Cross-Domain Object Detection by Dual Adaptive Branch
Abstract
:1. Introduction
- (1)
- A novel cross-domain object detection framework with dual adaptive branch is designed, which we called DAB. This framework utilizes two branches, domain-invariant feature alignment branch and domain-specific feature suppression branch, to overcome errors and false positives in cross-domain object detection.
- (2)
- The feature alignment branch and feature suppression branch are designed, respectively. With the purpose of domain-invariant feature alignment, we propose to map the features into a high-dimensional space and restrict the gradient using a distribution difference measure function, which minimizes the difference of domain-invariant features between two domains. With the purpose of domain-specific feature suppression, we propose to impose constraints on domain-specific features, which eliminate the influence of domain-specific features on cross-domain object detection.
- (3)
- The extensive experiments are conducted on various cross-domain benchmarks, and the experimental results demonstrate that our method achieves a significant performance improvement.
2. Related Works
3. Proposed Method
3.1. Framework Overview
3.2. Optimization Problem in Cross-Domain Student
3.3. Feature Alignment Branch in Cross-Domain Student
3.4. Feature Suppression Branch in Cross-Domain Student
4. Experiment and Analysis
4.1. Datasets and Scenarios
4.1.1. Datasets
4.1.2. Scenario
4.2. Implementation Details
4.3. Experimental Results
4.3.1. Adaptation between Dissimilar Domains
4.3.2. Adaptation between Adverse Weather
4.4. Ablation Study
4.5. Error Analysis
4.6. Visualisation Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al. ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. Vis. (IJCV) 2015, 115, 211–252. [Google Scholar] [CrossRef] [Green Version]
- Doulamis, N.; Voulodimos, A. FAST-MDL: Fast Adaptive Supervised Training of multi-layered deep learning models for consistent object tracking and classification. In Proceedings of the 2016 IEEE International Conference on Imaging Systems and Techniques (IST), Chania, Greece, 4–6 October 2016; pp. 318–323. [Google Scholar] [CrossRef]
- Kate, S.; Brian, K.; Mario, F.; Trevor, D. Adapting Visual Category Models to New Domains. In Proceedings of the Computer Vision—ECCV 2010, Heraklion, Greece, 5–11 September 2010; Springer: Berlin/Heidelberg, Germany, 2010; pp. 213–226. [Google Scholar]
- Zheng, Y.; Huang, D.; Liu, S.; Wang, Y. Cross-domain Object Detection through Coarse-to-Fine Feature Adaptation. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 13763–13772. [Google Scholar] [CrossRef]
- Chen, Y.; Li, W.; Sakaridis, C.; Dai, D.; Van Gool, L. Domain Adaptive Faster R-CNN for Object Detection in the Wild. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 3339–3348. [Google Scholar] [CrossRef] [Green Version]
- Saito, K.; Ushiku, Y.; Harada, T.; Saenko, K. Strong-Weak Distribution Alignment for Adaptive Object Detection. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 6949–6958. [Google Scholar] [CrossRef] [Green Version]
- David, F. Object Detection with Discriminatively Trained Part-Based Models. Computer 2014, 47, 6–7. [Google Scholar] [CrossRef]
- Viola, P.; Jones, M. Rapid object detection using a boosted cascade of simple features. In Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2001), Kauai, HI, USA, 8–14 December 2001; Volume 1, p. 511. [Google Scholar] [CrossRef]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 580–587. [Google Scholar] [CrossRef] [Green Version]
- Girshick, R. Fast R-CNN. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 1440–1448. [Google Scholar] [CrossRef]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef] [PubMed]
- Joseph, R.; Ali, F. YOLO9000: Better, Faster, Stronger. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 6517–6525. [Google Scholar] [CrossRef] [Green Version]
- Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single Shot MultiBox Detector. In Proceedings of the Computer Vision—ECCV 2016, Amsterdam, The Netherlands, 8–10 October 2016; Springer International Publishing: Cham, Switzerland, 2016; pp. 21–37. [Google Scholar]
- Zhang, S.; Wen, L.; Lei, Z.; Li, S.Z. RefineDet++: Single-Shot Refinement Neural Network for Object Detection. IEEE Trans. Circuits Syst. Video Technol. 2021, 31, 674–687. [Google Scholar] [CrossRef]
- Xu, J.; Ramos, S.; Vázquez, D.; López, A.M. Domain Adaptation of Deformable Part-Based Models. IEEE Trans. Pattern Anal. Mach. Intell. 2014, 36, 2367–2380. [Google Scholar] [CrossRef] [PubMed]
- Raj, A.; Namboodiri, V.P.; Tuytelaars, T. Subspace Alignment Based Domain Adaptation for RCNN Detector. arXiv 2015, arXiv:1507.05578. [Google Scholar]
- Chen, C.; Zheng, Z.; Huang, Y.; Ding, X.; Yu, Y. I3Net: Implicit Instance-Invariant Network for Adapting One-Stage Object Detectors. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 12571–12580. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, H.; Li, W.; Sakaridis, C.; Dai, D.; Van Gool, L. Scale-Aware Domain Adaptive Faster R-CNN. Int. J. Comput. Vis. 2021, 129, 2223–2243. [Google Scholar] [CrossRef]
- Hsu, C.C.; Tsai, Y.H.; Lin, Y.Y.; Yang, M.H. Every Pixel Matters: Center-Aware Feature Alignment for Domain Adaptive Object Detector. In Proceedings of the Computer Vision—ECCV 2020, Glasgow, UK, 23–28 August 2020; Springer International Publishing: Cham, Switzerland, 2020; pp. 733–748. [Google Scholar]
- Rezaeianaran, F.; Shetty, R.; Aljundi, R.; Reino, D.O.; Zhang, S.; Schiele, B. Seeking Similarities over Differences: Similarity-based Domain Alignment for Adaptive Object Detection. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 10–17 October 2021; pp. 9184–9193. [Google Scholar] [CrossRef]
- Tian, K.; Zhang, C.; Wang, Y.; Xiang, S.; Pan, C. Knowledge Mining and Transferring for Domain Adaptive Object Detection. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 10–17 October 2021; pp. 9113–9122. [Google Scholar] [CrossRef]
- Wu, A.; Liu, R.; Han, Y.; Zhu, L.; Yang, Y. Vector-Decomposed Disentanglement for Domain-Invariant Object Detection. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 10–17 October 2021; pp. 9322–9331. [Google Scholar] [CrossRef]
- Xu, M.; Wang, H.; Ni, B.; Tian, Q.; Zhang, W. Cross-Domain Detection via Graph-Induced Prototype Alignment. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Z.; Mao, Y. RPN Prototype Alignment For Domain Adaptive Object Detector. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 12420–12429. [Google Scholar] [CrossRef]
- Zhao, Z.; Guo, Y.; Shen, H.; Ye, J. Adaptive Object Detection with Dual Multi-label Prediction. In Proceedings of the Computer Vision—ECCV 2020, Glasgow, UK, 23–28 August 2020; Springer International Publishing: Cham, Switzerland, 2020; pp. 54–69. [Google Scholar]
- Mehran, K.; Arash, V.; Mani, R.; William, M. A Robust Learning Approach to Domain Adaptive Object Detection. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019; pp. 480–490. [Google Scholar] [CrossRef] [Green Version]
- Seunghyeon, K.; Jaehoon, C.; Taekyung, K.; Changick, K. Self-Training and Adversarial Background Regularization for Unsupervised Domain Adaptive One-Stage Object Detection. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019; pp. 6091–6100. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Huang, J.; Hua, X.S.; Zhang, L. Category Dictionary Guided Unsupervised Domain Adaptation for Object Detection. In Proceedings of the National Conference on Artificial Intelligence, Sao Paulo, Brazil, 21–25 June 2021. [Google Scholar]
- Ramamonjison, R.; Banitalebi-Dehkordi, A.; Kang, X.; Bai, X.; Zhang, Y. SimROD: A Simple Adaptation Method for Robust Object Detection. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, BC, Canada, 10–17 October 2021; pp. 3550–3559. [Google Scholar] [CrossRef]
- RoyChowdhury, A.; Chakrabarty, P.; Singh, A.; Jin, S.; Jiang, H.; Cao, L.; Learned-Miller, E. Automatic Adaptation of Object Detectors to New Domains Using Self-Training. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 780–790. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Chen, W.; Xie, D.; Yang, S.; Yuan, P.; Pu, S.; Zhuang, Y. A Free Lunch for Unsupervised Domain Adaptive Object Detection without Source Data. In Proceedings of the AAAI, Virtually, 2–9 February 2021; pp. 1–9. [Google Scholar]
- Lin, C.; Yuan, Z.; Zhao, S.; Sun, P.; Wang, C.; Cai, J. Domain-Invariant Disentangled Network for Generalizable Object Detection. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, BC, Canada, 10–17 October 2021; pp. 8751–8760. [Google Scholar] [CrossRef]
- Wang, X.; Huang, T.E.; Liu, B.; Yu, F.; Wang, X.; Gonzalez, J.E.; Darrell, T. Robust Object Detection via Instance-Level Temporal Cycle Confusion. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, BC, Canada, 10–17 October 2021; pp. 9123–9132. [Google Scholar] [CrossRef]
- He, Z.; Zhang, L. Multi-Adversarial Faster-RCNN for Unrestricted Object Detection. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019; pp. 6667–6676. [Google Scholar] [CrossRef] [Green Version]
- Kim, T.; Jeong, M.; Kim, S.; Choi, S.; Kim, C. Diversify and Match: A Domain Adaptive Representation Learning Paradigm for Object Detection. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 12448–12457. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Pang, J.; Yang, C.; Shi, J.; Lin, D. Adapting Object Detectors via Selective Cross-Domain Alignment. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 687–696. [Google Scholar] [CrossRef]
- Xie, R.; Yu, F.; Wang, J.; Wang, Y.; Zhang, L. Multi-Level Domain Adaptive Learning for Cross-Domain Detection. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), Seoul, Republic of Korea, 27–28 October 2019; pp. 3213–3219. [Google Scholar] [CrossRef]
- Cai, Q.; Pan, Y.; Ngo, C.W.; Tian, X.; Duan, L.; Yao, T. Exploring Object Relation in Mean Teacher for Cross-Domain Detection. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 11449–11458. [Google Scholar] [CrossRef] [Green Version]
- He, Z.; Zhang, L. Domain Adaptive Object Detection via Asymmetric Tri-Way Faster-RCNN. In Proceedings of the Computer Vision—ECCV 2020, Glasgow, UK, 23–28 August 2020; Springer International Publishing: Cham, Switzerland, 2020; pp. 309–324. [Google Scholar]
- Zhao, G.; Li, G.; Xu, R.; Lin, L. Collaborative Training Between Region Proposal Localization and Classification for Domain Adaptive Object Detection. In Proceedings of the Computer Vision—ECCV 2020, Glasgow, UK, 23–28 August 2020; Springer International Publishing: Cham, Switzerland, 2020; pp. 86–102. [Google Scholar]
- Everingham, M.; Van Gool, L.; Williams, C.K.I.; Winn, J.; Zisserman, A. The Pascal visual object classes challenge: A retrospective. Int. J. Comput. Vis. 2015, 111, 98–136. [Google Scholar] [CrossRef]
- Wilber, M.J.; Fang, C.; Jin, H.; Hertzmann, A.; Collomosse, J.; Belongie, S. BAM! The Behance Artistic Media Dataset for Recognition Beyond Photography. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 1211–1220. [Google Scholar] [CrossRef] [Green Version]
- Cordts, M.; Omran, M.; Ramos, S.; Rehfeld, T.; Enzweiler, M.; Benenson, R.; Franke, U.; Roth, S.; Schiele, B. The Cityscapes Dataset for Semantic Urban Scene Understanding. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 3213–3223. [Google Scholar] [CrossRef] [Green Version]
- Deng, J.; Li, W.; Chen, Y.; Duan, L. Unbiased Mean Teacher for Cross-domain Object Detection. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 4091–4101. [Google Scholar] [CrossRef]
- Shen, Z.; Maheshwari, H.; Yao, W.; Savvides, M. SCL: Towards Accurate Domain Adaptive Object Detection via Gradient Detach Based Stacked Complementary Losses. arXiv 2019, arXiv:1911.02559. [Google Scholar]
- Chen, C.; Zheng, Z.; Ding, X.; Huang, Y.; Dou, Q. Harmonizing Transferability and Discriminability for Adapting Object Detectors. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 8866–8875. [Google Scholar] [CrossRef]
- Tzeng, E.; Hoffman, J.; Saenko, K.; Darrell, T. Adversarial Discriminative Domain Adaptation. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2962–2971. [Google Scholar] [CrossRef] [Green Version]
- Inoue, N.; Furuta, R.; Yamasaki, T.; Aizawa, K. Cross-domain weakly-supervised object detection through progressive domain adaptation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 5001–5009. [Google Scholar]
- Tarvainen, A.; Valpola, H. Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results. arXiv 2017, arXiv:1703.01780. [Google Scholar]
- Li, Y.J.; Dai, X.; Ma, C.Y.; Liu, Y.C.; Chen, K.; Wu, B.; He, Z.; Kitani, K.; Vajda, P. Cross-Domain Adaptive Teacher for Object Detection. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022, New Orleans, LA, USA, 19–24 June 2016; pp. 7571–7580. [Google Scholar] [CrossRef]
- He, M.; Wang, Y.; Wu, J.; Wang, Y.; Li, H.; Li, B.; Gan, W.; Wu, W.; Qiao, Y. Cross Domain Object Detection by Target-Perceived Dual Branch Distillation. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; pp. 9560–9570. [Google Scholar] [CrossRef]
- Zhuang, C.; Han, X.; Huang, W.; Scott, M. iFAN: Image-Instance Full Alignment Networks for Adaptive Object Detection. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 13122–13129. [Google Scholar] [CrossRef]
- Wang, W.; Cao, Y.; Zhang, J.; He, F.; Zha, Z.J.; Wen, Y.; Tao, D. Exploring Sequence Feature Alignment for Domain Adaptive Detection Transformers. arXiv 2021, arXiv:2107.12636. [Google Scholar]
- Wang, H.; Liao, S.; Shao, L. AFAN: Augmented Feature Alignment Network for Cross-Domain Object Detection. IEEE Trans. Image Process. 2021, 30, 4046–4056. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Wang, X.; Xu, T.; Yang, X.; Zou, L.; Xu, L.; Weise, T. Domain-Invariant Proposals based on a Balanced Domain Classifier for Object Detection. arXiv 2022, arXiv:2202.05941. [Google Scholar]
- Bolya, D.; Foley, S.; Hays, J.; Hoffman, J. TIDE: A General Toolbox for Identifying Object Detection Errors. In Proceedings of the Computer Vision—ECCV 2020, Glasgow, UK, 23–28 August 2020; Springer International Publishing: Cham, Switzerland, 2020; pp. 558–573. [Google Scholar]
Datasets | Train | Val | Test | Total |
---|---|---|---|---|
Pascal VOC [42] | 2501 | 2510 | 4952 | 9963 |
Clipart [43] | 600 | 200 | 200 | 1000 |
Watercolor [43] | 1000 | 500 | 500 | 2000 |
DT Clipart [43] | 2501 | 2510 | 4952 | 9963 |
Cityscapes [44] | 2975 | 500 | 1525 | 5000 |
Foggy Cityscapes [44] | 2975 | 500 | 1525 | 5000 |
Methods | Aero | Bike | Bird | Boat | Bottle | Bus | Car | Cat | Chair | Cow | Table | Dog | Horse | Mbike | Person | Plant | Sheep | Sofa | Train | TV | mAP |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DA-Faster [5] | 15.0 | 34.6 | 12.4 | 11.9 | 19.8 | 21.1 | 23.2 | 3.1 | 22.1 | 26.3 | 10.6 | 10.0 | 19.6 | 39.4 | 34.6 | 29.3 | 1.0 | 17.1 | 19.7 | 24.8 | 19.8 |
SWDA [6] | 26.2 | 48.5 | 32.6 | 33.7 | 38.5 | 54.3 | 37.1 | 18.6 | 34.8 | 58.3 | 17.0 | 12.5 | 33.8 | 65.5 | 61.6 | 52.0 | 9.3 | 24.9 | 54.1 | 49.1 | 38.1 |
SCL [46] | 44.7 | 50.0 | 33.6 | 27.4 | 42.2 | 55.6 | 38.3 | 19.2 | 37.9 | 69.0 | 30.1 | 26.3 | 34.4 | 67.3 | 61.0 | 47.9 | 21.4 | 26.3 | 50.1 | 47.3 | 41.5 |
HTCN [47] | 33.6 | 58.9 | 34.0 | 23.4 | 45.6 | 57.0 | 39.8 | 12.0 | 39.7 | 51.3 | 21.1 | 20.1 | 39.1 | 72.8 | 63.0 | 43.1 | 19.3 | 30.1 | 50.2 | 51.8 | 40.3 |
ATF [40] | 41.9 | 67.0 | 27.4 | 36.4 | 41.0 | 48.5 | 42.0 | 13.1 | 39.2 | 75.1 | 33.4 | 7.9 | 41.2 | 56.2 | 61.4 | 50.6 | 42.0 | 25.0 | 53.1 | 39.1 | 42.1 |
UMT [45] | 39.6 | 59.1 | 32.4 | 35.0 | 45.1 | 61.9 | 48.4 | 7.5 | 46.0 | 67.6 | 21.4 | 29.5 | 48.2 | 75.9 | 70.5 | 56.7 | 25.9 | 28.9 | 39.4 | 43.6 | 44.1 |
Source only | 5.4 | 50.2 | 7.9 | 15.9 | 40.6 | 16.2 | 22.1 | 0.3 | 36.8 | 1.7 | 25.6 | 8.3 | 10.0 | 36.7 | 34.8 | 46.4 | 11.0 | 24.0 | 10.1 | 31.3 | 21.8 |
FA branch only | 13.7 | 67.4 | 33.3 | 38.6 | 33.1 | 63.9 | 52.3 | 15.5 | 40.3 | 54.4 | 34.8 | 28.3 | 42.1 | 53.8 | 76.2 | 56.3 | 41.9 | 25.1 | 52.6 | 56.8 | 44.1 |
FS branch only | 27.7 | 60.6 | 38.6 | 48.3 | 42.8 | 65.1 | 59.3 | 16.6 | 41.4 | 52.9 | 40.5 | 30.4 | 36.8 | 59.3 | 75.7 | 56.8 | 48.0 | 22.5 | 49.5 | 44.9 | 45.9 |
Proposed Method | 25.2 | 75.7 | 31.8 | 42.3 | 32.5 | 70.8 | 57.2 | 18.3 | 42.2 | 73.7 | 42.5 | 25.7 | 41.1 | 65.9 | 77.4 | 58.0 | 47.9 | 33.7 | 52.5 | 53.4 | 48.4 |
oracle | 55.2 | 78.3 | 51.1 | 58.1 | 60.7 | 58.4 | 61.5 | 27.3 | 60.9 | 71.7 | 60.5 | 40.7 | 56.9 | 82.5 | 82.8 | 65.9 | 49.2 | 46.1 | 59.7 | 58.1 | 59.3 |
Methods | Aero | Bike | Bird | Boat | Bottle | Bus | Car | Cat | Chair | Cow | Table | Dog | Horse | Mbike | Person | Plant | Sheep | Sofa | Train | TV | mAP |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ADDA [48] | 20.1 | 50.2 | 20.5 | 23.6 | 11.4 | 40.5 | 34.9 | 2.3 | 39.7 | 22.3 | 27.1 | 10.4 | 31.7 | 53.6 | 46.6 | 32.1 | 18.0 | 21.1 | 23.6 | 18.3 | 27.4 |
CDWS [49] | 23.3 | 60.1 | 24.9 | 41.5 | 26.4 | 53.0 | 44.0 | 4.1 | 45.3 | 51.5 | 39.5 | 11.6 | 40.4 | 62.2 | 61.1 | 37.1 | 20.9 | 39.6 | 38.4 | 36.0 | 38.0 |
Source only | 4.4 | 44.9 | 7.8 | 15.6 | 33.5 | 27.1 | 22.1 | 0.4 | 37.9 | 9.2 | 23.5 | 10.4 | 13.6 | 40.8 | 40.3 | 43.0 | 17.0 | 14.7 | 23.6 | 40.6 | 23.5 |
FA branch only | 64.6 | 77.2 | 40.7 | 29.7 | 26.0 | 61.6 | 77.8 | 58.5 | 33.5 | 48.9 | 53.0 | 44.8 | 70.5 | 77.7 | 69.8 | 27.7 | 37.8 | 38.6 | 62.2 | 41.9 | 52.1 |
FS branch only | 62.0 | 75.8 | 37.3 | 26.5 | 31.3 | 68.2 | 80.2 | 60.2 | 37.3 | 53.2 | 52.3 | 41.8 | 63.7 | 76.3 | 70.5 | 33.1 | 38.0 | 40.4 | 67.2 | 46.4 | 53.1 |
Proposed Method | 67.1 | 78.5 | 39.2 | 30.6 | 26.3 | 70.5 | 76.9 | 63.8 | 37.7 | 52.3 | 57.8 | 45.1 | 68.3 | 74.4 | 71.0 | 30.5 | 45.1 | 43.4 | 67.3 | 47.3 | 54.7 |
Methods | Pascal VOC & Watercolor → Clipart | |||||
---|---|---|---|---|---|---|
Bicycle | Bird | Car | Cat | Dog | Person | |
MT [50] | 64.8 | 23.4 | 34.6 | 3.1 | 22.0 | 61.4 |
AT [51] | 78.6 | 30.1 | 40.3 | 10.9 | 32.6 | 72.8 |
Proposed Method | 60.4 | 30.6 | 52.9 | 14.4 | 22.4 | 66.5 |
Methods | Person | Rider | Car | Truck | Bus | Train | Motor | Bike | mAP |
---|---|---|---|---|---|---|---|---|---|
DA-Faster [5] | 31.9 | 41.6 | 46.4 | 20.1 | 32.0 | 17.5 | 23.1 | 34.6 | 30.9 |
SCDA [37] | 33.5 | 38.0 | 48.5 | 26.5 | 39.0 | 23.3 | 28.0 | 33.6 | 33.8 |
SWDA [6] | 29.9 | 42.3 | 43.5 | 24.5 | 36.2 | 32.6 | 30.0 | 35.3 | 34.3 |
MTOR [39] | 30.6 | 41.4 | 44.0 | 21.9 | 38.6 | 40.6 | 28.3 | 35.6 | 36.0 |
iFan [53] | 32.6 | 40.0 | 48.5 | 27.9 | 45.5 | 31.7 | 22.8 | 33.0 | 35.3 |
HTCN [47] | 33.2 | 47.5 | 47.9 | 31.6 | 47.4 | 40.9 | 32.3 | 37.1 | 39.8 |
GPA [24] | 32.9 | 46.7 | 54.1 | 24.7 | 45.7 | 41.1 | 32.4 | 38.7 | 39.5 |
SFA [54] | 46.5 | 48.6 | 62.6 | 25.1 | 46.2 | 29.4 | 28.3 | 44.0 | 41.3 |
UMT [45] | 33.0 | 46.7 | 48.6 | 34.1 | 56.5 | 46.8 | 30.4 | 37.3 | 41.7 |
AFAN [55] | 42.5 | 44.6 | 57.0 | 26.4 | 48.0 | 28.3 | 33.2 | 37.1 | 39.6 |
DIR [56] | 36.9 | 45.8 | 49.4 | 28.2 | 44.6 | 34.9 | 35.1 | 38.9 | 39.2 |
TDD [52] | 39.6 | 47.5 | 55.7 | 33.8 | 47.6 | 42.1 | 37.0 | 41.4 | 43.1 |
Source only | 27.6 | 31.4 | 48.9 | 21.2 | 33.8 | 16.9 | 19.9 | 23.1 | 27.9 |
FA branch only | 40.4 | 41.7 | 64.8 | 30.6 | 55.3 | 56.7 | 25.9 | 33.5 | 43.6 |
FS branch only | 41.2 | 42.1 | 64.2 | 32.0 | 54.4 | 49.9 | 29.8 | 34.1 | 43.5 |
Proposed Method | 46.1 | 46.5 | 68.9 | 35.6 | 57.1 | 50.8 | 35.2 | 38.7 | 47.4 |
oracle | 51.2 | 49.2 | 71.9 | 40.1 | 57.7 | 56.3 | 40.1 | 42.3 | 51.1 |
EXP. | Scale | Speed/ms | ||||
---|---|---|---|---|---|---|
1 | 0.99 | 0.99 | 512 | 43.2 | 23.8 | 14.9 |
2 | 0.099 | 0.099 | 512 | 48.4 | 26.5 | 23.7 |
3 | 0.0099 | 0.0099 | 512 | 47.0 | 26.3 | 19.2 |
EXP. | Conv Kernel | Scale | Params/M | Speed/ms | FLOPs/B | ||
---|---|---|---|---|---|---|---|
1 | [16,32,64,128,256] | 640 | 1.79 | 35.2 | 17.4 | 15.1 | 4.2 |
2 | [32,64,128,256,512] | 640 | 7.1 | 38.8 | 19.5 | 17.3 | 15.9 |
3 | [48,96,192,384,768] | 640 | 20.9 | 46.4 | 22.4 | 22.4 | 48.1 |
4 | [64,128,256,512,1024] | 640 | 46.2 | 44.4 | 23.6 | 19.1 | 108.6 |
5 | [80,160,320,640,1280] | 640 | 86.3 | 46.2 | 25.9 | 37.4 | 204.2 |
Method | Scale | Speed/ms | ||
---|---|---|---|---|
FA branch only | 512 | 45.9 | 25.6 | 14.2 |
FS branch only | 512 | 44.1 | 25.4 | 14.7 |
Proposed Method | 512 | 48.4 | 26.5 | 23.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Zhang, B.; Liu, N. Cross-Domain Object Detection by Dual Adaptive Branch. Sensors 2023, 23, 1199. https://doi.org/10.3390/s23031199
Liu X, Zhang B, Liu N. Cross-Domain Object Detection by Dual Adaptive Branch. Sensors. 2023; 23(3):1199. https://doi.org/10.3390/s23031199
Chicago/Turabian StyleLiu, Xinyi, Baofeng Zhang, and Na Liu. 2023. "Cross-Domain Object Detection by Dual Adaptive Branch" Sensors 23, no. 3: 1199. https://doi.org/10.3390/s23031199
APA StyleLiu, X., Zhang, B., & Liu, N. (2023). Cross-Domain Object Detection by Dual Adaptive Branch. Sensors, 23(3), 1199. https://doi.org/10.3390/s23031199