Field-Based Biomechanical Assessment of the Snatch in Olympic Weightlifting Using Wearable In-Shoe Sensors and Videos—A Preliminary Report
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Equipment
2.3. Experimental Procedures
2.4. Data Processing
2.5. Reliability Analysis
3. Results
3.1. Velocity
3.2. Force
3.3. Power
3.4. Barbell Trajectory
3.5. Reliability Analysis
4. Discussion
4.1. Biomechanical Profiles of the Snatch
4.2. Comparison with Existing Methods
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Suchomel, T.J.; Comfort, P.; Lake, J.P. Enhancing the force-velocity profile of athletes using weightlifting derivatives. Strength Cond. J. 2017, 39, 10–20. [Google Scholar] [CrossRef]
- Garhammer, J. Power production by olympic weightlifters. Med. Sci. Sports Exerc. 1980, 12, 54–60. [Google Scholar] [CrossRef]
- Newton, R.U.; Kraemer, W.J. Developing explosive muscular power: Implications for a mixed methods training strategy. Strength Cond. 1994, 16, 20–31. [Google Scholar] [CrossRef]
- Fry, A.C.; Schilling, B.K.; Staron, R.S.; Hagerman, F.C.; Hikida, R.S.; Thrush, J.T. Muscle fiber characteristics and performance correlates of male olympic-style weightlifters. J. Strength Cond. Res. 2003, 17, 746–754. [Google Scholar] [CrossRef] [PubMed]
- Stone, M.H.; Sands, W.A.; Pierce, K.C.; Carlock, J.; Cardinale, M.; Newton, R.U. Relationship of maximum strength to weightlifting performance. Med. Sci. Sports Exerc. 2005, 37, 1037–1043. [Google Scholar] [CrossRef]
- Stone, M.H.; O’Bryant, H.S.; Williams, F.E.; Johnson, R.L.; Pierce, K.C. Analysis of bar paths during the snatch in elite male weightlifters. Strength Cond. J. 1998, 20, 30–38. [Google Scholar] [CrossRef]
- Himawan, M.K.N.; Rilastia, D.; Syafei, M.; Nugroho, R.; Budihardjo, B. Biomechanical Analysis of Snatch Technique in Conjunction to Kinematic Motion of Olympic Weightlifters. In International Seminar on Public Health and Education 2018 (ISPHE 2018); Atlantis Press: Semarang, Indonesia, 2018; pp. 132–137. [Google Scholar] [CrossRef]
- Isaka, T.; Okada, J.; Funato, K. Kinematic analysis of the barbell during the snatch movement of elite Asian weight lifters. J. Appl. Biomech. 1996, 12, 508–516. [Google Scholar] [CrossRef]
- Whitehead, P.N.; Schilling, B.K.; Stone, M.H.; Kilgore, J.L.; Chiu, L.Z.F. Snatch technique of United States national level weightlifters. J. Strength Cond. Res. 2014, 28, 587–591. [Google Scholar] [CrossRef]
- Cunanan, A.J.; Hornsby, W.G.; South, M.A.; Ushakova, K.P.; Mizuguchi, S.; Sato, K.; Pierce, K.C.; Stone, M.H. Survey of barbell trajectory and kinematics of the snatch lift from the 2015 world and 2017 pan-american weightlifting championships. Sports 2020, 8, 118. [Google Scholar] [CrossRef]
- Baumann, W.; Gross, V.; Quade, K.; Galbierz, P.; Schwirtz, A. The snatch technique of world class weightlifters at the 1985 world championships. J. Appl. Biomech. 1988, 4, 68–89. [Google Scholar] [CrossRef]
- Gourgoulis, V.; Aggelousis, N.; Mavromatis, G.; Garas, A. Three-dimensional kinematic analysis of the snatch of elite Greek weightlifters. J. Sports Sci. 2000, 18, 643–652. [Google Scholar] [CrossRef] [PubMed]
- Korkmaz, S.; Harbili, E. Biomechanical analysis of the snatch technique in junior elite female weightlifters. J Sports Sci. 2016, 34, 1088–1093. [Google Scholar] [CrossRef] [PubMed]
- Storey, A.; Smith, H.K. Unique aspects of competitive weightlifting: Performance, training and physiology. Sports Med. 2012, 42, 769–790. [Google Scholar] [CrossRef] [PubMed]
- Campos, J.; Poletaev, P.; Cuesta, A.; Pablos, C.; Carratalá, V. Kinematical analysis of the snatch in elite male junior weightlifters of different weight categories. J. Strength Cond. Res. 2006, 20, 843–850. [Google Scholar] [CrossRef]
- Gourgoulis, V.; Aggeloussis, N.; Kalivas, V.; Antoniou, P.; Mavromatis, G. Snatch lift kinematics and bar energetics in male adolescent and adult weightlifters. J. Sports Med. Phys. Fitness 2004, 44, 126–131. [Google Scholar]
- Hoover, D.L.; Carlson, K.M.; Christensen, B.K.; Zebas, C.J. Biomechanical analysis of women weightlifters during the snatch. J. Strength Cond. Res. 2006, 20, 627–633. [Google Scholar] [CrossRef]
- Ebada, A.R.K. Relative strength, body mass and height as predictors of olympic weightlifting players performance. Selçuk Unıversıty J. Physıcal Educ. Sport Sci. 2011, 13, 166–171. [Google Scholar]
- Stone, M.H.; Sanborn, K.; O’Bryant, H.S.; Hartman, M.J.; Proulx, C. Maximum strength-power-performance in collegiate throwers. J. Strength Cond. Res. 2003, 17, 739–745. [Google Scholar] [CrossRef]
- Haff, G.G.; Whitley, A.; Potteiger, J.A. A Brief Review: Explosive Exercises and Sports Performance. Strength Cond. J. 2001, 23, 13–20. [Google Scholar] [CrossRef]
- Kawamori, N.; Haff, G.G. The optimal training load for the development of muscular power. J. Strength Cond. Res. 2004, 18, 675–684. [Google Scholar]
- Taber, C.; Bellon, C.; Abbott, H.; Bingham, G.E. Roles of maximal strength and rate of force development in maximizing muscular power. Strength Cond. J. 2016, 38, 71–78. [Google Scholar] [CrossRef]
- Newton, R.U.; Dugan, E. Application of strength diagnosis. Strength Cond. J. 2005, 24, 50–59. [Google Scholar] [CrossRef]
- Hori, N.; Newton, R.U.; Nosaka, K.; McGuigan, M.R. Comparison of different methods of determining power output in weightlifting exercises. Strength Cond. J. 2006, 28, 34–40. [Google Scholar] [CrossRef]
- Garnacho-Castaño, M.V.; López-Lastra, S.; Maté-Muñoz, J.L. Reliability and validity assessment of a linear position transducer. J. Sports Sci. Med. 2015, 14, 2015. [Google Scholar]
- Jiménez-Olmedo, J.M.; Penichet-Tomás, A.; Villalón-Gasch, L.; Pueo, B. Validity and reliability of smartphone high-speed camera and Kinovea for velocity-based training measurement. J. Hum. Sport Exerc. 2021, 16, 878–888. [Google Scholar] [CrossRef]
- Martínez-Cava, A.; Hernández-Belmonte, A.; Courel-Ibáñez, J.; Morán-Navarro, R.; González-Badillo, J.J.; Pallarés, J.G. Reliability of technologies to measure the barbell velocity: Implications for monitoring resistance training. PLoS ONE 2020, 15, e0232465. [Google Scholar] [CrossRef]
- Nor Adnan, N.M.; Ab Patar, M.N.A.; Lee, H.; Yamamoto, S.I.; Jong-Young, L.; Mahmud, J. Biomechanical analysis using Kinovea for sports application. IOP Conf. Ser. Mater. Sci. Eng. 2018, 342, 012097. [Google Scholar] [CrossRef]
- Dæhlin, T.E.; Krosshaug, T.; Chiu, L.Z.F. Enhancing digital video analysis of bar kinematics in weightlifting: A case study. J. Strength Cond. Res. 2017, 31, 1592–1600. [Google Scholar] [CrossRef] [Green Version]
- Forner Cordero, A.; Koopman, H.J.F.M.; van der Helm, F.C.T. Use of pressure insoles to calculate the complete ground reaction forces. J. Biomech. 2003, 37, 1427–1432. [Google Scholar] [CrossRef]
- Peterson Silveira, R.; Stergiou, P.; Carpes, F.P.; Castro, F.A.d.S.; Katz, L.; Stefanyshyn, D.J. Validity of a portable force platform for assessing biomechanical parameters in three different tasks. Sports Biomech. 2017, 16, 177–186. [Google Scholar] [CrossRef]
- Raper, D.P.; Witchalls, J.; Philips, E.J.; Knight, E.; Drew, M.K.; Waddington, G. Use of a tibial accelerometer to measure ground reaction force in running: A reliability and validity comparison with force plates. J. Sci. Med. Sport. 2018, 21, 84–88. [Google Scholar] [CrossRef]
- Renner, K.E.; Williams, D.S.; Queen, R.M. The reliability and validity of the Loadsol® under various walking and running conditions. Sensors 2019, 19, 265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seiberl, W.; Jensen, E.; Merker, J.; Leitel, M.; Schwirtz, A. Accuracy and precision of loadsol® insole force-sensors for the quantification of ground reaction force-based biomechanical running parameters. Eur. J. Sport Sci. 2018, 18, 1100–1109. [Google Scholar] [CrossRef] [PubMed]
- Peebles, A.T.; Maguire, L.A.; Renner, K.E.; Queen, R.M. Validity and repeatability of single-sensor loadsol insoles during landing. Sensors 2018, 18, 4082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peebles, A.T.; Ford, K.R.; Taylor, J.B.; Hart, J.M.; Sands, L.P.; Queen, R.M. Using force sensing insoles to predict kinetic knee symmetry during a stop jump. J. Biomech. 2019, 95, 109293. [Google Scholar] [CrossRef]
- Hawrylak, A.; Gronowska, H. Plantar pressure distribution in female olympic-style weightlifters. Int. J. Environ. Res. Public Health 2020, 17, 2669. [Google Scholar] [CrossRef] [PubMed]
- Cormie, P.; Mccaulley, G.O.; Triplett, N.T.; Mcbride, J.M. Optimal loading for maximal power output during lower-body resistance exercises. Med. Sci. Sports Exerc. 2007, 39, 340–349. [Google Scholar] [CrossRef]
- Garhammer, J. A review of power output studies of olympic and powerlifting: Methodology, performance prediction, and evaluation tests. J. Strength Cond. Res. 1993, 7, 76–89. [Google Scholar] [CrossRef]
- Javier Flores, F.; Sedano, S.; Redondo, J.C. Optimal load and power spectrum during snatch and clean: Differences between international and national weightlifters. Int. J. Perform. Anal. Sport 2017, 17, 521–533. [Google Scholar] [CrossRef]
- Ammar, A.; Riemann, B.L.; Trabelsi, K.; Blaumann, M.; Abdelkarim, O.; Chtourou, H.; Driss, T.; Hökelmann, A. Comparison of 2- and 3-Minute Inter-Repetition Rest Periods on Maximal Jerk Technique and Power Maintenance. Int. J. Sports Sci. Coach. 2019, 90, 287–296. [Google Scholar] [CrossRef]
- Ammar, A.; Riemann, B.L.; Abdelkarim, O.; Driss, T.; Hökelmann, A. Effect of 2- vs. 3-Minute Interrepetition Rest Period on Maximal Clean Technique and Performance. J. Strength Cond. Res. 2020, 34, 2548–2556. [Google Scholar] [CrossRef]
- Balsalobre-Fernández, C.; Tejero-González, C.M.; del Campo-Vecino, J.; Bavaresco, N. The concurrent validity and reliability of a low-cost, high-speed camera-based method for measuring the flight time of vertical jumps. J. Strength Cond. Res. 2014, 28, 528–533. [Google Scholar] [CrossRef] [PubMed]
- Garhammer, J.; Newton, H. Applied video analysis for coaches: Weightlifting examples. Int. J. Sports Sci. Coach. 2013, 8, 581–593. [Google Scholar] [CrossRef]
- Puig-Diví, A.; Escalona-Marfil, C.; Padullés-Riu, J.M.; Busquets, A.; Padullés-Chando, X.; Marcos-Ruiz, D. Validity and reliability of the Kinovea program in obtaining angles and distances using coordinates in 4 perspectives. PLoS ONE 2019, 14, e0216448. [Google Scholar] [CrossRef] [PubMed]
- Vidal Pérez, D.; Martínez-Sanz, J.M.; Ferriz-Valero, A.; Gómez-Vicente, V.; Ausó, E. Relationship of limb lengths and body composition to lifting in weightlifting. Int. J. Environ. Res. Public Health 2021, 18, 756. [Google Scholar] [CrossRef] [PubMed]
- Souissi, M.A.; Ammar, A.; Trabelsi, O.; Glenn, J.M.; Boukhris, O.; Trabelsi, K.; Bouaziz, B.; Zmijewski, P.; Souissi, H.; Chikha, A.B.; et al. Distance motor learning during the COVID-19 induced confinement: Video feedback with a pedagogical activity improves the snatch technique in young athletes. Int. J. Environ. Res. Public Health 2021, 18, 3069. [Google Scholar] [CrossRef]
- Sandau, I.; Granacher, U. Effects of the barbell load on the acceleration phase during the snatch in elite Olympic weightlifting. Sports 2020, 8, 59. [Google Scholar] [CrossRef]
- Ho, L.K.W.; Lorenzen, C.; Wilson, C.J.; Saunders, J.E.; Williams, M.D. Reviewing current knowledge in snatch performance and technique: The need for future directions in applied research. J. Strength Cond. Res. 2014, 28, 574–586. [Google Scholar] [CrossRef]
- Kipp, K.; Harris, C. Associations between Ground Reaction Forces and Barbell Accelerations in Weightlifting. In Proceedings of the 32 International Society of Biomechanics in Sports, Johnson City, TN, USA, 12–16 July 2014; ISBS-Conference Proceedings Archive: Johnson City, TN, USA, 2014; pp. 782–785. [Google Scholar]
- Garhammer, J.; Gregor, R. Propulsion forces as a function of intensity for weightlifting and vertical jumping. J. Appl. Sport Sci. Res. 1992, 6, 129–134. [Google Scholar]
- Garhammer, J. A comparison of maximal power outputs between elite male and female weightlifters in competition. J. Appl. Biomech. 1991, 7, 3–11. [Google Scholar] [CrossRef]
- Garhammer, J. Biomechanical Profiles of Olympic Weightlifters. Int. J. Sport Biomech. 1985, 1, 122–130. [Google Scholar] [CrossRef] [Green Version]
- Altman, D.G. Practical Statistics for Medical Research; Chapman & Hall: London, UK, 1991. [Google Scholar]
- Ford, L.E.; Detterline, A.J.; Ho, K.K.; Cao, W. Gender- and height-related limits of muscle strength in world weightlifting champions. J. Appl. Physiol. 2000, 89, 1061–1064. [Google Scholar] [CrossRef] [Green Version]
- Huebner, M.; Perperoglou, A. Sex differences and impact of body mass on performance from childhood to senior athletes in Olympic weightlifting. PLoS ONE 2020, 15, e0238369. [Google Scholar] [CrossRef]
- Beckham, G.; Mizuguchi, S.; Carter, C.; Sato, K.; Ramsey, M.; Lamont, H.; Hornsby, G.; Haff, G.; Stone, M. Relationships of isometric mid-thigh pull variables to weightlifting performance. J. Sports Med. Phys. Fitness 2013, 53, 573–581. [Google Scholar] [PubMed]
- Hermassi, S.; Chelly, M.S.; Bragazzi, N.L.; Shephard, R.J.; Schwesig, R. In-season weightlifting training exercise in healthy male handball players: Effects on body composition, muscle volume, maximal strength, and ball-throwing velocity. Int. J. Environ. Res. Public Health 2019, 16, 4520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harbili, E.; Alptekin, A. Comparative kinematic analysis of the snatch lifts in elite male adolescent weightlifters. J. Sports Sci. Med. 2014, 13, 417–422. [Google Scholar] [PubMed]
- Enoka, R.M. The pull in Olympic weightlifting. Med. Sci. Sports 1979, 11, 131–137. [Google Scholar]
- Bartonietz, K.E. Biomechanics of the Snatch: Toward a higher training efficiency. Strength Cond. J. 1996, 18, 24–31. [Google Scholar] [CrossRef]
- Vorobyev, A.N. A Textbook on Weightlifting; International Weightlifting Federation: Budapest, Hungary, 1978. [Google Scholar]
- Musser, L.J.; Garhammer, J.; Rozenek, R.; Crussemeyer, J.A.; Vargas, E.M. Anthropometry and barbell trajectory in the snatch lift for elite women weightlifters. J. Strength Cond. Res. 2014, 28, 1636–1648. [Google Scholar] [CrossRef]
- Hiskia, G. Biomechanical Analysis of World and Olympic Champion Weightlifters Performance. In Proceedings of the Weightlifting Symposium; International Weightlifting Federation: Budapest, Hungary, 1997; pp. 137–158. [Google Scholar]
- Garhammer, J.; Komi, P.V. Weightlifting performance and techniques of men and women. In Proceedings of the International Conference on Weightlifting and Strength Training, Lahty, Finland, 10 November 1998; pp. 89–94. [Google Scholar]
- Fry, A.C.; Ciroslan, D.; Fry, M.D.; LeRoux, C.D.; Schilling, B.K.; Chiu, L.Z.F. Anthropometric and performance variables discriminating elite American junior men weightlifters. J. Strength Cond. Res. 2006, 20, 861–866. [Google Scholar] [CrossRef]
- Gourgoulis, V.; Aggeloussis, N.; Garas, A.; Mavromatis, G. Unsuccessful vs. successful performance in snatch lifts: A kinematic approach. J. Strength Cond. Res. 2009, 23, 486–494. [Google Scholar] [CrossRef] [PubMed]
- Chiu, H.T.; Wang, C.H.; Cheng, K.B. The three-dimensional kinematics of a barbell during the snatch of Taiwanese weightlifters. J. Strength Cond. Res. 2010, 24, 1520–1526. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, Y.; Jinji, T.; Matsubayashi, T.; Matsuo, A.; Inagaki, E.; Takemata, T.; Kikuta, M. Comparison of the snatch technique for female weightlifters at the 2008 Asian championships. J. Strength Cond. Res. 2012, 26, 1281–1295. [Google Scholar] [CrossRef] [PubMed]
- Bailey, C.; Sato, K.; Alexander, R.; Chiang, C.Y.; Stone, M.H. Isometric force production symmetry and jumping performance in collegiate athletes. J. Trainol. 2013, 2, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bell, D.R.; Sanfilippo, J.L.; Binkley, N.; Heiderscheit, B.C. Lean mass asymmetry influences force and power asymmetry during jumping in collegiate athletes. J. Strength Cond. Res. 2014, 28, 884–891. [Google Scholar] [CrossRef]
- Impellizzeri, F.M.; Rampinini, E.; Maffiuletti, N.; Marcora, S.M. A vertical jump force test for assessing bilateral strength asymmetry in athletes. Med. Sci. Sports Exerc. 2007, 39, 2044–2050. [Google Scholar] [CrossRef] [Green Version]
- Nadler, S.F.; Malanga, G.A.; Feinberg, J.H.; Prybicien, M.; Stitik, T.P.; DePrince, M. Relationship between hip muscle imbalance and occurrence of low back pain in collegiate athletes: A prospective study. Am. J. Phys. Med. Rehabil. 2001, 80, 572–577. [Google Scholar] [CrossRef]
- Lee, Y.H.; Huwang, C.Y.; Tsuang, Y.H. Biomechanical characteristics of preactivation and pulling phases of snatch lift. J. Appl. Biomech. 1995, 11, 288–298. [Google Scholar] [CrossRef]
- Moon, Y.J.; Darren, S. 3-Dimensional Performance Optimization Model of Snatch Weightlifting. KJSB 2015, 25, 157–165. [Google Scholar] [CrossRef] [Green Version]
- Pueo, B. High speed cameras for motion analysis in sports science. J. Hum. Sport Exerc. 2016, 11, 53–73. [Google Scholar] [CrossRef] [Green Version]
- Bazyler, C.D.; Mizuguchi, S.; Zourdos, M.C.; Sato, K.; Kavanaugh, A.A.; DeWeese, B.H.; Breuel, K.F.; Stone, M.H. Characteristics of a National Level Female Weightlifter Peaking for Competition: A Case Study. J. Strength Cond. Res. 2018, 32, 3029–3038. [Google Scholar] [CrossRef] [PubMed]
- Mujika, I.; Halson, S.; Burke, L.M.; Balagué, G.; Farrow, D. An Integrated, Multifactorial Approach to Periodization for Optimal Performance in Individual and Team Sports. Int. J. Sports Physiol. Perform. 2018, 13, 538–561. [Google Scholar] [CrossRef] [PubMed]
- Tovstonoh, O.; Roztorhui, M.; Pityn, M.; Pasichnyk, V.; Melnyk, V. Dynamics of the snatch technique cinematic parameters in qualified female weightlifters during different periods of training macrocycle. J. Phys. Educ. Sport 2019, 19, 514–520. [Google Scholar] [CrossRef]
- Balsalobre-Fernández, C.; Geiser, G.; Krzyszkowski, J.; Kipp, K. Validity and reliability of a computer-vision-based smartphone app for measuring barbell trajectory during the snatch. J. Sports Sci. 2020, 38, 710–716. [Google Scholar] [CrossRef]
Participants | ||||||
---|---|---|---|---|---|---|
M1 | M2 | M3 | F1 | F2 | F3 | |
Age (years) | 24 | 24 | 26 | 27 | 23 | 27 |
Competition weight category (kg) | 67 | 81 | 81 | 49 | 55 | 55 |
Body mass (kg) | 69.4 | 80.5 | 82.0 | 49.9 | 56.0 | 55.5 |
Weight of snatch attempts (kg) | 86 | 105 | 106 | 48 | 48 | 48 |
Weightlifting experience (years) | 2 | 1 | 4 | 3 | 1.5 | 4 |
Participants | ||||||
---|---|---|---|---|---|---|
M1 | M2 | M3 | F1 | F2 | F3 | |
Mean velocity (m/s) | 0.88 ± 0.07 | 0.77 ± 0.05 | 0.87 ± 0.03 | 0.61 ± 0.02 | 0.85 ± 0.05 | 0.90 ± 0.09 |
Peak velocity (m/s) | 2.01 ± 0.02 | 1.99 ± 0.11 | 2.11 ± 0.02 | 2.15 ± 0.02 | 2.06 ± 0.04 | 2.10 ± 0.02 |
Time to peak velocity (s) | 0.87 ± 0.04 | 0.93 ± 0.06 | 0.91 ± 0.03 | 1.07 ± 0.01 | 0.80 ± 0.03 | 0.86 ± 0.07 |
Mean force (N) | 1827.49 ± 54.73 | 1982.03 ± 33.17 | 1731.64 ± 39.19 | 997.35 ± 14.43 | 964.86 ± 30.39 | 1340.14 ± 59.18 |
Peak force (N) | 2553.01 ± 237.91 | 3025.94 ± 270.98 | 2535.98 ± 59.95 | 1656.86 ± 46.78 | 1455.12 ± 64.72 | 1846.41 ± 69.70 |
Mean power (W) | 1587.59 ± 26.18 | 1598.96 ± 81.19 | 1533.94 ± 61.57 | 647.33 ± 94.61 | 818.68 ± 62.02 | 1198.06 ± 150.08 |
Peak power (W) | 4119.24 ± 339.01 | 5116.71 ± 509.05 | 3899.42 ± 119.90 | 2830.67 ± 477.57 | 2408.27 ± 173.53 | 3144.45 ± 132.42 |
Mean power relative to bodyweight (W/kg) | 22.88 | 19.86 | 18.71 | 12.99 | 14.62 | 21.61 |
Peak power relative to bodyweight (W/kg) | 59.36 | 63.56 | 47.55 | 56.78 | 43.00 | 56.71 |
Max horizontal displacement, first pull (cm) | 2.43 ± 0.64 | 5.32 ± 0.47 | −1.53 ± 0.58 | −2.53 ± 0.45 | −2.42 ± 0.19 | −1.30 ± 0.48 |
Max horizontal displacement, second pull (cm) | −5.20 ± 0.21 | 2.29 ± 1.11 | −2.42 ± 1.01 | −4.68 ± 0.99 | −6.09 ± 0.28 | −8.31 ± 1.27 |
Max horizontal displacement Descent from max height (cm) | 5.53 ± 0.88 | 13.38 ± 2.55 | 9.30 ± 2.77 | 9.75 ± 2.24 | 7.79 ± 0.74 | 2.60 ± 0.67 |
Performance Variable | ICC | 95% Confidence Interval | SEM |
---|---|---|---|
Peak velocity | 0.567 | [0.028, 0.915] | 0.05 m/s |
Peak force | 0.939 | [0.785, 0.990] | 155.3 N |
Peak power | 0.894 | [0.648, 0.983] | 334.7 W |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ang, C.L.; Kong, P.W. Field-Based Biomechanical Assessment of the Snatch in Olympic Weightlifting Using Wearable In-Shoe Sensors and Videos—A Preliminary Report. Sensors 2023, 23, 1171. https://doi.org/10.3390/s23031171
Ang CL, Kong PW. Field-Based Biomechanical Assessment of the Snatch in Olympic Weightlifting Using Wearable In-Shoe Sensors and Videos—A Preliminary Report. Sensors. 2023; 23(3):1171. https://doi.org/10.3390/s23031171
Chicago/Turabian StyleAng, Cheng Loong, and Pui Wah Kong. 2023. "Field-Based Biomechanical Assessment of the Snatch in Olympic Weightlifting Using Wearable In-Shoe Sensors and Videos—A Preliminary Report" Sensors 23, no. 3: 1171. https://doi.org/10.3390/s23031171
APA StyleAng, C. L., & Kong, P. W. (2023). Field-Based Biomechanical Assessment of the Snatch in Olympic Weightlifting Using Wearable In-Shoe Sensors and Videos—A Preliminary Report. Sensors, 23(3), 1171. https://doi.org/10.3390/s23031171