Depth-Resolved Elemental Analysis on Moving Electrode Foils with Laser-Induced Breakdown Spectroscopy
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Calibrating Measurements on Stationary Samples
3.2. Measurements on Moving Samples
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jochum, T.; Günther, J.-U.; Bohling, C. Material Analysis in Fast Industrial Processes by LIBS. PhotonicsViews 2019, 16, 56–59. [Google Scholar] [CrossRef] [Green Version]
- Senesi, G.S.; Harmon, R.S.; Hark, R.R. Field-portable and handheld LIBS. In Laser-Induced Breakdown Spectroscopy; Elsevier: Amsterdam, The Netherlands, 2020; pp. 537–560. ISBN 9780128188293. [Google Scholar]
- Pospíšilová, E.; Novotný, K.; Pořízka, P.; Hradil, D.; Hradilová, J.; Kaiser, J.; Kanický, V. Depth-resolved analysis of historical painting model samples by means of laser-induced breakdown spectroscopy and handheld X-ray fluorescence. Spectrochimica Acta Part B At. Spectrosc. 2018, 147, 100–108. [Google Scholar] [CrossRef]
- Vadillo, J.M.; García, C.C.; Palanco, S.; Laserna, J.J. Nanometric range depth-resolved analysis of coated-steels using laser-induced breakdown spectrometry with a 308 nm collimated beam. J. Anal. At. Spectrom. 1998, 13, 793–797. [Google Scholar] [CrossRef]
- Hou, H.; Cheng, L.; Richardson, T.; Chen, G.; Doeff, M.; Zheng, R.; Russo, R.; Zorba, V. Three-dimensional elemental imaging of Li-ion solid-state electrolytes using fs-laser induced breakdown spectroscopy (LIBS). J. Anal. At. Spectrom. 2015, 30, 2295–2302. [Google Scholar] [CrossRef]
- Dwivedi, V.; Marín-Roldán, A.; Karhunen, J.; Paris, P.; Jõgi, I.; Porosnicu, C.; Lungu, C.P.; van der Meiden, H.; Hakola, A.; Veis, P. CF-LIBS quantification and depth profile analysis of Be coating mixed layers. Nucl. Mater. Energy 2021, 27, 100990. [Google Scholar] [CrossRef]
- Yi, R.; Zhao, D.; Oelmann, J.; Brezinsek, S.; Rasinski, M.; Mayer, M.; Prakash Dhard, C.; Naujoks, D.; Liu, L.; Qu, J. 3-Dimensional analysis of layer structured samples with high depth resolution using picosecond laser-induced breakdown spectroscopy. Appl. Surf. Sci. 2020, 532, 147185. [Google Scholar] [CrossRef]
- Basler, C.; Kappeler, M.; Brandenburg, A. Beschichtungen ortsaufgelöst messen. J. Oberflächentechnik 2021, 61, 44–47. [Google Scholar] [CrossRef]
- Basler, C.; Brandenburg, A.; Michalik, K.; Mory, D. Comparison of Laser Pulse Duration for the Spatially Resolved Measurement of Coating Thickness with Laser-Induced Breakdown Spectroscopy. Sensors 2019, 19, 4133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yañez, J.; Torres, S.; Sbarbaro, D.; Parra, R.; Saavedra, C. Analytical instrumentation for copper pyrometallurgy: Challenges and opportunities. IFAC-PapersOnLine 2018, 51, 251–256. [Google Scholar] [CrossRef]
- Jones, A.; Uggalla, L.; Li, K.; Fan, Y.; Willow, A.; Mills, C.A.; Copner, N. Continuous In-Line Chromium Coating Thickness Measurement Methodologies: An Investigation of Current and Potential Technology. Sensors 2021, 21, 3340. [Google Scholar] [CrossRef] [PubMed]
- Balzer, H.; Hoehne, M.; Noll, R.; Sturm, V. New approach to online monitoring of the Al depth profile of the hot-dip galvanised sheet steel using LIBS. Anal. Bioanal. Chem. 2006, 385, 225–233. [Google Scholar] [CrossRef] [PubMed]
- Cabalín, L.M.; González, A.; Lazic, V.; Laserna, J. Deep ablation and depth profiling by laser-induced breakdown spectroscopy (LIBS) employing multi-pulse laser excitation: Application to galvanized steel. Appl. Spectrosc. 2011, 65, 797–805. [Google Scholar] [CrossRef] [PubMed]
- Pamu, R.; Davari, S.A.; Darbar, D.; Self, E.C.; Nanda, J.; Mukherjee, D. Calibration-Free Quantitative Analysis of Lithium-Ion Battery (LiB) Electrode Materials Using Laser-Induced Breakdown Spectroscopy (LIBS). ACS Appl. Energy Mater. 2021, 4, 7259–7267. [Google Scholar] [CrossRef]
- Smyrek, P.; Zheng, Y.; Seifert, H.J.; Pfleging, W. Post-mortem characterization of fs laser-generated micro-pillars in Li(Ni1/3Mn1/3Co1/3)O2 electrodes by laser-induced breakdown spectroscopy. In Laser-Based Micro- and Nanoprocessing X; SPIE: Bellingham, WA, USA, 2016; pp. 271–276. [Google Scholar]
- Zorba, V.; Syzdek, J.; Mao, X.; Russo, R.E.; Kostecki, R. Ultrafast laser induced breakdown spectroscopy of electrode/electrolyte interfaces. Appl. Phys. Lett. 2012, 100, 234101. [Google Scholar] [CrossRef]
- Smyrek, P.; Bergfeldt, T.; Seifert, H.J.; Pfleging, W. Laser-induced breakdown spectroscopy for the quantitative measurement of lithium concentration profiles in structured and unstructured electrodes. J. Mater. Chem. A 2019, 7, 5656–5665. [Google Scholar] [CrossRef] [Green Version]
- Smyrek, P.; Pröll, J.; Seifert, H.J.; Pfleging, W. Laser-Induced Breakdown Spectroscopy of Laser-Structured Li(NiMnCo)O 2 Electrodes for Lithium-Ion Batteries. J. Electrochem. Soc. 2016, 163, A19–A26. [Google Scholar] [CrossRef]
- Müller, S.; Eller, J.; Ebner, M.; Burns, C.; Dahn, J.; Wood, V. Quantifying Inhomogeneity of Lithium Ion Battery Electrodes and Its Influence on Electrochemical Performance. J. Electrochem. Soc. 2018, 165, A339–A344. [Google Scholar] [CrossRef] [Green Version]
- Kappeler, M.; Basler, C.; Brandenburg, A.; Carl, D.; Wöllenstein, J. Homogeneity Measurements of Li-Ion Battery Cathodes Using Laser-Induced Breakdown Spectroscopy. Sensors 2022, 22, 8816. [Google Scholar] [CrossRef] [PubMed]
- Kramida, A.; Ralchenko, Y.; Reader, J. NIST Atomic Spectra Database (Version 5.9); National Institute of Standards and Technology: Gaithersburg, MD, USA, 2021. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Basler, C.; Kappeler, M.; Carl, D. Depth-Resolved Elemental Analysis on Moving Electrode Foils with Laser-Induced Breakdown Spectroscopy. Sensors 2023, 23, 1082. https://doi.org/10.3390/s23031082
Basler C, Kappeler M, Carl D. Depth-Resolved Elemental Analysis on Moving Electrode Foils with Laser-Induced Breakdown Spectroscopy. Sensors. 2023; 23(3):1082. https://doi.org/10.3390/s23031082
Chicago/Turabian StyleBasler, Carl, Moritz Kappeler, and Daniel Carl. 2023. "Depth-Resolved Elemental Analysis on Moving Electrode Foils with Laser-Induced Breakdown Spectroscopy" Sensors 23, no. 3: 1082. https://doi.org/10.3390/s23031082
APA StyleBasler, C., Kappeler, M., & Carl, D. (2023). Depth-Resolved Elemental Analysis on Moving Electrode Foils with Laser-Induced Breakdown Spectroscopy. Sensors, 23(3), 1082. https://doi.org/10.3390/s23031082