Identification of Myofascial Trigger Point Using the Combination of Texture Analysis in B-Mode Ultrasound with Machine Learning Classifiers
Abstract
:1. Introduction
- Transform-Based: Transform-based techniques employ a set of predefined filters or kernels to extract texture information from an image. Common filters include Gabor filters and LBP [14,15]. These filters highlight certain frequency components or local variations in pixel values, making them suitable for tasks where patterns are characterized by specific spatial frequencies or orientations.
- Structural: Structural techniques focus on describing the spatial arrangement and relationships between different elements in an image. They often involve identifying and characterizing specific patterns or structures within the texture (e.g., GLCM). These methods are valuable for capturing details related to texture regularity, directionality, or organization.
- Statistical: Statistical methods involve the analysis of various statistical properties of pixel intensities within an image or a region of interest (ROI). Common statistical features include entropy, contrast, correlation, homogeneity, energy, mean, and variance. These metrics quantify the distribution and variation of pixel values, providing insights into the texture’s overall properties, such as roughness, homogeneity, or randomness.
- Model-Based: Model-based methods involve fitting mathematical or statistical models to patterns in an image. These models can be simple, such as a parametric distribution (i.e., Gaussian distribution or Markov random fields), or more complex, such as deep learning models like convolutional neural networks. Model-based approaches are versatile and can capture intricate texture patterns, making them increasingly popular for texture analysis.
2. Materials and Methods
2.1. Participants
2.2. Ultrasound Acquisition Protocol and Pre-Processing
2.3. Texture Feature Analyses
- Contrast: measures the local contrast of an image (Equation (4)).
- Correlation: provides a correlation between two pixels in a pixel pair (Equation (5)).
- Homogeneity: measures the local homogeneity of a pixel pair (Equation (6)).
- Energy: measures the number of repeated pairs (Equation (7)).
- Mean (Equation (8)):
2.4. Classification Techniques, Training, and Evaluation
2.5. Ensemble Approaches, Feature Importance, and Statistical Analysis
3. Results
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
List of Abbreviations (Alphabetical Order)
A-MTrPs | Active Myofascial Trigger Points |
DT | Decision Tree |
GLCM | Gray-Level Co-occurrence Matrices |
KNN | K-nearest Neighbors |
L-MTrPs | Latent Myofascial Trigger Points |
LBP | Local Binary Pattern |
LR | Logistic Regression |
ML | Machine Learning |
MPS | Myofascial Pain Syndrome |
MTrPs | Myofascial Trigger Points |
NB | Naive Bayes |
NPV | Negative Predictive Value |
NN | Neural Network |
PPV | Positive Predictive Value |
ROI | Region of Interest |
RF | Random Forest |
SD | Standard Deviation |
SEGL | Statistical + Edge + Gray-Level Co-occurrence Matrices + Local Binary Pattern |
SVM | Support Vector Machine |
US | Ultrasound |
References
- Gaskin, D.J.; Richard, P. The Economic Costs of Pain in the United States. J. Pain 2012, 13, 715–724. [Google Scholar] [CrossRef] [PubMed]
- Suputtitada, A. Myofascial Pain Syndrome and Sensitization. Phys. Med. Rehabil. Res. 2016, 1, 1–4. [Google Scholar] [CrossRef]
- Simons, D.; Travell, J.G.; Simons, L. Travell & Simons’ Myofascial Pain and Dysfunction: The Trigger Point Manual, 2nd ed.; Williams & Wilkins: Baltimore, MD, USA, 1999; Volume 1. [Google Scholar]
- Hsieh, C.-Y.J.; Hong, C.-Z.; Adams, A.H.; Platt, K.J.; Danielson, C.D.; Hoehler, F.K.; Tobis, J.S. Interexaminer Reliability of the Palpation of Trigger Points in the Trunk and Lower Limb Muscles. Arch. Phys. Med. Rehabil. 2000, 81, 258–264. [Google Scholar] [CrossRef] [PubMed]
- Gerwin, R.D.; Shannon, S.; Hong, C.Z.; Hubbard, D.; Gevirtz, R. Interrater Reliability in Myofascial Trigger Point Examination. Pain 1997, 69, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Rathbone, A.T.L.; Grosman-Rimon, L.; Kumbhare, D.A. Interrater Agreement of Manual Palpation for Identification of Myofascial Trigger Points: A Systematic Review and Meta-Analysis. Clin. J. Pain 2017, 33, 715–729. [Google Scholar] [CrossRef] [PubMed]
- Kumbhare, D.; Shaw, S.; Grosman-Rimon, L.; Noseworthy, M.D. Quantitative Ultrasound Assessment of Myofascial Pain Syndrome Affecting the Trapezius: A Reliability Study: A. J. Ultrasound Med. 2017, 36, 2559–2568. [Google Scholar] [CrossRef]
- Kumbhare, D.; Shaw, S.; Ahmed, S.; Noseworthy, M.D. Quantitative Ultrasound of Trapezius Muscle Involvement in Myofascial Pain: Comparison of Clinical and Healthy Population Using Texture Analysis. J. Ultrasound 2020, 23, 23–30. [Google Scholar] [CrossRef]
- Mourtzakis, M.; Wischmeyer, P. Bedside Ultrasound Measurement of Skeletal Muscle. Curr. Opin. Clin. Nutr. Metab. Care 2014, 17, 389–395. [Google Scholar] [CrossRef]
- Bird, M.; Le, D.; Shah, J.; Gerber, L.; Tandon, H.; Destefano, S.; Sikdar, S. Characterization of Local Muscle Fiber Anisotropy Using Shear Wave Elastography in Patients with Chronic Myofascial Pain. In Proceedings of the 2017 IEEE International Ultrasonics Symposium (IUS), Washington, DC, USA, 6–9 September 2017; IEEE Computer Society: Washington, DC, USA, 2017. [Google Scholar] [CrossRef]
- Turo, D.; Otto, P.; Shah, J.P.; Heimur, J.; Gebreab, T.; Zaazhoa, M.; Armstrong, K.; Gerber, L.H.; Sikdar, S. Ultrasonic Characterization of the Upper Trapezius Muscle in Patients with Chronic Neck Pain. Ultrason. Imaging 2013, 35, 173–187. [Google Scholar] [CrossRef]
- Kumbhare, D.A.; Ahmed, S.; Behr, M.G.; Noseworthy, M.D. Quantitative Ultrasound Using Texture Analysis of Myofascial Pain Syndrome in the Trapezius. Crit. Rev. Biomed. Eng. 2018, 46, 1–30. [Google Scholar] [CrossRef]
- Armi, L.; Fekri-Ershad, S. Texture Image Analysis and Texture Classification Methods—A Review. arXiv 2019, arXiv:1904.06554. [Google Scholar] [CrossRef]
- Ojala, T.; Pietikäinen, M.; Harwood, D. A Comparative Study of Texture Measures with Classification Based on Featured Distributions. Pattern Recognit. 1996, 29, 51–59. [Google Scholar] [CrossRef]
- Jain, A.K. Unsupervised Texture Segmentation Using Gabor Filters. Pattern Recognit. 1991, 24, 1167–1186. [Google Scholar] [CrossRef]
- Thomas, K.; Shankar, H. Targeting Myofascial Taut Bands by Ultrasound. Curr. Pain Headache Rep. 2013, 17, 349. [Google Scholar] [CrossRef] [PubMed]
- Kumbhare, D.A.; Elzibak, A.H.; Noseworthy, M.D. Assessment of Myofascial Trigger Points Using Ultrasound. Am. J. Phys. Med. Rehabil. 2016, 95, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Daugman, J.G. Complete Discrete 2-D Gabor Transforms by Neural Networks for Image Analysis and Compression. IEEE Trans. Acoust. Speech Signal Process. 1988, 36, 1169. [Google Scholar] [CrossRef]
- Udomhunsakul, S. Edge Detection in Ultrasonic Images Using Gabor Filters. In 2004 IEEE Region 10 Conference TENCON 2004; IEEE: Piscataway, NJ, USA, 2004; Volume 1, pp. 175–178. [Google Scholar] [CrossRef]
- Zhou, Y.; Zheng, Y.P. Longitudinal Enhancement of the Hyperechoic Regions in Ultrasonography of Muscles Using a Gabor Filter Bank Approach: A Preparation for Semi-Automatic Muscle Fiber Orientation Estimation. Ultrasound Med. Biol. 2011, 37, 665–673. [Google Scholar] [CrossRef]
- Paris, M.T.; Mourtzakis, M. Muscle Composition Analysis of Ultrasound Images: A Narrative Review of Texture Analysis. Ultrasound Med. Biol. 2021, 47, 880–895. [Google Scholar] [CrossRef]
- Sarker, I.H. Machine Learning: Algorithms, Real-World Applications and Research Directions. SN Comput. Sci. 2021, 2, 160. [Google Scholar] [CrossRef]
- Gobeyn, S.; Mouton, A.M.; Cord, A.F.; Kaim, A.; Volk, M.; Goethals, P.L.M. Evolutionary Algorithms for Species Distribution Modelling: A Review in the Context of Machine Learning. Ecol. Modell. 2019, 392, 179–195. [Google Scholar] [CrossRef]
- Ley, C.; Martin, R.K.; Pareek, A.; Groll, A.; Seil, R.; Tischer, T. Machine Learning and Conventional Statistics: Making Sense of the Differences. Knee Surg. Sports Traumatol. Arthrosc. 2022, 30, 753–757. [Google Scholar] [CrossRef] [PubMed]
- Rajula, H.S.R.; Verlato, G.; Manchia, M.; Antonucci, N.; Fanos, V. Comparison of Conventional Statistical Methods with Machine Learning in Medicine: Diagnosis, Drug Development, and Treatment. Medicina 2020, 56, 455. [Google Scholar] [CrossRef] [PubMed]
- Texture Classification Based on Random Threshold Vector Technique. Available online: https://www.researchgate.net/publication/242611926_Texture_Classification_Based_on_Random_Threshold_Vector_Technique (accessed on 20 August 2023).
- Ojala, T.; Pietikäinen, M.; Mäenpää, T. Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 971–987. [Google Scholar] [CrossRef]
- Haghighat, M.; Zonouz, S.; Abdel-Mottaleb, M. Identification Using Encrypted Biometrics. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Proceedings of the Computer Analysis of Images and Patterns: 15th International Conference, CAIP 2013, York, UK, 27–29 August 2013; Springer: Berlin/Heidelberg, Germany, 2013; Volume 8048, pp. 440–448. [Google Scholar] [CrossRef]
- Daugman, J.G. Uncertainty Relation for Resolution in Space, Spatial Frequency, and Orientation Optimized by Two-Dimensional Visual Cortical Filters. J. Opt. Soc. Am. A 1985, 2, 1160. [Google Scholar] [CrossRef] [PubMed]
- Gdyczynski, C.M.; Manbachi, A.; Hashemi, S.M.; Lashkari, B.; Cobbold, R.S.C. On Estimating the Directionality Distribution in Pedicle Trabecular Bone from Micro-CT Images. Physiol. Meas. 2014, 35, 2415–2428. [Google Scholar] [CrossRef]
- Vazquez-Fernandez, E.; Dacal-Nieto, A.; Martin, F.; Torres-Guijarro, S. Entropy of Gabor Filtering for Image Quality Assessment. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Proceedings of the International Conference Image Analysis and Recognition, Berlin, Heidelberg, Varzim, Portugal, 21–23 June 2010; Springer: Berlin/Heidelberg, Germany, 2010; Volume 6111, pp. 52–61. [Google Scholar] [CrossRef]
- CloudID: Trustworthy Cloud-Based and Cross-Enterprise Biometric Identification|Request PDF. Available online: https://www.researchgate.net/publication/279886437_CloudID_Trustworthy_cloud-based_and_cross-enterprise_biometric_identification (accessed on 16 August 2023).
- Ershad, S.F. Texture Classification Approach Based on Combination of Edge & Co-Occurrence and Local Binary Pattern. arXiv 2012, arXiv:1203.4855. [Google Scholar]
- Haralick, R.M.; Dinstein, I.; Shanmugam, K. Textural Features for Image Classification. IEEE Trans. Syst. Man Cybern. 1973, SMC-3, 610–621. [Google Scholar] [CrossRef]
- Kumar, R.; Arthanari, M.; Sivakumar, M. Image Segmentation Using Discontinuity-Based Approach. Int. J. Multimed. Image Process. 2011, 1, 72–78. [Google Scholar] [CrossRef]
- Othman, Z.; Haron, H.; Kadir, M.A. Comparison of Canny and Sobel Edge Detection in MRI Images. Comput. Sci. Biomech. Tissue Eng. Group Inf. Syst. 2009, 133–136. [Google Scholar]
- Hosmer, D.W.; Lemeshow, S.; Sturdivant, R.X. Applied Logistic Regression, 3rd ed.; Wiley Series in Probability and Statistics; John Wiley and Sons: Hoboken, NJ, USA, 1989; 528p. [Google Scholar]
- Quinlan, J.R. Induction of Decision Trees. Mach. Learn. 1986, 1, 81–106. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Cover, T.M.; Hart, P.E. Nearest Neighbor Pattern Classification. IEEE Trans. Inf. Theory 1967, 13, 21–27. [Google Scholar] [CrossRef]
- Lindley, D.V. Fiducial Distributions and Bayes’ Theorem. J. R. Stat. Soc. Ser. B 1958, 20, 102–107. [Google Scholar] [CrossRef]
- Kecman, V. Support Vector Machines—An Introduction. In Support Vector Machines: Theory and Applications; Springer: Berlin/Heidelberg, Germany, 2005; pp. 1–47. [Google Scholar] [CrossRef]
- McCulloch, W.S.; Pitts, W. A Logical Calculus of the Ideas Immanent in Nervous Activity. Bull. Math. Biophys. 1943, 5, 115–133. [Google Scholar] [CrossRef]
- Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning Representations by Back-Propagating Errors. Nature 1986, 323, 533–536. [Google Scholar] [CrossRef]
- Uddin, S.; Khan, A.; Hossain, M.E.; Moni, M.A. Comparing Different Supervised Machine Learning Algorithms for Disease Prediction. BMC Med. Inform. Decis. Mak. 2019, 19, 1–16. [Google Scholar] [CrossRef]
- Koh, R.G.L.; Dilek, B.; Ye, G.; Selver, A.; Kumbhare, D. Myofascial Trigger Point Identification in B-Mode Ultrasound: Texture Analysis Versus a Convolutional Neural Network Approach. Ultrasound Med. Biol 2023, 49, 2273–2282. [Google Scholar] [CrossRef]
- Gao, X.; Sattar, F.; Venkateswarlu, R. Corner Detection of Gray Level Images Using Gabor Wavelets. In Proceedings of the 2004 International Conference on Image Processing, 2004, ICIP’04, Singapore, 24–27 October 2004; Volume 4, pp. 2669–2672. [Google Scholar] [CrossRef]
- Mazza, D.F.; Boutin, R.D.; Chaudhari, A.J. Assessment of Myofascial Trigger Points via Imaging: A Systematic Review. Am. J. Phys. Med. Rehabil. 2021, 100, 1003–1014. [Google Scholar] [CrossRef]
- Duarte, F.C.K.; West, D.W.D.; Linde, L.D.; Hassan, S.; Kumbhare, D.A. Re-Examining Myofascial Pain Syndrome: Toward Biomarker Development and Mechanism-Based Diagnostic Criteria. Curr. Rheumatol. Rep. 2021, 23, 69. [Google Scholar] [CrossRef]
- Dommerholt, J.; Gerwin, R.D. Contracture Knots vs. Trigger Points. Comment on Ball et al. Ultrasound Confirmation of the Multiple Loci Hypothesis of the Myofascial Trigger Point and the Diagnostic Importance of Specificity in the Elicitation of the Local Twitch Response. Diagnostics 2022, 12, 321. Diagnostics 2022, 12, 2365. [Google Scholar] [CrossRef]
- Ball, A.; Perreault, T.; Fernández-De-las-peñas, C.; Agnone, M.; Spennato, J. Ultrasound Confirmation of the Multiple Loci Hypothesis of the Myofascial Trigger Point and the Diagnostic Importance of Specificity in the Elicitation of the Local Twitch Response. Diagnostics 2022, 12, 321. [Google Scholar] [CrossRef] [PubMed]
- Sikdar, S.; Shah, J.P.; Gebreab, T.; Yen, R.-H.; Gilliams, E.; Danoff, J.; Gerber, L.H. Novel Applications of Ultrasound Technology to Visualize and Characterize Myofascial Trigger Points and Surrounding Soft Tissue. Arch. Phys. Med. Rehabil. 2009, 90, 1829–1838. [Google Scholar] [CrossRef] [PubMed]
- Lefebvre, F.; Meunier, M.; Thibault, F.; Laugier, P.; Berger, G. Computerized Ultrasound B-Scan Characterization of Breast Nodules. Ultrasound Med. Biol. 2000, 26, 1421–1428. [Google Scholar] [CrossRef] [PubMed]
- Zçakar, L.O.; Merve Ata, A.; Kaymak, B.; Kara, M.; Kumbhare, D. Ultrasound Imaging for Sarcopenia, Spasticity and Painful Muscle Syndromes. Curr. Opin. Support Palliat. Care 2018, 12, 373–381. [Google Scholar] [CrossRef]
- Liu, P.-T.; Wei, T.-S.; Ching, C.T.-S. Quantitative Ultrasound Texture Analysis to Assess the Spastic Muscles in Stroke Patients. Appl. Sci. 2020, 11, 11. [Google Scholar] [CrossRef]
- Qiu, S.; Zhao, X.; Xu, R.; Xu, L.; Xu, J.; He, F.; Qi, H.; Zhang, L.; Wan, B.; Ming, D. Ultrasound Image Analysis on Muscle Texture of Vastus Intermedius and Rectus Femoris Under Neuromuscular Electrical Stimulation. J. Med. Imaging Health Inform. 2015, 5, 342–349. [Google Scholar] [CrossRef]
- Ihnatsenka, B.; Boezaart, A.P. Ultrasound: Basic Understanding and Learning the Language. Int. J. Shoulder Surg. 2010, 4, 55–62. [Google Scholar] [CrossRef]
Group | Number of Sites |
---|---|
A-MTrPs | 30 |
L-MTrPs | 30 |
Healthy Control | 30 |
Approach | Number of Features |
---|---|
I. LBP | 7 |
II. Gabor Feature | 280 (40 × 7) |
III. SEGL Method | 56 (8 × 7) |
IV. Statistical Features | 7 |
Classifier Techniques | Hyperparameters |
---|---|
K-nearest neighbors (kNN) [39] | n_neighbors = 3, 5 *, 7 |
Decision tree (DT) [37] | Criterion = ‘gini’ *, ‘entropy’, ‘log_loss’ |
Random forest (RF) [38] | Criterion = ‘gini’ *, ‘entropy’, ‘log_loss’ |
Logistic regression (LR) [36] | C = 0.1, 1, 10 * |
Naive bayes (NB) [40] | *) |
Support vector machine (SVM) [41] | C = 0.1, 1, 10 * |
Artificial neural network (NN) [42,43] |
Approach | ML Technique, Parameter | Accuracy (%) | F1-Score | Sensitivity | Specificity | PPV | NPV |
---|---|---|---|---|---|---|---|
SEGL Method | SVM, C = 10 | 48.05 | 0.4806 | 0.4806 | 0.7403 | 0.4814 | 0.7398 |
LR, C = 10 | 46.39 | 0.4639 | 0.4639 | 0.7319 | 0.4644 | 0.7317 | |
DT, Criterion = ‘gini’ | 41.67 | 0.4168 | 0.4167 | 0.7083 | 0.4258 | 0.7056 | |
RF, Criterion = ‘log_loss’ | 45.56 | 0.4556 | 0.4556 | 0.7278 | 0.4703 | 0.7228 | |
KNN, N-neighbors = 5 | 43.33 | 0.4333 | 0.4333 | 0.7167 | 0.4315 | 0.7157 | |
NB, Gaussian, smoothing = 1.0 | 45.56 | 0.4556 | 0.4556 | 0.7278 | 0.4505 | 0.7081 | |
NN | 44.44 | 0.4444 | 0.4444 | 0.7222 | 0.4467 | 0.7215 | |
LBP | SVM, C = 10 | 44.17 | 0.4417 | 0.4417 | 0.7208 | 0.4447 | 0.7200 |
LR, C = 1.0 | 45.56 | 0.4556 | 0.4556 | 0.7278 | 0.4629 | 0.7249 | |
DT, Criterion = ‘gini’ | 40.28 | 0.4028 | 0.4028 | 0.7014 | 0.3968 | 0.7026 | |
RF, Criterion = ‘log_loss’ | 45.28 | 0.4528 | 0.4528 | 0.7264 | 0.4555 | 0.7256 | |
KNN, N-neighbors = 3 | 48.89 | 0.4894 | 0.4889 | 0.7444 | 0.4879 | 0.7447 | |
40.00 | 0.4000 | 0.4000 | 0.7000 | 0.4138 | 0.6896 | ||
NN | 43.33 | 0.4333 | 0.4333 | 0.7167 | 0.4445 | 0.7132 | |
B-mode | SVM, C = 0.1 | 52.22 | 0.5222 | 0.5222 | 0.7611 | 0.5278 | 0.7372 |
LR, C = 1.0 | 45.83 | 0.4583 | 0.4583 | 0.7292 | 0.4710 | 0.7234 | |
DT, Criterion = ‘gini’ | 44.17 | 0.4417 | 0.4417 | 0.7208 | 0.4450 | 0.7196 | |
RF, Criterion = ‘gini’ | 49.72 | 0.4868 | 0.4972 | 0.7486 | 0.5088 | 0.7431 | |
KNN, N-neighbors = 5 | 50.83 | 0.5083 | 0.5083 | 0.7542 | 0.5108 | 0.7534 | |
NB, Gaussian, smoothing = 1.0 | 53.06 | 0.5306 | 0.5306 | 0.7653 | 0.5355 | 0.7460 | |
NN | 46.94 | 0.4694 | 0.4694 | 0.7347 | 0.4858 | 0.7283 | |
Gabor Filter | SVM, C = 10 | 48.33 | 0.4848 | 0.4889 | 0.7444 | 0.4945 | 0.7424 |
LR, C = 10 | 45.00 | 0.4500 | 0.4500 | 0.7245 | 0.4515 | 0.7245 | |
DT, Criterion = ‘gini’ | 45.00 | 0.4500 | 0.4500 | 0.7250 | 0.4542 | 0.7237 | |
RF, Criterion = ‘log_loss’ | 46.67 | 0.4667 | 0.4667 | 0.7333 | 0.4777 | 0.7297 | |
KNN, N-neighbors = 5 | 47.22 | 0.4722 | 0.4722 | 0.7361 | 0.4757 | 0.7350 | |
43.61 | 0.4361 | 0.4361 | 0.7181 | 0.4341 | 0.7183 | ||
NN | 43.06 | 0.4306 | 0.4306 | 0.7153 | 0.4343 | 0.7141 |
Approach/Feature | Accuracy (%) | F1-Score | Sensitivity | Specificity | PPV | NPV |
---|---|---|---|---|---|---|
SEGL Method (Majority Vote) | 49.44 | 0.4731 | 0.4944 | 0.7472 | 0.5034 | 0.7384 |
LBP (Majority Vote) | 47.22 | 0.4582 | 0.4722 | 0.7361 | 0.4703 | 0.7311 |
B-Mode (Majority Vote) | 49.44 | 0.4786 | 0.4944 | 0.7472 | 0.5078 | 0.7397 |
Gabor Filter (Majority Vote) | 48.89 | 0.4855 | 0.4889 | 0.7444 | 0.4922 | 0.7429 |
Entropy (SVM, C = 10) | 43.33 | 0.4248 | 0.4333 | 0.7167 | 0.4472 | 0.7125 |
Energy (LR, C = 0.1) | 48.06 | 0.4614 | 0.4806 | 0.7403 | 0.4993 | 0.7309 |
Contrast (SVM, C = 1) | 49.72 | 0.4831 | 0.4972 | 0.7486 | 0.5082 | 0.7415 |
Correlation (SVM, C = 1) | 53.33 | 0.4861 | 0.5333 | 0.7667 | 0.525 | 0.7485 |
Variance (KNN, K = 3) | 49.17 | 0.405 | 0.4917 | 0.7458 | 0.4901 | 0.7462 |
Homogeneity (LR, C = 0.1) | 46.67 | 0.4508 | 0.4667 | 0.7333 | 0.4882 | 0.7258 |
Mean (SVM, C = 10) | 52.5 | 0.51 | 0.525 | 0.7625 | 0.5359 | 0.7551 |
Without Entropy (SVM, C = 10) | 50.83 | 0.507 | 0.5083 | 0.7542 | 0.5107 | 0.7535 |
Without Energy (SVM, C = 10) | 50.28 | 0.5014 | 0.5028 | 0.7514 | 0.5053 | 0.7507 |
Without Contrast (SVM, C = 10) | 50.28 | 0.5014 | 0.5028 | 0.7514 | 0.5051 | 0.7507 |
Without Correlation (DT, Criterion = gini) | 49.17 | 0.4868 | 0.4917 | 0.7458 | 0.4983 | 0.7435 |
Without Variance (LR, C = 10) | 51.67 | 0.518 | 0.5167 | 0.7583 | 0.5135 | 0.759 |
Without Homogeneity (SVM, C = 10) | 51.11 | 0.509 | 0.5111 | 0.7556 | 0.5149 | 0.7545 |
Without Mean (SVM, C = 10) | 50.83 | 0.5088 | 0.5083 | 0.7542 | 0.5071 | 0.7544 |
Approach | p-Value | Mean (A-MTrPs) | SD (A-MTrPs) | Mean (Healthy) | SD (Healthy) | Mean (L-MTrPs) | SD (A-MTrPs) | |
---|---|---|---|---|---|---|---|---|
Entropy | Gabor | |||||||
SEGL | ||||||||
B-mode | 6.19 | 5.72 | 6.10 | |||||
LBP | 5.37 | 5.36 | 5.36 | |||||
Energy | Gabor | |||||||
SEGL | ||||||||
B-mode | ||||||||
LBP | ||||||||
Mean | Gabor | 1.58 | 1.26 | |||||
SEGL | ||||||||
B-mode | ||||||||
LBP | 7.90 | 9.89 | ||||||
Contrast | Gabor | |||||||
SEGL | ||||||||
B-mode | ||||||||
LBP | ||||||||
Homogeneity | Gabor | |||||||
SEGL | 39.76 | |||||||
B-mode | ||||||||
LBP | ||||||||
Correlation | Gabor | |||||||
SEGL | ||||||||
B-mode | ||||||||
LBP | ||||||||
Variance | Gabor | |||||||
SEGL | ||||||||
B-mode | ||||||||
LBP |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shomal Zadeh, F.; Koh, R.G.L.; Dilek, B.; Masani, K.; Kumbhare, D. Identification of Myofascial Trigger Point Using the Combination of Texture Analysis in B-Mode Ultrasound with Machine Learning Classifiers. Sensors 2023, 23, 9873. https://doi.org/10.3390/s23249873
Shomal Zadeh F, Koh RGL, Dilek B, Masani K, Kumbhare D. Identification of Myofascial Trigger Point Using the Combination of Texture Analysis in B-Mode Ultrasound with Machine Learning Classifiers. Sensors. 2023; 23(24):9873. https://doi.org/10.3390/s23249873
Chicago/Turabian StyleShomal Zadeh, Fatemeh, Ryan G. L. Koh, Banu Dilek, Kei Masani, and Dinesh Kumbhare. 2023. "Identification of Myofascial Trigger Point Using the Combination of Texture Analysis in B-Mode Ultrasound with Machine Learning Classifiers" Sensors 23, no. 24: 9873. https://doi.org/10.3390/s23249873
APA StyleShomal Zadeh, F., Koh, R. G. L., Dilek, B., Masani, K., & Kumbhare, D. (2023). Identification of Myofascial Trigger Point Using the Combination of Texture Analysis in B-Mode Ultrasound with Machine Learning Classifiers. Sensors, 23(24), 9873. https://doi.org/10.3390/s23249873