Computational Investigation of Advanced Refractive Index Sensor Using 3-Dimensional Metamaterial Based Nanoantenna Array
Abstract
:1. Introduction
2. Approaches for Computational Design and Optimization
3. The Parameterized Investigation of the Multi-Layered Structure
3.1. Performance of the Ten Layered Elliptical Shaped Antenna Array Stacked with Al2O3 and LiTaO3
3.2. Study of Field Distribution around the Single Metal and Ten-Layered (5 Pairs of Gold and LiTaO3 Stacked) Elliptical Shaped Antenna Array
4. Effect of the Separation Distance on the LiTaO3 and Al2O3 Stacked Nano Structure
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, J.J.; Chen, L.; Tai, S.; Deng, X.; Sciortino, P.F.; Deng, J.; Liu, F. Wafer-based nanostructure manufacturing for integrated nano optic devices. J. Light. Technol. 2005, 23, 474. [Google Scholar] [CrossRef]
- Xiong, X.Y.; Jiang, L.J.; Sha, W.E.; Lo, Y.H.; Chew, W.C. Compact nonlinear Yagi-Uda nanoantenna. Sci. Rep. 2016, 6, 18872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thraskias, C.A.; Lallas, E.N.; Neumann, N.; Schares, L.; Offrein, B.J.; Henker, R.; Plettemeier, D.; Ellinger, F.; Leuthold, J.; Tomkos, I. Survey of photonic and plasmonic interconnect technologies for intra-datacenter and high-performance computing communications. IEEE Commun. Surv. Tutor. 2018, 20, 2758–2783. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.; Li, J.; Liu, C.; Yin, Y.; Wang, W.; Ni, Z.; Fu, Z.; Yu, H.; Xu, Y.; Shi, Y.; et al. High-performance silicon−graphene hybrid plasmonic waveguide photodetectors beyond 1.55 μm. Light Sci. Appl. 2020, 9, 29. [Google Scholar] [CrossRef] [Green Version]
- Klein, M.; Badada, B.H.; Binder, R.; Alfrey, A.; McKie, M.; Koehler, M.R.; Mandrus, D.G.; Taniguchi, T.; Watanabe, K.; LeRoy, B.J.; et al. 2D semiconductor nonlinear plasmonic modulators. Nat. Commun. 2019, 10, 3264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, M.; Shavit, R.; Zalevsky, Z. Enabling high efficiency nanoplasmonics with novel nanoantenna architectures. Sci. Rep. 2015, 5, 17562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bagherian, M.; Passian, A.; Kouchekian, S.; Siopsis, G. Quantum Hamiltonian for the surface charge density on a ring torus and radiative decay of plasmons. Phys. Rev. B 2020, 102, 085422. [Google Scholar] [CrossRef]
- Bagherian, M.; Passian, A. Quantum states of cylindrical surface charge density for modeling plasmonic circuit elements: Nanowires, nanorods, cavities, and waveguides. Phys. Rev. A 2022, 105, 063507. [Google Scholar] [CrossRef]
- Lin, L.; Zheng, Y. Optimizing plasmonic nanoantennas via coordinated multiple coupling. Sci. Rep. 2015, 5, 14788. [Google Scholar] [CrossRef] [Green Version]
- Malheiros-Silveira, G.N.; Wiederhecker, G.S.; Hernández-Figueroa, H.E. Dielectric resonator antenna for applications in nanophotonics. Opt. Express 2013, 21, 1234–1239. [Google Scholar] [CrossRef]
- Novotny, L.; Van, H.N. Antennas for light. Nat. Photonics 2011, 5, 83–90. [Google Scholar] [CrossRef]
- Pan, Z.; Guo, J. Enhanced optical absorption and electric field resonance in diabolo metal bar optical antennas. Opt. Express 2013, 21, 32491–32500. [Google Scholar] [CrossRef] [PubMed]
- James, T.D.; Davis, T.J.; Roberts, A. Optical investigation of the J-pole and Vee antenna families. Opt. Express 2014, 22, 1336–1341. [Google Scholar] [CrossRef] [PubMed]
- Sederberg, S.; Elezzabi, A.Y. Nanoscale plasmonic contour bowtie antenna operating in the mid-infrared. Optics Express. 2011, 19, 15532–15537. [Google Scholar] [CrossRef]
- Ooi, K.J.; Bai, P.; Gu, M.X.; Ang, L.K. Design of a monopole-antenna-based resonant nanocavity for detection of optical power from hybrid plasmonic waveguides. Opt. Express 2011, 19, 17075–17085. [Google Scholar] [CrossRef] [Green Version]
- Yousefi, L.; Foster, A.C. Waveguide-fed optical hybrid plasmonic patch nano-antenna. Opt. Express 2012, 20, 18326–18335. [Google Scholar] [CrossRef] [Green Version]
- Dai, D.; He, S. A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement. Opt. Express 2009, 17, 16646–16653. [Google Scholar] [CrossRef]
- Alam, M.Z.; Meier, J.; Aitchison, J.S.; Mojahedi, M. Propagation characteristics of hybrid modes supported by metal-low-high index waveguides and bends. Opt. Express 2010, 18, 12971–12979. [Google Scholar] [CrossRef]
- Dai, D.; Shi, Y.; He, S.; Wosinski, L.; Thylen, L. Gain enhancement in a hybrid plasmonic nano-waveguide with a low-index or high-index gain medium. Opt. Express 2011, 19, 12925–12936. [Google Scholar] [CrossRef]
- Kashyap, N.; Wani, Z.A.; Jain, R.; Dinesh, K.V. Investigation of a nanostrip patch antenna in optical frequencies. Appl. Phys. A 2014, 117, 725–729. [Google Scholar] [CrossRef]
- Saad-Bin-Alam, M.; Khalil, M.I.; Rahman, A.; Chowdhury, A.M. Hybrid plasmonic waveguide fed broadband nanoantenna for nanophotonic applications. IEEE Photonics Technol. Lett. 2015, 27, 1092–1095. [Google Scholar] [CrossRef] [Green Version]
- Yousefi, L. Highly directive hybrid plasmonic leaky wave optical nano-antenna. Prog. Electromagn. Res. Lett. 2014, 50, 85–90. [Google Scholar] [CrossRef] [Green Version]
- Zuev, D.A.; Makarov, S.V.; Mukhin, I.S.; Milichko, V.A.; Starikov, S.V.; Morozov, I.A.; Shishkin, K.A.E.; Belov, P.A. Fabrication of Hybrid Nanostructures via Nanoscale Laser-Induced Reshaping for Advanced Light Manipulation. Adv. Mater. 2016, 28, 3087–3093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, P.; Kumar, V.D. Investigation of multilayer planar hybrid plasmonic waveguide and bends. Electron. Lett. 2016, 52, 732–734. [Google Scholar] [CrossRef]
- Sharma, P.; Kumar, V.D. All optical logic gates using hybrid metal insulator metal plasmonic waveguide. IEEE Photonics Technol. Lett. 2018, 30, 959–962. [Google Scholar] [CrossRef]
- Sharma, P.; Kumar, V.D. Hybrid insulator metal insulator planar plasmonic waveguide-based components. IEEE Photonics Technol. Lett. 2017, 29, 1360–1363. [Google Scholar] [CrossRef]
- Biagioni, P.; Huang, J.S.; Hecht, B. Nanoantennas for visible and infrared radiation. Rep. Prog. Phys. 2012, 75, 024402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fischer, H.; Martin, O.J. Engineering the optical response of plasmonic nanoantennas. Opt. Express 2008, 16, 9144–9154. [Google Scholar] [CrossRef] [Green Version]
- Fernández-García, R.; Sonnefraud, Y.; Fernández-Domínguez, A.I.; Giannini, V.; Maier, S.A. Design considerations for near-field enhancement in optical antennas. Contemp. Phys. 2014, 55, 1–11. [Google Scholar] [CrossRef]
- Feichtner, T.; Selig, O.; Kiunke, M.; Hecht, B. Evolutionary optimization of optical antennas. Phys. Rev. Lett. 2012, 109, 127701. [Google Scholar] [CrossRef]
- Zhu, Z.; Bai, B.; You, O.; Li, Q.; Fan, S. Fano resonance boosted cascaded optical field enhancement in a plasmonic nanoparticle-in-cavity nanoantenna array and its SERS application. Light Sci. Appl. 2015, 4, e296. [Google Scholar] [CrossRef] [Green Version]
- Savage, K.J.; Hawkeye, M.M.; Esteban, R.; Borisov, A.G.; Aizpurua, J.; Baumberg, J.J. Revealing the quantum regime in tunnelling plasmonics. Nature 2012, 491, 574–577. [Google Scholar] [CrossRef] [PubMed]
- Ciracì, C.; Hill, R.T.; Mock, J.J.; Urzhumov, Y.; Fernández-Domínguez, A.I.; Maier, S.A.; Pendry, J.B.; Chilkoti, A.; Smith, D.R. Probing the ultimate limits of plasmonic enhancement. Science 2012, 337, 1072–1074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aouani, H.; Rahmani, M.; Navarro-Cía, M.; Maier, S.A. Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna. Nat. Nanotechnol. 2014, 9, 290–294. [Google Scholar] [CrossRef]
- Hoang, T.B.; Akselrod, G.M.; Mikkelsen, M.H. Ultrafast room-temperature single photon emission from quantum dots coupled to plasmonic nanocavities. Nano Lett. 2016, 16, 270–275. [Google Scholar] [CrossRef]
- Anger, P.; Bharadwaj, P.; Novotny, L. Enhancement and quenching of single-molecule fluorescence. Phys. Rev. Lett. 2006, 96, 113002. [Google Scholar] [CrossRef] [Green Version]
- Akselrod, G.M.; Weidman, M.C.; Li, Y.; Argyropoulos, C.; Tisdale, W.A.; Mikkelsen, M.H. Efficient nanosecond photoluminescence from infrared PbS quantum dots coupled to plasmonic nanoantennas. ACS Photonics 2016, 3, 1741–1746. [Google Scholar] [CrossRef] [Green Version]
- Zhou, F.; Liu, Y.; Cai, W. Huge local electric field enhancement in hybrid plasmonic arrays. Opt. Lett. 2014, 39, 1302–1305. [Google Scholar] [CrossRef]
- Bao, Y.; Hou, Y.; Wang, Z. Huge electric field enhancement of magnetic resonator integrated with multiple concentric rings. Plasmonics 2015, 10, 251–256. [Google Scholar] [CrossRef]
- Li, W.; Hou, Y. Electromagnetic field hugely enhanced by coupling to optical energy focusing structure. Opt. Express 2017, 25, 7358–7368. [Google Scholar] [CrossRef]
- Liu, J.N.; Huang, Q.; Liu, K.K.; Singamaneni, S.; Cunningham, B.T. Nanoantenna–microcavity hybrids with highly cooperative plasmonic–photonic coupling. Nano Lett. 2017, 17, 7569–7577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seok, T.J.; Jamshidi, A.; Kim, M.; Dhuey, S.; Lakhani, A.; Choo, H.; Schuck, P.J.; Cabrini, S.; Schwartzberg, A.M.; Bokor, J.; et al. Radiation engineering of optical antennas for maximum field enhancement. Nano Lett. 2011, 11, 2606–2610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuznetsov, A.I.; Miroshnichenko, A.E.; Brongersma, M.L.; Kivshar, Y.S.; Luk’yanchuk, B. Optically resonant dielectric nanostructures. Science 2016, 354, aag2472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Z.J.; Jiang, R.; Zhuo, X.; Xie, Y.M.; Wang, J.; Lin, H.Q. Dielectric nanoresonators for light manipulation. Phys. Rep. 2017, 701, 1–50. [Google Scholar] [CrossRef]
- Verma, S.; Ghosh, S.; Rahman, B.A. Sensitivity analysis of a label-free detection using Opto-plasmonic nano-structured antenna. In Proceedings of the 2021 IEEE International Conference on Sensors and Nanotechnology (SENNANO), Port Dickson, Malaysia, 22–24 September 2021; pp. 93–96. [Google Scholar]
- Khorasaninejad, M.; Capasso, F.M. Versatile multifunctional photonic components. Science 2017, 358, eaam8100. [Google Scholar] [CrossRef] [Green Version]
- Verma, S.; Rahman, B.M. Advanced refractive index sensor using 3-dimensional metamaterial based nanoantenna array. J. Phys. Conf. Ser. 2022, 2407, 012054. [Google Scholar] [CrossRef]
- Jahani, S.; Jacob, Z. All-dielectric metamaterials. Nat. Nanotechnol. 2016, 11, 23–36. [Google Scholar] [CrossRef]
- Zhu, X.; Yan, W.; Levy, U.; Mortensen, N.A.; Kristensen, A. Resonant laser printing of structural colors on high-index dielectric metasurfaces. Sci. Adv. 2017, 3, e1602487. [Google Scholar] [CrossRef] [Green Version]
- Bakker, R.M.; Permyakov, D.; Yu, Y.F.; Markovich, D.; Paniagua-Domínguez, R.; Gonzaga, L.; Samusev, A.; Kivshar, Y.; Luk’yanchuk, B.; Kuznetsov, A.I. Magnetic and electric hotspots with silicon nanodimers. Nano Lett. 2015, 15, 2137–2142. [Google Scholar] [CrossRef]
- Caldarola, M.; Albella, P.; Cortés, E.; Rahmani, M.; Roschuk, T.; Grinblat, G.; Oulton, R.F.; Bragas, A.V.; Maier, S.A. Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion. Nat. Commun. 2015, 6, 7915. [Google Scholar] [CrossRef]
- Yang, Y.; Zenin, V.A.; Bozhevolnyi, S.I. Anapole-assisted strong field enhancement in individual all-dielectric nanostructures. ACS Photonics 2018, 5, 1960–1966. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.J.; Zhao, Q.; He, J. Boosting magnetic field enhancement with radiative couplings of magnetic modes in dielectric nanostructures. Opt. Express 2017, 25, 15927–15937. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Liu, P.; Ke, Y.; Su, Y.; Zhang, L.; Xu, N.; Deng, S.; Chen, H. Janus magneto–electric nanosphere dimers exhibiting unidirectional visible light scattering and strong electromagnetic field enhancement. ACS Nano 2015, 9, 436–448. [Google Scholar] [CrossRef] [PubMed]
- Guo, R.; Rusak, E.; Staude, I.; Dominguez, J.; Decker, M.; Rockstuhl, C.; Brener, I.; Neshev, D.N.; Kivshar, Y.S. Multipolar coupling in hybrid metal–dielectric metasurfaces. ACS Photonics 2016, 3, 349–353. [Google Scholar] [CrossRef]
- Feng, T.; Xu, Y.; Zhang, W.; Miroshnichenko, A.E. Ideal magnetic dipole scattering. Phys. Rev. Lett. 2017, 118, 173901. [Google Scholar] [CrossRef] [Green Version]
- Shibanuma, T.; Grinblat, G.; Albella, P.; Maier, S.A. Efficient third harmonic generation from metal–dielectric hybrid nanoantennas. Nano Lett. 2017, 17, 2647–2651. [Google Scholar] [CrossRef]
- Yang, Z.J.; Zhao, Q.; Deng, Y.H.; Zhang, D.L.; He, J. Efficient second harmonic generation in gold–silicon core–shell nanostructures. Opt. Express 2018, 26, 5835–5844. [Google Scholar] [CrossRef]
- Zhao, Q.; Yang, Z.J.; He, J. Fano resonances in heterogeneous dimers of silicon and gold nanospheres. Front. Phys. 2018, 13, 137801. [Google Scholar] [CrossRef]
- Devilez, A.; Stout, B.; Bonod, N. Compact metallo-dielectric optical antenna for ultra-directional and enhanced radiative emission. ACS Nano 2010, 4, 3390–3396. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Miller, O.D.; Christensen, T.; Joannopoulos, J.D.; Soljacic, M. Low-loss plasmonic dielectric nanoresonators. Nano Lett. 2017, 17, 3238–3245. [Google Scholar] [CrossRef]
- Kabashin, A.V.; Evans, P.; Pastkovsky, S.; Hendren, S.; Wurtz, G.A.; Pollard, R.; Podolskiy, V.A.; Zayats, A.V. Plasmonic nanorod metamaterials for biosensing. Nat. Mater. 2009, 8, 867–871. [Google Scholar] [CrossRef] [PubMed]
- Sreekanth, K.V.; Alapan, Y.; ElKabbash, M.; Ilker, E.; Hinczewski, M.; Gurkan, U.A.; Luca, A.D.; Strangi, G. Extreme sensitivity biosensing platform based on hyperbolic metamaterials. Nat. Mater. 2016, 15, 621–627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, P.B.; Christy, R.W. Optical constants of the noble metals. Phys. Rev. B 1972, 6, 4370. [Google Scholar] [CrossRef]
- Refractive Index Database. Available online: https://refractiveindex.info/?shelf=other&book=Mg-LiTaO3&page=Moutzouris-e (accessed on 20 March 2022).
- Verma, S.; Ghosh, S.; Rahman, B.M.A. All-opto plasmonic-controlled bulk and surface sensitivity analysis of a paired nano-structured antenna with a label-free detection approach. Sensors 2021, 21, 6166. [Google Scholar] [CrossRef] [PubMed]
- Mayne, L.; Lin, C.Y.; Christie, S.D.; Siwy, Z.S.; Platt, M. The design and characterization of multifunctional aptamer nanopore sensors. ACS Nano 2018, 12, 4844–4852. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Domenici, F.; Fasolato, C.; Mazzi, E.; De Angelis, L.; Brasili, F.; Mura, F.; Postorino, P.; Bordi, F. Engineering microscale two-dimensional gold nanoparticle cluster arrays for advanced Raman sensing: An AFM study. Colloids Surf. A Physicochem. Eng. Asp. 2016, 498, 168–175. [Google Scholar] [CrossRef]
- Jin, X.; Zhu, Q.; Feng, L.; Li, X.; Zhu, H.; Miao, H.; Zeng, Z.; Wang, Y.; Li, Y.; Wang, L.; et al. Light-trapping SERS substrate with regular bioinspired arrays for detecting trace dyes. ACS Appl. Mater. Interfaces 2021, 13, 11535–11542. [Google Scholar] [CrossRef]
- Yan, B.; Boriskina, S.V.; Reinhard, B.M. Design and implementation of noble metal nanoparticle cluster arrays for plasmon enhanced biosensing. J. Phys. Chem. C 2011, 115, 24437–24453. [Google Scholar] [CrossRef] [Green Version]
- Tsai, C.Y.; Lin, J.W.; Wu, C.Y.; Lin, P.T.; Lu, T.W.; Lee, P.T. Plasmonic coupling in gold nanoring dimers: Observation of coupled bonding mode. Nano Lett. 2012, 12, 1648–1654. [Google Scholar] [CrossRef]
- Ahmed, A.M.; Mehaney, A. Ultra-high sensitive 1D porous silicon photonic crystal sensor based on the coupling of Tamm/Fano resonances in the mid-infrared region. Sci. Rep. 2019, 9, 6973. [Google Scholar] [CrossRef]
- Ahmed, A.M.; Mehaney, A.; Elsayed, H.A. Detection of toluene traces in exhaled breath by using a 1D PC as a biomarker for lung cancer diagnosis. Eur. Phys. J. Plus 2021, 136, 626. [Google Scholar] [CrossRef]
- Sansierra, M.C.; Morrone, J.; Cornacchiulo, F.; Fuertes, M.C.; Angelomé, P.C. Detection of organic vapors using tamm mode based devices built from mesoporous oxide thin films. Chem Nano Mat. 2019, 5, 1289–1295. [Google Scholar] [CrossRef]
- Das, R.; Srivastava, T.; Jha, R. On the performance of Tamm-plasmon and surface-plasmon hybrid-mode refractive-index sensor in metallo-dielectric heterostructure configuration. Sens. Actuators B Chem. 2015, 206, 443–448. [Google Scholar] [CrossRef]
- Qian, X.; Zhao, Y.; Zhang, Y.N.; Wang, Q. Theoretical research of gas sensing method based on photonic crystal cavity and fiber loop ring-down technique. Sens. Actuators B Chem. 2016, 228, 665–672. [Google Scholar] [CrossRef] [Green Version]
- Lv, J.; Wang, D.; Liu, C.; Wang, J.; Yang, L.; Liu, W.; Liu, Q.; Mu, H.; Chu, P.K. Theoretical Analysis of Hybrid Metal–Dielectric Nanoantennas with Plasmonic Fano Resonance for Optical Sensing. Coatings 2022, 12, 1248. [Google Scholar] [CrossRef]
- Wang, B.; Singh, S.C.; Lu, H.; Guo, C. Design of aluminum bowtie nanoantenna array with geometrical control to tune LSPR from UV to near-IR for optical sensing. Plasmonics 2020, 15, 609–621. [Google Scholar] [CrossRef]
- Boriskina, S.V.; Tsurimaki, Y. Sensitive singular-phase optical detection without phase measurements with Tamm plasmons. J. Phys. Condens. Matter. 2018, 30, 224003. [Google Scholar] [CrossRef] [Green Version]
- Khani, S.; Hayati, M. An ultra-high sensitive plasmonic refractive index sensor using an elliptical resonator and MIM waveguide. Superlattices Microstruct. 2021, 156, 106970. [Google Scholar] [CrossRef]
- Danaie, M.; Shahzadi, A. Design of a high-resolution metal–insulator–metal plasmonic refractive index sensor based on a ring-shaped Si resonator. Plasmonics 2019, 14, 1453–1465. [Google Scholar] [CrossRef]
- Mupparapu, R.; Cunha, J.; Tantussi, F.; Jacassi, A.; Summerer, L.; Patrini, M.; Giugni, A.; Maserati, L.; Alabastri, A.; Garoli, D.; et al. High-Frequency Light Rectification by Nanoscale Plasmonic Conical Antenna in Point-Contact-Insulator-Metal Architecture. Adv. Energy Mater. 2022, 12, 2103785. [Google Scholar] [CrossRef]
- Rahman, B.A.; Viphavakit, C.; Chitaree, R.; Ghosh, S.; Pathak, A.K.; Verma, S.; Sakda, N. Optical fiber, nanomaterial, and THz-Metasurface-mediated nano-biosensors: A Review. Biosensors 2022, 12, 42. [Google Scholar] [CrossRef] [PubMed]
- Verma, S.; Chugh, S.; Ghosh, S.; Rahman, B.M.A. Artificial neural network modelling for optimizing the optical parameters of plasmonic paired nanostructures. Nanomaterials. 2022, 12, 170. [Google Scholar] [CrossRef] [PubMed]
- Verma, S.; Chugh, S.; Ghosh, S.; Rahman, B.M.A. A comprehensive deep learning method for empirical spectral prediction and its quantitative validation of nano-structured dimers. Sci. Rep. 2023, 13, 1129. [Google Scholar] [CrossRef] [PubMed]
S.NO. | The Designed Structure | Sensitivity | Sensing Materials | Ref. |
---|---|---|---|---|
1. | 1D porous silicon photonic crystal fluid sensor based on TP resonance | 5018 nm/RIU | Different fluids | [72] |
2. | 1D photonic crystal as a gas sensor based on TP resonance | 273 nm/RIU | Toluene | [73] |
3. | Experimental gas sensor based on TP resonance | 70 nm | Organic vapors | [74] |
4. | Metallo-dielectric heterostructure configuration based on TP resonance | 970 nm/RIU | Different liquids | [75] |
5. | Theoretical gas sensor using photonic crystal cavity based on TP resonance | 450 nm/RIU | Methane gas | [76] |
6. | Theoretical elliptical shaped plasmonic nano antenna array | 770 nm/RIU | Water and gases from RI 1.0 to RI 1.7 | This work |
S.NO. | Metal | Dielectric | Shape | Sensitivity | FWHM | Ref. |
---|---|---|---|---|---|---|
1. | Silver | GaP | Ring and Heptamer | 550 nm/RIU | 82.4 | [77] |
2. | Aluminum | SiO2 | Bow-Tie | 497 nm/RIU | ----- | [78] |
3. | Gold | SiO2/SiC | Photonic Crystal | 5.4 nm | ----- | [79] |
4. | Silver | Si/SiO2 | Elliptical and MMI waveguide | 550 nm/RIU | 1.947 | [80] |
5. | Silver | Si | Ring | 636 nm/RIU | ------ | [81] |
6. | Gold | LiTaO3/Al2O3 | Elliptical Stacked | 770 nm/RIU | 76.4 | This Work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Verma, S.; Rahman, B.M.A. Computational Investigation of Advanced Refractive Index Sensor Using 3-Dimensional Metamaterial Based Nanoantenna Array. Sensors 2023, 23, 1290. https://doi.org/10.3390/s23031290
Verma S, Rahman BMA. Computational Investigation of Advanced Refractive Index Sensor Using 3-Dimensional Metamaterial Based Nanoantenna Array. Sensors. 2023; 23(3):1290. https://doi.org/10.3390/s23031290
Chicago/Turabian StyleVerma, Sneha, and B.M.A. Rahman. 2023. "Computational Investigation of Advanced Refractive Index Sensor Using 3-Dimensional Metamaterial Based Nanoantenna Array" Sensors 23, no. 3: 1290. https://doi.org/10.3390/s23031290
APA StyleVerma, S., & Rahman, B. M. A. (2023). Computational Investigation of Advanced Refractive Index Sensor Using 3-Dimensional Metamaterial Based Nanoantenna Array. Sensors, 23(3), 1290. https://doi.org/10.3390/s23031290