Investigating the Potential of Thin Silicon Nitride Membranes in Fiber-Based Photoacoustic Sensing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Membranes and Membrane Holders
2.2. Measurement Setup
3. Results and Discussions
3.1. Measurements with O-Ring Membrane Mount
3.2. Measurements with Washer Ring Membrane Mount
3.3. Membrane Measurements with OP1550 Interferometer
3.4. Membrane Measurements with ZonaSens
3.5. Methane Detection
4. Discussions
5. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alvarez, R.A.; Pacala, S.W.; Winebrake, J.J.; Chameides, W.L.; Hamburg, S.P. Greater focus needed on methane leakage from natural gas infrastructure. Proc. Natl. Acad. Sci. USA 2012, 109, 6435–6440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alvarez, R.A.; Zavala-Araiza, D.; Lyon, D.R.; Allen, D.T.; Barkley, Z.R.; Brandt, A.R.; Davis, K.J.; Herndon, S.C.; Jacob, D.J.; Karion, A. Assessment of methane emissions from the U.S. oil and gas supply chain. Science 2018, 361, 186–188. [Google Scholar] [CrossRef] [PubMed]
- Patel, P. Monitoring Methane. ACS Cent. Sci. 2017, 3, 679–682. [Google Scholar] [CrossRef] [Green Version]
- Leak Detectors Sense Commercial Opportunities. Available online: https://optics.org/news/9/5/29/ (accessed on 28 May 2018).
- Wang, J.; Wang, H.; Liu, X. A portable laser photoacoustic methane sensor based on FPGA. Sensors 2016, 16, 1551. [Google Scholar] [CrossRef] [PubMed]
- Tombez, L.; Zhang, E.; Orcutt, J.; Kamlapurkar, S.; Green, W. Methane absorption spectroscopy on a silicon photonic chip. Optica 2017, 4, 1322–1325. [Google Scholar] [CrossRef]
- Wang, F.; Jia, S.; Wang, Y.; Tang, Z. Recent developments in modulation spectroscopy for methane detection based on tunable diode laser. Appl. Sci. 2019, 9, 2816. [Google Scholar] [CrossRef] [Green Version]
- Adegboye, M.A.; Fung, W.-K.; Karnik, A. Recent advances in pipeline monitoring and oil leakage detection technologies: Principles and approaches. Sensors 2019, 19, 2548. [Google Scholar] [CrossRef] [Green Version]
- Mikl´os, A.; Hess, P.; Boz´oki, Z. Application of acoustic resonators in photoacoustic trace gas analysis and metrology. Rev. Sci. Instrum. 2001, 72, 1937–1955. [Google Scholar] [CrossRef] [Green Version]
- Hodgkinson, J.; Tatam, R.P. Optical gas sensing: A review. Meas. Sci. Technol. 2012, 24, 012004. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Pang, T.; Zhang, Z.; Sun, P.; Xia, H.; Wu, B.; Guo, Q.; Sigrist, M.W.; Shu, C. A novel compact intrinsic safety full range Methane microprobe sensor using “trans-world” processing method based on near-infrared spectroscopy. Sens. Actuators B Chem. 2021, 334, 129680. [Google Scholar] [CrossRef]
- Bartlome, R.; Kaučikas, M.; Sigrist, M.W. Modulated resonant versus pulsed resonant photoacoustics in trace gas detection. Appl. Phys. B 2009, 96, 561–566. [Google Scholar] [CrossRef]
- Sigrist, M. Photoacoustic spectroscopy in trace gas sensing. In Proceedings of the 2nd International Conference on Physics of Optical Materials and Devices (ICOM 2009), Herceg Novi, Montenegro, 27–30 August 2009. [Google Scholar]
- Rey, J.M.; Sigrist, M.W. Differential mode excitation photoacoustic spectroscopy: A new photoacoustic detection scheme. Rev. Sci. Instrum. 2007, 78, 063104. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Iannuzzi, D. A fiber-tip photoacoustic sensor for in situ trace gas detection. Rev. Sci. Instrum. 2019, 90, 023102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, S.; Slaman, M.; Gruca, G.; Iannuzzi, D. PAS-WRAP: A new approach to photoacoustic sensing, a new opportunity for the optical fiber sensor community. In Seventh European Work-shop on Optical Fibre Sensors; International Society for Optics and Photonics: Bellingham, DC, USA, 2019; Volume 11199, pp. 427–430. [Google Scholar]
- Bell, A.G. Upon the production and reproduction of sound by light. J. Soc. Telegr. Eng. 1880, 9, 404–426. [Google Scholar] [CrossRef]
- Bijnen, F.G.C.; Reuss, J.; Harren, F.J.M. Geometrical Optimization of a Longitudinal Resonant Photoacoustic Cell for Sensitive and Fast Trace Gas Detection. Rev. Sci. Instrum. 1996, 67, 2914–2923. [Google Scholar] [CrossRef] [Green Version]
- Patimisco, P.; Scamarcio, G.; Tittel, F.K.; Spagnolo, V. Quartz-Enhanced Photoacoustic Spectroscopy: A Review. Sensors 2014, 14, 6165–6206. [Google Scholar] [CrossRef] [Green Version]
- Kuusela, T.; Peura, J.; Matveev, B.A.; Remennyy, M.A.; Stus, N.M. Photoacoustic gas detection using a cantilever microphone and III–V mid-IR LEDs. Vib. Spectrosc. 2009, 51, 289–293. [Google Scholar] [CrossRef]
- Lu, C.; Dashtabi, M.M.; Nikbakht, H.; Khoshmehr, M.T.; Akca, B.I. Sub-Nanometer Acoustic Vibration Sensing Using a Tapered-Tip Optical Fiber Microcantilever. Sensors 2023, 23, 924. [Google Scholar] [CrossRef]
- Zwickl, B.M.; Shanks, W.E.; Jayich, A.M.; Yang, C.; Bleszynski Jayich, A.C.; Thompson, J.D.; Harris, J.G.E. High quality mechanical and optical properties of commercial silicon nitride membranes. Appl. Phys. Lett. 2008, 92, 103125. [Google Scholar] [CrossRef]
- Elmore, W.C.; Heald, M.A. Physics of Waves; Courier Corporation: Chelmsford, MA, USA, 1985; Chapter 2. [Google Scholar]
- Fletcher, M.; Tait, S.; Steinlechner, J.; Martin, L.W.; Bell, A.S.; Hough, J.; Rowan, S.; Schnabel, R. Effect of stress and temperature on the optical properties of silicon nitride membranes at 1,550 nm. Front. Mater. 2018, 5, 1. [Google Scholar] [CrossRef]
- Pearson, A.N.; Khosla, K.E.; Mergenthaler, M.; Briggs, G.A.D.; Laird, E.A.; Ares, N. Radio-frequency optomechanical characterization of a silicon nitride drum. Sci. Rep. 2020, 10, 1654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Purdy, T.P.; Peterson, R.W.; Yu, P.-L.; Regal, C.A. Cavity optomechanics with Si3N4 membranes at cryogenic temperatures. New J. Phys. 2012, 14, 115021. [Google Scholar] [CrossRef] [Green Version]
- Qin, J.; Zhao, C.; Ma, Y.; Chen, X.; Ju, L.; Blair, D.G. Classical demonstration of frequency-dependent noise ellipse rotation using optomechanically induced transparency. Phys. Rev. A 2014, 89, 041802. [Google Scholar] [CrossRef] [Green Version]
- Wilcken, K.; Kauppinen, J. Optimization of a microphone for photoacoustic spectroscopy. Appl. Spectrosc. 2003, 57, 1087–1092. [Google Scholar] [CrossRef] [PubMed]
- Kauppinen, J.; Wilcken, K.; Kauppinen, I.; Koskinen, V. High sensitivity in gas analysis with photoacoustic detection. Microchem. J. 2004, 76, 151–159. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Konijn, Y.; Salumbides, E.; Akca, B.I. Investigating the Potential of Thin Silicon Nitride Membranes in Fiber-Based Photoacoustic Sensing. Sensors 2023, 23, 1207. https://doi.org/10.3390/s23031207
Konijn Y, Salumbides E, Akca BI. Investigating the Potential of Thin Silicon Nitride Membranes in Fiber-Based Photoacoustic Sensing. Sensors. 2023; 23(3):1207. https://doi.org/10.3390/s23031207
Chicago/Turabian StyleKonijn, Yorick, Edcel Salumbides, and B. Imran Akca. 2023. "Investigating the Potential of Thin Silicon Nitride Membranes in Fiber-Based Photoacoustic Sensing" Sensors 23, no. 3: 1207. https://doi.org/10.3390/s23031207
APA StyleKonijn, Y., Salumbides, E., & Akca, B. I. (2023). Investigating the Potential of Thin Silicon Nitride Membranes in Fiber-Based Photoacoustic Sensing. Sensors, 23(3), 1207. https://doi.org/10.3390/s23031207