SCANet: Implementation of Selective Context Adaptation Network in Smart Farming Applications
Abstract
:1. Introduction
1.1. Background
1.2. Related Works
- We introduce a feature enhancement strategy using context adaptation mechanism by reconstructing deep features from multi-level dependencies to give more accurate feature representation in the SFA task.
- We devise a method to select most effective contexts to obtain best results. This is done to leverage level-wise information by applying a context selection mechanism. Using the information from the selected contextual representation, an effective approach for discriminating fine-grained categories is performed.
2. SCANet: Selective Context Adaption Network
2.1. Preliminaries
2.2. Selective Context Adaptation Network (SCANet)
2.2.1. Attention
2.2.2. Context Adaptation Mechanism
2.2.3. Context Selection Mechanism
3. Performance Results
3.1. Dataset
Cocoa Bean Images
3.2. Implementation Details
3.3. Ablation Study
3.4. Comparison with Existing Works
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rezk, N.G.; Hemdan, E.E.D.; Attia, A.F.; El-Sayed, A.; El-Rashidy, M.A. An efficient IoT based smart farming system using machine learning algorithms. Multimed. Tools Appl. 2021, 80, 773–797. [Google Scholar] [CrossRef]
- Prakosa, S.W.; Faisal, M.; Adhitya, Y.; Leu, J.S.; Köppen, M.; Avian, C. Design and Implementation of LoRa Based IoT Scheme for Indonesian Rural Area. Electronics 2021, 10, 77. [Google Scholar] [CrossRef]
- Ünal, Z. Smart Farming Becomes Even Smarter With Deep Learning—A Bibliographical Analysis. IEEE Access 2020, 8, 105587–105609. [Google Scholar] [CrossRef]
- Kumari, B.S.; Kumar, R.A.; Abhijeet, M.; Kumar, S.P. Identification, classification & grading of fruits using machine learning & computer intelligence: A review. J. Ambient. Intell. Humaniz. Comput. 2020, 1–11. [Google Scholar] [CrossRef]
- Zawbaa, H.M.; Hazman, M.; Abbass, M.; Hassanien, A.E. Automatic fruit classification using random forest algorithm. In Proceedings of the 2014 14th International Conference on Hybrid Intelligent Systems, Kuwait, Kuwait, 14–16 December 2014; pp. 164–168. [Google Scholar]
- Wayan, A.I.; Mohamad, S.; Andri, K.; Yunindri, W. Determination of Cocoa Bean Quality with Image Processing and Artificial Neural Network. In Proceedings of the AFITA, Bogor, Indonesia, 4–7 October 2010. [Google Scholar]
- Hossain, M.S.; Al-Hammadi, M.; Muhammad, G. Automatic Fruit Classification Using Deep Learning for Industrial Applications. IEEE Trans. Ind. Inform. 2019, 15, 1027–1034. [Google Scholar] [CrossRef]
- Tan, J.; Balasubramanian, B.; Sukha, D.; Ramkissoon, S.; Umaharan, P. Sensing fermentation degree of cocoa (Theobroma cacao L.) beans by machine learning classification models based electronic nose system. J. Food Process. Eng. 2019, 42, e13175. [Google Scholar] [CrossRef]
- Bacco, M.; Barsocchi, P.; Ferro, E.; Gotta, A.; Ruggeri, M. The Digitisation of Agriculture: A Survey of Research Activities on Smart Farming. Array 2019, 3–4, 100009. [Google Scholar] [CrossRef]
- Huang, Y.P.; Wang, T.H.; Basanta, H. Using Fuzzy Mask R-CNN Model to Automatically Identify Tomato Ripeness. IEEE Access 2020, 8, 207672–207682. [Google Scholar] [CrossRef]
- Halstead, M.; McCool, C.; Denman, S.; Perez, T.; Fookes, C. Fruit Quantity and Ripeness Estimation Using a Robotic Vision System. IEEE Robot. Autom. Lett. 2018, 3, 2995–3002. [Google Scholar] [CrossRef]
- Abasi, S.; Minaei, S.; Jamshidi, B.; Fathi, D. Development of an Optical Smart Portable Instrument for Fruit Quality Detection. IEEE Trans. Instrum. Meas. 2021, 70, 1–9. [Google Scholar] [CrossRef]
- Luo, L.; Chang, Q.; Wang, Q.; Huang, Y. Identification and Severity Monitoring of Maize Dwarf Mosaic Virus Infection Based on Hyperspectral Measurements. Remote Sens. 2021, 13, 4560. [Google Scholar] [CrossRef]
- Khan, I.H.; Liu, H.; Li, W.; Cao, A.; Wang, X.; Liu, H.; Cheng, T.; Tian, Y.; Zhu, Y.; Cao, W.; et al. Early Detection of Powdery Mildew Disease and Accurate Quantification of Its Severity Using Hyperspectral Images in Wheat. Remote Sens. 2021, 13, 3612. [Google Scholar] [CrossRef]
- Li, S.; Jiao, J.; Wang, C. Research on Polarized Multi-Spectral System and Fusion Algorithm for Remote Sensing of Vegetation Status at Night. Remote Sens. 2021, 13, 3510. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Showkat, S.; Qureshi, S. Efficacy of Transfer Learning-based ResNet models in Chest X-ray image classification for detecting COVID-19 Pneumonia. Chemom. Intell. Lab. Syst. 2022, 224, 104534. [Google Scholar] [CrossRef] [PubMed]
- Rajpal, S.; Lakhyani, N.; Singh, A.K.; Kohli, R.; Kumar, N. Using handpicked features in conjunction with ResNet-50 for improved detection of COVID-19 from chest X-ray images. Chaos Solitons Fractals 2021, 145, 110749. [Google Scholar] [CrossRef]
- Paul, S.; Agarwal, S.; Das, R. Detection of COVID-19 Using ResNet on CT Scan Image. In Proceedings of the International Conference on Computational Intelligence, Data Science and Cloud Computing, Kolkata, India, 25–27 September 2020; Balas, V.E., Hassanien, A.E., Chakrabarti, S., Mandal, L., Eds.; Springer: Singapore, 2021; pp. 289–298. [Google Scholar]
- Zhao, Y.; Zhang, X.; Feng, W.; Xu, J. Deep Learning Classification by ResNet-18 Based on the Real Spectral Dataset from Multispectral Remote Sensing Images. Remote Sens. 2022, 14, 4883. [Google Scholar] [CrossRef]
- Gao, L.; Huang, Y.; Zhang, X.; Liu, Q.; Chen, Z. Prediction of Prospecting Target Based on ResNet Convolutional Neural Network. Appl. Sci. 2022, 12, 11433. [Google Scholar] [CrossRef]
- Thum, G.W.; Tang, S.H.; Ahmad, S.A.; Alrifaey, M. Toward a Highly Accurate Classification of Underwater Cable Images via Deep Convolutional Neural Network. J. Mar. Sci. Eng. 2020, 8, 924. [Google Scholar] [CrossRef]
- Tural, S.; Samet, R.; Aydin, S.; Traore, M. Deep Learning Based Classification of Military Cartridge Cases and Defect Segmentation. IEEE Access 2022, 10, 74961–74976. [Google Scholar] [CrossRef]
- Bai, C.H.; Prakosa, S.W.; Hsieh, H.Y.; Leu, J.S.; Fang, W.H. Progressive Contextual Excitation for Smart Farming Application. In Proceedings of the International Conference on Computer Analysis of Images and Patterns, Salerno, Italy, 28–30 September 2021. [Google Scholar]
- Rajak, P.; Lachure, J.; Doriya, R. CNN-LSTM-based IDS on Precision Farming for IIoT data. In Proceedings of the 2022 IEEE 4th International Conference on Cybernetics, Cognition and Machine Learning Applications (ICCCMLA), Goa, India, 8–9 October 2022; pp. 99–103. [Google Scholar] [CrossRef]
- Hazarika, A.; Sistla, P.; Venkatesh, V.; Choudhury, N. Approximating CNN Computation for Plant Disease Detection. In Proceedings of the 2022 IEEE 46th Annual Computers, Software, and Applications Conference (COMPSAC), Los Alamitos, CA, USA, 27 June–1 July 2022; pp. 1117–1122. [Google Scholar] [CrossRef]
- Al-Badri, A.H.; Ismail, N.A.; Al-Dulaimi, K.; Rehman, A.; Abunadi, I.; Bahaj, S.A. Hybrid CNN Model for Classification of Rumex Obtusifolius in Grassland. IEEE Access 2022, 10, 90940–90957. [Google Scholar] [CrossRef]
- Bah, M.D.; Hafiane, A.; Canals, R. CRowNet: Deep Network for Crop Row Detection in UAV Images. IEEE Access 2019, 8, 5189–5200. [Google Scholar] [CrossRef]
- Goel, L.; Mishra, A. A Survey Of Recent Deep Learning Algorithms Used In Smart Farming. In Proceedings of the 2022 IEEE Region 10 Symposium (TENSYMP), Mumbai, India, 1–3 July 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Liu, Y.; Gao, G.; Zhang, Z. Crop Disease Recognition Based on Modified Light-Weight CNN with Attention Mechanism. IEEE Access 2022, 10, 112066–112075. [Google Scholar] [CrossRef]
- Adhitya, Y.; Prakosa, S.W.; Köppen, M.; Leu, J.S. Feature Extraction for Cocoa Bean Digital Image Classification Prediction for Smart Farming Application. Agronomy 2020, 10, 1642. [Google Scholar] [CrossRef]
- Su, J.; Yi, D.; Su, B.; Mi, Z.; Liu, C.; Hu, X.; Xu, X.; Guo, L.; Chen, W.H. Aerial Visual Perception in Smart Farming: Field Study of Wheat Yellow Rust Monitoring. IEEE Trans. Ind. Inform. 2021, 17, 2242–2249. [Google Scholar] [CrossRef] [Green Version]
- Maddikunta, P.K.R.; Hakak, S.; Alazab, M.; Bhattacharya, S.; Gadekallu, T.R.; Khan, W.Z.; Pham, Q.V. Unmanned Aerial Vehicles in Smart Agriculture: Applications, Requirements, and Challenges. IEEE Sens. J. 2021, 21, 17608–17619. [Google Scholar] [CrossRef]
- Kim, J.; Kim, S.; Ju, C.; Son, H.I. Unmanned Aerial Vehicles in Agriculture: A Review of Perspective of Platform, Control, and Applications. IEEE Access 2019, 7, 105100–105115. [Google Scholar] [CrossRef]
- Wang, L.; Huang, X.; Li, W.; Yan, K.; Han, Y.; Zhang, Y.; Pawlowski, L.; Lan, Y. Progress in Agricultural Unmanned Aerial Vehicles (UAVs) Applied in China and Prospects for Poland. Agriculture 2022, 12, 397. [Google Scholar] [CrossRef]
- Hafeez, A.; Husain, M.A.; Singh, S.; Chauhan, A.; Khan, M.T.; Kumar, N.; Chauhan, A.; Soni, S. Implementation of drone technology for farm monitoring & pesticide spraying: A review. Inf. Process. Agric. 2022, in press. [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is All you Need. In Proceedings of the NeurIPS, Long Beach, CA, USA, 4–9 December 2017; pp. 5998–6008. [Google Scholar]
- Wang, X.; Girshick, R.B.; Gupta, A.; He, K. Non-Local Neural Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018; pp. 7794–7803. [Google Scholar]
- Lin, T.; Dollár, P.; Girshick, R.B.; He, K.; Hariharan, B.; Belongie, S.J. Feature Pyramid Networks for Object Detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 936–944. [Google Scholar]
- Badan Standardisasi Nasional (BSN). Biji Kakao SNI 2323:2008 ICS 1.67.140.30 Kakao; Badan Standardisasi Nasional: Jakarta, Indonesia, 2008. [Google Scholar]
- Haralick, R.M.; Shanmugam, K.S.; Dinstein, I. Textural Features for Image Classification. IEEE Trans. Syst. Man Cybern. 1973, 3, 610–621. [Google Scholar] [CrossRef] [Green Version]
- Prakosa, S.W.; Leu, J.S.; Hsieh, H.Y.; Avian, C.; Bai, C.H.; Vítek, S. Implementing a Compression Technique on the Progressive Contextual Excitation Network for Smart Farming Applications. Sensors 2022, 22, 9717. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Liu, J.; Chen, C.; Heidari, A.A.; Zhang, Q.; Chen, H.; Mafarja, M.; Turabieh, H. Corn Leaf Diseases Diagnosis Based on K-Means Clustering and Deep Learning. IEEE Access 2021, 9, 143824–143835. [Google Scholar] [CrossRef]
- Ahila Priyadharshini, R.; Arivazhagan, S.; Arun, M.; Mirnalini, A. Maize leaf disease classification using deep convolutional neural networks. Neural Comput. Appl. 2019, 31, 8887–8895. [Google Scholar] [CrossRef]
- Waheed, A.; Goyal, M.; Gupta, D.; Khanna, A.; Hassanien, A.E.; Pandey, H.M. An optimized dense convolutional neural network model for disease recognition and classification in corn leaf. Comput. Electron. Agric. 2020, 175, 105456. [Google Scholar] [CrossRef]
- Zhong, Y.; Zhao, M. Research on deep learning in apple leaf disease recognition. Comput. Electron. Agric. 2020, 168, 105146. [Google Scholar] [CrossRef]
- Liu, B.; Zhang, Y.; He, D.; Li, Y. Identification of Apple Leaf Diseases Based on Deep Convolutional Neural Networks. Symmetry 2018, 10, 11. [Google Scholar] [CrossRef] [Green Version]
- Andrushia, A.D.; Patricia, A.T. Artificial bee colony optimization (ABC) for grape leaves disease detection. Evol. Syst. 2020, 11, 105–117. [Google Scholar] [CrossRef]
- Adeel, A.; Khan, M.A.; Akram, T.; Sharif, A.; Yasmin, M.; Saba, T.; Javed, K. Entropy-controlled deep features selection framework for grape leaf diseases recognition. Expert Syst. 2022, 39, e12569. [Google Scholar] [CrossRef]
Classes | Amount of Images | Training | Validation | Test |
---|---|---|---|---|
Whole Beans | 1187 | 891 | 178 | 118 |
Broken Beans | 1046 | 786 | 156 | 104 |
Bean Fractions | 426 | 321 | 63 | 42 |
Skin-Damaged Beans | 822 | 617 | 123 | 82 |
Fermented Beans | 916 | 688 | 137 | 91 |
Unfermented Beans | 1776 | 1333 | 266 | 177 |
Moldy Beans | 1255 | 942 | 188 | 125 |
Total of the Data | 7428 | 5578 | 1111 | 739 |
Top-1 Accuracy | |||
---|---|---|---|
baseline | baseline | baseline | 82.71 |
- | - | ✓ | 85.71 |
- | ✓ | ✓ | 88.72 |
✓ | ✓ | ✓ | 86.09 |
Context Selection Schemes | Top-1 Accuracy |
---|---|
Average | 86.47 |
Conv1 × 1 | 87.59 |
SCANet | 88.72 |
Model | Post-Process | Top-1 Accu. |
---|---|---|
Adhitya’s model (SVM) | no | 59.14 |
Adhitya’s model (XGBoost) | no | 56.99 |
Adhitya’s model (SVM *) | yes | 61.04 |
Adhitya’s model (XGBoost *) | yes | 65.08 |
ResNet-50 | no | 82.71 |
PCENet | no | 86.09 |
Compressed PCENet [42] | no | 86.09 |
SCANet (Ours) | no | 88.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sigalingging, X.; Prakosa, S.W.; Leu, J.-S.; Hsieh, H.-Y.; Avian, C.; Faisal, M. SCANet: Implementation of Selective Context Adaptation Network in Smart Farming Applications. Sensors 2023, 23, 1358. https://doi.org/10.3390/s23031358
Sigalingging X, Prakosa SW, Leu J-S, Hsieh H-Y, Avian C, Faisal M. SCANet: Implementation of Selective Context Adaptation Network in Smart Farming Applications. Sensors. 2023; 23(3):1358. https://doi.org/10.3390/s23031358
Chicago/Turabian StyleSigalingging, Xanno, Setya Widyawan Prakosa, Jenq-Shiou Leu, He-Yen Hsieh, Cries Avian, and Muhamad Faisal. 2023. "SCANet: Implementation of Selective Context Adaptation Network in Smart Farming Applications" Sensors 23, no. 3: 1358. https://doi.org/10.3390/s23031358
APA StyleSigalingging, X., Prakosa, S. W., Leu, J. -S., Hsieh, H. -Y., Avian, C., & Faisal, M. (2023). SCANet: Implementation of Selective Context Adaptation Network in Smart Farming Applications. Sensors, 23(3), 1358. https://doi.org/10.3390/s23031358