Stable Heteroclinic Channel Networks for Physical Human–Humanoid Robot Collaboration
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Definition of the SHC Networks
2.2. A Three-State PSS Guided by the SHC Networks
2.3. Application of the PSS Guided by the SHC Networks to the Humanoid Robot
2.3.1. The Motion Tasks and Their Corresponding Movements
2.3.2. Motion Synthesis
2.3.3. Motion Parametrization
3. Results
Application of the PSS Guided by the SHC Networks to the Humanoid Robot
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PSS | Phase State System |
SHC | Stable Heteroclinic Channel |
GRBF | Gaussian Radial Basis Functions |
References
- Behne, T.; Carpenter, M.; Call, J.; Tomasello, M. Unwilling versus unable: Infants’ understanding of intentional action. Dev. Psychol. 2005, 41, 328–337. [Google Scholar] [CrossRef]
- Carpenter, M.; Nagell, K.; Tomasello, M.; Butterworth, G.; Moore, C. Social cognition, joint attention, and communicative competence from 9 to 15 months of age. Monogr. Soc. Res. Child Dev. 1998, 63, i+iii+v–vi+1–174. [Google Scholar] [CrossRef]
- Hentout, A.; Aouache, M.; Maoudj, A.; Akli, I. Human–robot interaction in industrial collaborative robotics: A literature review of the decade 2008–2017. Adv. Robot. 2019, 33, 764–799. [Google Scholar] [CrossRef]
- Mišković, D.; Milić, L.; Čilag, A.; Berisavljević, T.; Gottscheber, A.; Raković, M. Implementation of Robots Integration in Scaled Laboratory Environment for Factory Automation. Appl. Sci. 2022, 12, 1228. [Google Scholar] [CrossRef]
- Loh, E. Medicine and the rise of the robots: A qualitative review of recent advances of artificial intelligence in health. BMJ Leader 2018, 2, 59–63. [Google Scholar] [CrossRef]
- Karabegović, I.; Doleček, V. The Role of Service Robots and Robotic Systems in the Treatment of Patients in Medical Institutions. In Advanced Technologies, Systems, and Applications; Hadžikadić, M., Avdaković, S., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 9–25. [Google Scholar]
- Kasina, H.; Bahubalendruni, M.R.; Botcha, R. Robots in Medicine: Past, Present and Future. Int. J. Manuf. Mater. Mech. Eng. (IJMMME) 2017, 7, 44–64. [Google Scholar] [CrossRef]
- Kopacek, P. Robots in Entertainment, Leisure and Hobby New Tasks for Robot Control. IFAC Proc. Vol. 2000, 33, 539–543. [Google Scholar] [CrossRef]
- Fusté-Forné, F.; Jamal, T. Co-Creating New Directions for Service Robots in Hospitality and Tourism. Tour. Hosp. 2021, 2, 43–61. [Google Scholar] [CrossRef]
- Huang, M.H.; Rust, R.T. Artificial Intelligence in Service. J. Serv. Res. 2018, 21, 155–172. [Google Scholar] [CrossRef]
- Yang, C.; Zhang, X. Research into the application of AI robots in community home leisure interaction. J. Supercomput. 2022, 78, 9711–9740. [Google Scholar] [CrossRef]
- Vukobratovič, M.; Juričić, D. Contribution to the synthesis of biped gait. IEEE Trans. Bio-Med. Eng. 1969, 16, 1–6. [Google Scholar] [CrossRef]
- Vukobratovič, M.; Borovac, B. Zero-Moment Point—Thirty Five Years of its Life. Int. J. Humanoid Robot. 2004, 1, 157–173. [Google Scholar] [CrossRef]
- Sardain, P.; Bessonnet, G. Forces acting on a biped robot. Center of pressure-zero moment point. IEEE Trans. Syst. Man Cybern.-Part A Syst. Humans 2004, 34, 630–637. [Google Scholar] [CrossRef]
- Petrič, T.; Gams, A.; Babič, J.; Žlajpah, L. Reflexive stability control framework for humanoid robots. Auton. Robot. 2013, 34, 347–361. [Google Scholar] [CrossRef]
- Caron, S.; Pham, Q.C.; Nakamura, Y. ZMP Support Areas for Multi-contact Mobility Under Frictional Constraints. IEEE Trans. Robot. 2017, 33, 67–80. [Google Scholar] [CrossRef] [Green Version]
- Brecelj, T.; Petrič, T. Angular Dependency of the Zero Moment Point. Adv. Serv. Ind. Robot. 2021, 102, 135–144. [Google Scholar]
- Brecelj, T.; Petrič, T. Application of the Angular Dependency of the Zero Moment Point. In Proceedings of the 8th International Conference on Electrical, Electronics and Computing Engineering IcETRAN 2021 and 65th National Conference on Electronics, Telecommunication, Computing, Automatic Control and Nuclear Engineering ETRAN 2021, Bijeljina, Bosnia and Herzegovina, 8–10 September 2021; pp. 591–596. [Google Scholar]
- Brecelj, T.; Petrič, T. Zero Moment Line—Universal Stability Parameter for Multi-Contact Systems in Three Dimensions. Sensors 2022, 22, 5656. [Google Scholar] [CrossRef] [PubMed]
- Goswami, A. Postural Stability of Biped Robots and the Foot-Rotation Indicator (FRI) Point. Int. J. Robot. Res. 1999, 18, 523–533. [Google Scholar] [CrossRef]
- Sugihara, T.; Nakamura, Y.; Inoue, H. Real-time humanoid motion generation through ZMP manipulation based on inverted pendulum control. In Proceedings of the 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292), Washington, DC, USA, 11–15 May 2002; Volume 2, pp. 1404–1409. [Google Scholar] [CrossRef]
- Morisawa, M.; Benallegue, M.; Cisneros, R.; Kumagai, I.; Escande, A.; Kaneko, K.; Kanehiro, F. Multi-Contact Stabilization of a Humanoid Robot for Realizing Dynamic Contact Transitions on Non-coplanar Surfaces. In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 4–8 November 2019; pp. 2252–2258. [Google Scholar] [CrossRef]
- Kajita, S.; Kanehiro, F.; Kaneko, K.; Fujiwara, K.; Harada, K.; Yokoi, K.; Hirukawa, H. Resolved Momentum Control: Humanoid Motion Planning Based on the Linear and Angular Momentum. In Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No. 03CH37453), Las Vegas, NV, USA, 27–31 October 2003; Volume 2, pp. 1644–1650. [Google Scholar] [CrossRef]
- Cisneros, R.; Yokoi, K.; Yoshida, E. Yaw moment compensation by using full body motion. In Proceedings of the 2014 IEEE International Conference on Mechatronics and Automation, Tianjin, China, 3–6 August 2014; pp. 119–125. [Google Scholar] [CrossRef]
- Dai, H.; Valenzuela, A.; Tedrake, R. Whole-body motion planning with centroidal dynamics and full kinematics. In Proceedings of the 2014 IEEE-RAS International Conference on Humanoid Robots, Madrid, Spain, 18–20 November 2014; pp. 295–302. [Google Scholar] [CrossRef]
- Caron, S.; Pham, Q.C.; Nakamura, Y. Leveraging Cone Double Description for Multi-contact Stability of Humanoids with Applications to Statics and Dynamics. Robot. Sci. Syst. 2015, 11, 1–9. [Google Scholar] [CrossRef]
- Caron, S.; Pham, Q.C.; Nakamura, Y. Stability of Surface Contacts for Humanoid Robots: Closed-Form Formulae of the Contact Wrench Cone for Rectangular Support Areas. In Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26–30 May 2015. [Google Scholar] [CrossRef] [Green Version]
- Audren, H.; Kheddar, A.; Gergondet, P. Stability polygons reshaping and morphing for smooth multi-contact transitions and force control of humanoid robots. In Proceedings of the 2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids), Cancun, Mexico, 15–17 November 2016; pp. 1037–1044. [Google Scholar] [CrossRef] [Green Version]
- Henze, B.; Ott, C.; Roa, M.A. Posture and balance control for humanoid robots in multi-contact scenarios based on Model Predictive Control. In Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, IL, USA, 14–18 September 2014; pp. 3253–3258. [Google Scholar] [CrossRef]
- Hirukawa, H.; Hattori, S.; Harada, K.; Kajita, S.; Kaneko, K.; Kanehiro, F.; Fujiwara, K.; Morisawa, M. A universal stability criterion of the foot contact of legged robots—Adios ZMP. In Proceedings of the 2006 IEEE International Conference on Robotics and Automation, ICRA 2006, Orlando, FL, USA, 15–19 May 2006; pp. 1976–1983. [Google Scholar] [CrossRef]
- Petrič, T.; Žlajpah, L.; Garofalo, G.; Ott, C. Walking Control Using Adaptive Oscillators Combined with Dynamic Movement Primitives. In Proceedings of the 22nd International Workshop on Robotics in Alpe-Adria-Danube Region, Portorož, Slovenia, 11–13 September 2013. [Google Scholar]
- Yu, Z.; Ming, C.L.; Dinesh, M.; Albertus, H.A.; Chee-Meng, C. A Walking Pattern Generator for Biped Robots on Uneven Terrains. In Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan, 18–22 October 2010. [Google Scholar]
- Caron, S.; Kheddar, A. Multi-contact walking pattern generation based on model preview control of 3D COM accelerations. In Proceedings of the 2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids), Cancun, Mexico, 15–17 November 2016; pp. 550–557. [Google Scholar] [CrossRef] [Green Version]
- Baskoro, A.S.; Priyono, M.G. Design of humanoid robot stable walking using inverse kinematics and zero moment point. In Proceedings of the 2016 International Electronics Symposium (IES), Denpasar, Indonesia, 29–30 September 2016; pp. 335–339. [Google Scholar] [CrossRef]
- Nagasaka, K.; Kuroki, Y.; Suzuki, S.; Itoh, Y.; Yamaguchi, J. Integrated motion control for walking, jumping and running on a small bipedal entertainment robot. In Proceedings of the 2004 IEEE International Conference on Robotics and Automation, ICRA’04, New Orleans, LA, USA, 26 April–1 May 2004; Volume 4, pp. 3189–3194. [Google Scholar] [CrossRef]
- Lahajnar, L.; Kos, A.; Nemec, B. Skiing robot—Design, control, and navigation in unstructured environment. Robotica 2009, 27, 567–577. [Google Scholar] [CrossRef] [Green Version]
- Shin, D.; Sardellitti, I.; Park, Y.L.; Khatib, O.; Cutkosky, M. Design and Control of a Bio-inspired Human-friendly Robot. Int. J. Robot. Res. 2010, 29, 571–584. [Google Scholar] [CrossRef] [Green Version]
- Harada, K.; Kajita, S.; Kaneko, K.; Hirukawa, H. Dynamics and balance of a humanoid robot during manipulation tasks. IEEE Trans. Robot. 2006, 22, 568–575. [Google Scholar] [CrossRef]
- Nikolic, M.; Borovac, B.; Raković, M. Dynamic balance preservation and prevention of sliding for humanoid robots in the presence of multiple spatial contacts. Multibody Syst. Dyn. 2018, 42, 197–218. [Google Scholar] [CrossRef]
- Sentis, L.; Park, J.; Khatib, O. Compliant Control of Multicontact and Center-of-Mass Behaviors in Humanoid Robots. IEEE Trans. Robot. 2010, 26, 483–501. [Google Scholar] [CrossRef] [Green Version]
- Harada, K.; Hirukawa, H.; Kanehiro, F.; Fujiwara, K.; Kaneko, K.; Kajita, S.; Nakamura, M. Dynamical balance of a humanoid robot grasping an environment. In Proceedings of the 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No. 04CH37566), Sendai, Japan, 28 September–2 October 2004; Volume 2, pp. 1167–1173. [Google Scholar] [CrossRef] [Green Version]
- Audren, H.; Vaillant, J.; Kheddar, A.; Escande, A.; Kaneko, K.; Yoshida, E. Model preview control in multi-contact motion-application to a humanoid robot. In Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, IL, USA, 14–18 September 2014; pp. 4030–4035. [Google Scholar] [CrossRef] [Green Version]
- Mummolo, C.; Peng, W.Z.; Gonzalez, C.; Kim, J.H. Contact-Dependent Balance Stability of Biped Robots. J. Mech. Robot. 2018, 10, 021009. [Google Scholar] [CrossRef] [Green Version]
- Mikolajczyk, T.; Mikołajewska, E.; Al-Shuka, H.F.N.; Malinowski, T.; Kłodowski, A.; Pimenov, D.Y.; Paczkowski, T.; Hu, F.; Giasin, K.; Mikołajewski, D.; et al. Recent Advances in Bipedal Walking Robots: Review of Gait, Drive, Sensors and Control Systems. Sensors 2022, 22, 4440. [Google Scholar] [CrossRef]
- Ficht, G.; Behnke, S. Bipedal Humanoid Hardware Design: A Technology Review. Curr. Robot. Rep. 2021, 2, 201–210. [Google Scholar] [CrossRef]
- Strabala, K.; Lee, M.K.; Dragan, A.; Forlizzi, J.; Srinivasa, S.S.; Cakmak, M.; Micelli, V. Toward Seamless Human-Robot Handovers. J. Hum.-Robot Interact. 2013, 2, 112–132. [Google Scholar] [CrossRef] [Green Version]
- Dragan, A.; Srinivasa, S. Generating Legible Motion. In Proceedings of the Robotics: Science and Systems, Berlin, Germany, 24–28 June 2013. [Google Scholar] [CrossRef]
- Nikolaidis, S.; Hsu, D.; Srinivasa, S. Human-robot mutual adaptation in collaborative tasks: Models and experiments. Int. J. Robot. Res. 2017, 36, 618–634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheridan, T.B. Human–Robot Interaction: Status and Challenges. Hum. Factors 2016, 58, 525–532. [Google Scholar] [CrossRef] [PubMed]
- De Santis, A.; Siciliano, B.; De Luca, A.; Bicchi, A. An atlas of physical human–robot interaction. Mech. Mach. Theory 2008, 43, 253–270. [Google Scholar] [CrossRef] [Green Version]
- Kragic, D.; Gustafson, J.; Karaoguz, H.; Jensfelt, P.; Krug, R. Interactive, Collaborative Robots: Challenges and Opportunities. In Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI), Stockholm, Sweden, 13–19 July 2018; pp. 18–25. [Google Scholar]
- Vollmer, A.; Schillingmann, L. On Studying Human Teaching Behavior with Robots: A Review. Rev. Philos. Psychol. 2018, 9, 863–903. [Google Scholar] [CrossRef]
- Akgun, B.; Thomaz, A. Simultaneously Learning Actions and Goals from Demonstration. Auton. Robot. 2016, 40, 211–227. [Google Scholar] [CrossRef]
- Baraglia, J.; Cakmak, M.; Nagai, Y.; Rao, R.P.N.; Asada, M. Initiative in robot assistance during collaborative task execution. In Proceedings of the 2016 11th ACM/IEEE International Conference on Human-Robot Interaction (HRI), Christchurch, New Zealand, 7–10 March 2016; pp. 67–74. [Google Scholar]
- Bütepage, J.; Black, M.; Kragic, D.; Kjellström, H. Deep representation learning for human motion prediction and classification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1591–1599. [Google Scholar]
- Hu, Y.; Chen, S.; Zhang, Y.; Gu, X. Collaborative Motion Prediction via Neural Motion Message Passing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020. [Google Scholar]
- Fridovich-Keil, D.; Bajcsy, A.; Fisac, J.F.; Herbert, S.L.; Wang, S.; Dragan, A.D.; Tomlin, C.J. Confidence-aware motion prediction for real-time collision avoidance1. Int. J. Robot. Res. 2020, 39, 250–265. [Google Scholar] [CrossRef]
- Laurent, G.; Stopfer, M.; Friedrich, R.W.; Rabinovich, M.I.; Volkovskii, A.; Abarbanel, H.D. Odor Encoding as an Active, Dynamical Process: Experiments, Computation, and Theory. Annu. Rev. Neurosci. 2001, 24, 263–297. [Google Scholar] [CrossRef] [Green Version]
- Rabinovich, M.; Huerta, R.; Varona, P.; Afraimovich, V. Transient Cognitive Dynamics, Metastability, and Decision Making. PLoS Comput. Biol. 2008, 4, e1000072. [Google Scholar] [CrossRef] [Green Version]
- Horchler, A.D.; Daltorio, K.A.; Chiel, H.J.; Quinn, R.D. Designing responsive pattern generators: Stable heteroclinic channel cycles for modeling and control. Bioinspir. Biomin. 2015, 10, 026001. [Google Scholar] [CrossRef] [PubMed]
- Deimel, R. Reactive Interaction Through Body Motion and the Phase-State-Machine. In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 3–8 November 2019; pp. 6383–6390. [Google Scholar]
- Petrič, T.; Žlajpah, L. Phase State System for Generating Interactive Behaviors for Humanoid Robots. In Advances in Service and Industrial Robotics; Müller, A., Brandstötter, M., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 496–503. [Google Scholar]
- Talos. Available online: https://pal-robotics.com/robots/talos/ (accessed on 17 January 2023).
- Gazebo. Available online: https://gazebosim.org/home (accessed on 17 January 2023).
- Figueiredo, M. On Gaussian radial basis function approximations: Interpretation, extensions, and learning strategies. In Proceedings of the 15th International Conference on Pattern Recognition, ICPR-2000, Barcelona, Spain, 3–7 September 2000; Volume 2, pp. 618–621. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brecelj, T.; Petrič, T. Stable Heteroclinic Channel Networks for Physical Human–Humanoid Robot Collaboration. Sensors 2023, 23, 1396. https://doi.org/10.3390/s23031396
Brecelj T, Petrič T. Stable Heteroclinic Channel Networks for Physical Human–Humanoid Robot Collaboration. Sensors. 2023; 23(3):1396. https://doi.org/10.3390/s23031396
Chicago/Turabian StyleBrecelj, Tilen, and Tadej Petrič. 2023. "Stable Heteroclinic Channel Networks for Physical Human–Humanoid Robot Collaboration" Sensors 23, no. 3: 1396. https://doi.org/10.3390/s23031396
APA StyleBrecelj, T., & Petrič, T. (2023). Stable Heteroclinic Channel Networks for Physical Human–Humanoid Robot Collaboration. Sensors, 23(3), 1396. https://doi.org/10.3390/s23031396