirsche, K.; Lewis, D.; Tse, Z.T.H. State-of-theart technologies for UAV inspections. IET Radar Sonar Navig. 2018, 12, 151–164. [Google Scholar] [CrossRef]
- Scherer, J.; Yahyanejad, S.; Hayat, S.; Yanmaz, E.; Andre, T.; Khan, A.; Vukadinovic, V.; Bettstetter, C.; Hellwagner, H.; Rinner, B. An autonomous multiUAV system for search and rescue. In Proceedings of the First Workshop on Micro Aerial Vehicle Networks, Systems, and Applications for Civilian Use, DroNet’15, ACM, New York, NY, USA,, 18 May 2015; pp. 33–38. [Google Scholar] [CrossRef]
- Mittal, M.; Mohan, R.; Burgard, W.; Valada, A. Vision-based autonomous UAV navigation and landing for urban search and rescue. In Proceedings of the International Symposium on Robotics Research (ISRR), Hanoi, Vietnam, 6–10 October 2019. [Google Scholar] [CrossRef]
- Zoev, I.V.; Markov, N.G.; Ryzhova, S.E. Intelligent system of computer vision of unmanned aerial vehicles for monitoring technological facilities of oil and gas companies. Izv. Tomsk. Politekh. Universiteta. Inzhiniring Georesursov 2019, 330, 34–49. [Google Scholar]
- De Melo, C.F.E.; Silva, T.D.E.; Boeira, F.; Stocchero, J.M.; Vinel, A.; Asplund, M.; De Freitas, E.P. UAVouch: A secure identity and location validation scheme for UAV-networks. IEEE Access 2021, 9, 82930–82946. [Google Scholar] [CrossRef]
- Peshekhonov, V.G. High-precision navigation independently of global navigation satellite systems data. Gyroscopy Navig. 2022, 13, 1–6. [Google Scholar] [CrossRef]
- Sabatini, R.; Moore, T.; Hill, C.; Ramasamy, S. Avionics-based GNSS integrity augmentation performance in a jamming environment. In Proceedings of the AIAC16: 16th Australian International Aerospace Congress, Engineers Australia, Melbourne, Australia, 23–24 February 2015; pp. 469–479. [Google Scholar]
- Groves, P.D.; Jiang, Z.; Rudi, M.; Strode, P. A portfolio approach to NLOS and multipath mitigation in dense urban areas. In Proceedings of the 26th International Technical Meeting of The Satellite Division of the Institute of Navigation, The Institute of Navigation, Nashville, TN, USA, 16–20 September 2013. [Google Scholar]
- Conte, G.; Doherty, P. An integrated UAV navigation system based on aerial image matching. In Proceedings of the 2008 IEEE Aerospace Conference, Big Sky, MT, USA, 1–8 March 2008; pp. 1–10. [Google Scholar]
- Viswanathan, A.; Pires, B.R.; Huber, D. Vision- based robot localization across seasons and in remote locations. In Proceedings of the International Conference on Robotics and Automation, Stockholm, Sweden, 16–21 May 2016; pp. 4815–4821. [Google Scholar]
- Schmidt, G.T. GPS based navigation systems in difficult environments. Gyroscopy Navig. 2019, 10, 41–53. [Google Scholar] [CrossRef]
- Schleiss, M. Translating aerial images into street-map representations for visual self-localization of UAVs, ISPRS-International Archives of the Photogrammetry. Remote Sens. Spat. Inf. Sci. 2019, 42, 575–580. [Google Scholar] [CrossRef]
- Mirza, M.; Osindero, S. Conditional generative adversarial nets. arXiv 2014, arXiv:1411.1784. [Google Scholar]
- Yol, A.; Delabarre, B.; Dame, A.; Dartois, J.-E.; Marchand, E. Vision- based absolute localization for unmanned aerial vehicles. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, IL, USA, 14–18 September 2014; pp. 3429–3434. [Google Scholar] [CrossRef]
- Dame, A.; Marchand, E. Second-order optimization of mutual information for real-time image registration. IEEE Trans. Image Process. 2012, 21, 4190–4203. [Google Scholar] [CrossRef] [PubMed]
- Shan, M.; Wang, F.; Lin, F.; Gao, Z.; Tang, Y.Z.; Chen, B.M. Google map aided visual navigation for UAVs in GPS-denied environment. In Proceedings of the IEEE International Conference on Robotics and Biomimetics (ROBIO), Zhuhai, China, 6–9 December 2015; pp. 114–119. [Google Scholar] [CrossRef]
- Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. In Proceedings of the IEEE Computer Soc. Conference Computer Vision and Pattern Recognition (CVPR), San Diego, CA, USA, 20–26 June 2005; pp. 886–893. [Google Scholar] [CrossRef]
- Silva Filho, P.; Shiguemori, E.H.; Saotome, O. Uav Visual Autolocalizaton Based on Automatic Landmark Recognition. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci 2017, IV–2/W3, 89–94. [Google Scholar] [CrossRef]
- Goforth, H.; Lucey, S. GPS-denied UAV localization using pre-existing satellite imagery. In Proceedings of the International Conference on Robotics and Automation (ICRA), IEEE, Montreal, QC, Canada, 20–24 May 2019; pp. 2974–2980. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition, Conference ICLR. arXiv 2015, arXiv:1409.1556. [Google Scholar]
- Saranya, K.C.; Naidu, V.P.S.; Singhal, V.; Tanuja, B.M. Application of vision-based techniques for UAV position estimation. In Proceedings of the International Conference on Research Advances in Integrated Navigation Systems (RAINS), Bangalore, India, 6–7 May 2016; pp. 1–5. [Google Scholar] [CrossRef]
- Wang, X.; Kealy, A.; Li, W.; Jelfs, B.; Gilliam, C.; May, S.L.; Moran, B. Toward autonomous UAV localization via aerial image registration. Electronics 2021, 10, 435. [Google Scholar] [CrossRef]
- DeTone, D.; Malisiewicz, T.; Rabinovich, A. SuperPoint: Self-Supervised Interest Point Detection and Description. arXiv 2018, arXiv:1712.07629. [Google Scholar]
- Zhao, X.; Li, H.; Wang, P.; Jing, L. An Image Registration Method for Multisource High-Resolution Remote Sensing Images for Earthquake Disaster Assessment. Sensors 2020, 20, 2286. [Google Scholar] [CrossRef]
Parameter Type | Parameter Information |
---|---|
size | 198 × 166 × 129 mm |
weight | about 800 g |
supported models | Matrice 300 RTK |
absolute accuracy | plane accuracy: 3 cm elevation accuracy: 5 cm |
minimum photo interval | 0.7 s |
shutter speed | mechanical shutter: 1/2000*–1 s; electronic shutter: 1/8000–1 s* aperture range: f/2.8–f/16 aperture not greater than f/5.6 |
ISO scope | photo: 100–25,600 video: 100–25,600 |
Category | Configuration |
---|---|
model | Y9000P |
graphics card | NVIDIA GeForce RTX 3060 6 GB |
CPU | Intel Core i7-11900H @ 2.50 GHz |
memory | 32 GB DDR4 3200 MHz |
operating system | Ubuntu 22.04 |
language environment | Python 3.6 and Python 3.9 |
Method | Image | Number of Feature Points | Number of Successful Matching Points |
---|---|---|---|
SIFT | left image | 14,824 | 9 |
right image | 9290 | ||
SURF | left image | 15,162 | 14 |
right image | 8338 | ||
ORB | left image | 10,000 | 176 |
right image | 9968 | ||
CMM-net | left image | 5787 | 75 |
right image | 4388 | ||
SuperPoint + SuperGlue | left image | 3558 | 143 |
right image | 2265 |
UAV Positioning Lifting Method | Mean Error in X Direction | Mean Error in Y Direction | Mean Error |
---|---|---|---|
SIFT | 0.344 | 0.472 | 0.560 |
SURF | 0.265 | 0.356 | 0.483 |
ORB | 0.413 | 0.504 | 0.786 |
proposed method | 0.190 | 0.286 | 0.356 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, H.; Yu, Y.; Huang, X.; Song, L.; Li, L.; Li, L.; Zhang, L. Enhancing the Localization Accuracy of UAV Images under GNSS Denial Conditions. Sensors 2023, 23, 9751. https://doi.org/10.3390/s23249751
Gao H, Yu Y, Huang X, Song L, Li L, Li L, Zhang L. Enhancing the Localization Accuracy of UAV Images under GNSS Denial Conditions. Sensors. 2023; 23(24):9751. https://doi.org/10.3390/s23249751
Chicago/Turabian StyleGao, Han, Ying Yu, Xiao Huang, Liang Song, Li Li, Lei Li, and Lei Zhang. 2023. "Enhancing the Localization Accuracy of UAV Images under GNSS Denial Conditions" Sensors 23, no. 24: 9751. https://doi.org/10.3390/s23249751
APA StyleGao, H., Yu, Y., Huang, X., Song, L., Li, L., Li, L., & Zhang, L. (2023). Enhancing the Localization Accuracy of UAV Images under GNSS Denial Conditions. Sensors, 23(24), 9751. https://doi.org/10.3390/s23249751