Overview of Digital Twin Platforms for EV Applications
Abstract
:1. Introduction
1.1. Background
1.2. Digital Twin in EV Industry
2. DT Architecture Categorizations
2.1. Model-Based DT
2.2. Data Driven DT
3. DT Platforms for EV Applications
3.1. Smart Vehicle System
3.2. EV Propulsion Drive System
3.2.1. EV Battery System
- SOC and SOH estimations to validate particle swarm optimization: In this case, aging tests were carried out for both software and hardware. Additionally, a battery test for lead-acid and lithium-ion batteries was performed to validate the results of SOC and SOH estimations;
- Battery Modeling: Implementation of the equivalent circuit model (ECM) was executed with additional modifications to the battery dynamics, taking into consideration the particle swarm optimization (PSO) and the adaptative extended H-infinity filter (AEHF);
- Cloud BMS: A DT was built to improve the computation power, data storage capability of a BMS, and reliability, all this considering the concept of IoT and cloud computing.
- Use of experimental inputs to determine parameter identification.
- Implementation of the state estimation algorithm.
- Integration of a battery modeling that considers the design and manufacturing data.
- Execution of the parameter-update estimation that can be coded in several tools, such as MATLAB, Python, Linux, etc.
3.2.2. EV Electric Motor
3.2.3. Traction Inverter
3.3. DT Platforms from EV Industry
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ibrahim, M.; Rassõlkin, A.; Vaimann, T.; Kallaste, A. Overview on Digital Twin for Autonomous Electrical Vehicles Propulsion Drive System. Sustainability 2022, 14, 601. [Google Scholar] [CrossRef]
- San, O. The digital twin revolution. Nat. Comput. Sci. 2021, 1, 307–308. [Google Scholar] [CrossRef]
- Singh, M.; Fuenmayor, E.; Hinchy, E.P.; Qiao, Y.; Murray, N.; Devine, D. Digital Twin: Origin to Future. Appl. Syst. Innov. 2021, 4, 36. [Google Scholar] [CrossRef]
- Boje, C.; Guerriero, A.; Kubicki, S.; Rezgui, Y. Towards a semantic Construction Digital Twin: Directions for future research. Autom. Constr. 2020, 114, 103179. [Google Scholar] [CrossRef]
- Jacoby, M.; Usländer, T. Digital Twin and Internet of Things—Current Standards Landscape. Appl. Sci. 2020, 10, 6519. [Google Scholar] [CrossRef]
- Jazdi, N.; Talkhestani, B.A.; Maschler, B.; Weyrich, M. Realization of AI-enhanced industrial automation systems using intelligent Digital Twins. Procedia CIRP 2021, 97, 396–400. [Google Scholar] [CrossRef]
- Wu, J.; Yang, Y.; Cheng, X.U.N.; Zuo, H.; Cheng, Z. The Development of Digital Twin Technology Review. In Proceedings of the 2020 Chinese Automation Congress (CAC 2020), Shanghai, China, 6–8 November 2020; pp. 4901–4906. [Google Scholar] [CrossRef]
- Tao, F.; Zhang, M.; Nee, A.Y.C. Five-Dimension Digital Twin Modeling and Its Key Technologies. In Digital Twin Driven Smart Manufacturing; Academic Press: Cambridge, MA, USA, 2019; pp. 63–81. [Google Scholar]
- Glaessgen, E.H.; Stargel, D.S. The Digital Twin Paradigm for Future NASA and U.S. Air Force Vehicles. In Proceedings of the 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference 20th AIAA/ASME/AHS Adaptive Structures Conference 14th AIAA, Honolulu, HI, USA, 23–26 April 2012. [Google Scholar]
- Rassõlkin, A.; Orosz, T.; Demidova, G.L.; Kuts, V.; Rjabtšikov, V.; Vaimann, T.; Kallaste, A. Implementation of digital twins for electrical energy conversion systems in selected case studies. Proc. Est. Acad. Sci. 2021, 70, 19–39. [Google Scholar] [CrossRef]
- Jones, D.; Snider, C.; Nassehi, A.; Yon, J.; Hicks, B. Characterising the Digital Twin: A systematic literature review. CIRP J. Manuf. Sci. Technol. 2020, 29, 36–52. [Google Scholar] [CrossRef]
- Liu, M.; Fang, S.; Dong, H.; Xu, C. Review of digital twin about concepts, technologies, and industrial applications. J. Manuf. Syst. 2021, 58, 346–361. [Google Scholar] [CrossRef]
- Eppinger, S.D.; Whitney, D.E.; Smith, R.P.; Gebala, D.A. A model-based method for organizing tasks in product development. Res. Eng. Des. 1994, 61, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Elsisi, M. Improved grey wolf optimizer based on opposition and quasi learning approaches for optimization: Case study autonomous vehicle including vision system. Artif. Intell. Rev. 2022, 55, 5597–5620. [Google Scholar] [CrossRef]
- Madni, A.M.; Madni, C.C.; Lucero, S.D. Leveraging Digital Twin Technology in Model-Based Systems Engineering. Systems 2019, 7, 7. [Google Scholar] [CrossRef] [Green Version]
- Bachelor, G.; Brusa, E.; Ferretto, D.; Mitschke, A. Model-Based Design of Complex Aeronautical Systems through Digital Twin and Thread Concepts. IEEE Syst. J. 2020, 14, 1568–1579. [Google Scholar] [CrossRef]
- Magnanini, M.C.; Tolio, T.A.M. A model-based Digital Twin to support responsive manufacturing systems. CIRP Ann. 2021, 70, 353–356. [Google Scholar] [CrossRef]
- Zheng, P.; Sivabalan, A.S. A generic tri-model-based approach for product-level digital twin development in a smart manufacturing environment. Robot. Comput. Integr. Manuf. 2020, 64, 101958. [Google Scholar] [CrossRef]
- Ward, R.; Sun, C.; Dominguez-Caballero, J.; Ojo, S.; Ayvar-Soberanis, S.; Curtis, D.; Ozturk, E. Machining Digital Twin using real-time model-based simulations and lookahead function for closed loop machining control. Int. J. Adv. Manuf. Technol. 2021, 117, 3615–3629. [Google Scholar] [CrossRef]
- Yang, Y.; Ma, M.; Zhou, Z.; Sun, C.; Yan, R. Dynamic Model-based Digital Twin for Crack Detection of Aeroengine Disk. In Proceedings of the 2021 International Conference on Sensing, Measurement & Data Analytics in the era of Artificial Intelligence (ICSMD), Nanjing, China, 21–23 October 2021. [Google Scholar] [CrossRef]
- Woitsch, R.; Sumereder, A.; Falcioni, D. Model-based data integration along the product & service life cycle supported by digital twinning. Comput. Ind. 2022, 140, 103648. [Google Scholar] [CrossRef]
- Wang, Z.; Gupta, R.; Han, K.; Ganlath, A.; Ammar, N.; Tiwari, P. Mobility Digital Twin with Connected Vehicles and Cloud Computing. 2022. Available online: https://www.techrxiv.org/articles/preprint/Mobility_Digital_Twin_with_Connected_Vehicles_and_Cloud_Computing/16828759/1 (accessed on 22 November 2022). [CrossRef]
- Gao, C.; Park, H.; Easwaran, A. An anomaly detection framework for digital twin driven cyber-physical systems. In Proceedings of the ACM/IEEE 12th International Conference on Cyber-Physical Systems 11, Nashville, TN, USA, 19–21 May 2021; pp. 44–54. [Google Scholar] [CrossRef]
- Coraddu, A.; Oneto, L.; Baldi, F.; Cipollini, F.; Atlar, M.; Savio, S. Data-driven ship digital twin for estimating the speed loss caused by the marine fouling. Ocean Eng. 2019, 186, 106063. [Google Scholar] [CrossRef]
- Meraghni, S.; Terrissa, L.S.; Yue, M.; Ma, J.; Jemei, S.; Zerhouni, N. A data-driven digital-twin prognostics method for proton exchange membrane fuel cell remaining useful life prediction. Int. J. Hydrogen Energy 2021, 46, 2555–2564. [Google Scholar] [CrossRef]
- Mykoniatis, K.; Harris, G.A. A digital twin emulator of a modular production system using a data-driven hybrid modeling and simulation approach. J. Intell. Manuf. 2021, 32, 1899–1911. [Google Scholar] [CrossRef]
- Blume, C.; Blume, S.; Thiede, S.; Herrmann, C. Data-Driven Digital Twins for Technical Building Services Operation in Factories: A Cooling Tower Case Study. J. Manuf. Mater. Process. 2020, 4, 97. [Google Scholar] [CrossRef]
- Kim, W.; Kim, S.; Jeong, J.; Kim, H.; Lee, H.; Youn, B.D. Digital twin approach for on-load tap changers using data-driven dynamic model updating and optimization-based operating condition estimation. Mech. Syst. Signal Process. 2022, 181, 109471. [Google Scholar] [CrossRef]
- Major, P.; Li, G.; Hildre, H.P.; Zhang, H. The use of a data-driven digital twin of a smart city: A case study of ålesund, norway. IEEE Instrum. Meas. Mag. 2021, 24, 39–49. [Google Scholar] [CrossRef]
- Bhatti, G.; Mohan, H.; Singh, R.R. Towards the future of smart electric vehicles: Digital twin technology. Renew. Sustain. Energy Rev. 2021, 141, 110801. [Google Scholar] [CrossRef]
- Botín-Sanabria, D.M.; Santiesteban-Pozas, D.A.; Sáenz-González, G.; Ramírez-Mendoza, R.A.; Ramírez-Moreno, M.A.; Lozoya-Santos, J.D.J. Digital Twin for a Vehicle: ElectroBus Case Study. In Proceedings of the International Conference on Industrial Engineering and Operations Management, Monterrey, Mexico, 3–5 November 2021. [Google Scholar]
- Ezhilarasu, C.M.; Skaf, Z.; Jennions, I.K. Understanding the role of a digital twin in integrated vehicle health management (IVHM). In Proceedings of the 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC), Bari, Italy, 6–9 October 2019; pp. 1484–1491. [Google Scholar] [CrossRef] [Green Version]
- Sun, B.; Deng, W.; He, R.; Wu, J.; Li, Y. Personalized Eco-Driving for Intelligent Electric Vehicles. SAE Tech. Pap. 2018. [Google Scholar] [CrossRef]
- Wang, Z.; Han, K.; Tiwari, P. Digital twin simulation of connected and automated vehicles with the unity game engine. In Proceedings of the 2021 IEEE 1st International Conference on Digital Twins and Parallel Intelligence (DTPI), Beijing, China, 15 July–15 August 2021; pp. 180–183. [Google Scholar] [CrossRef]
- Elsisi, M.; Tran, M.Q. Development of an IoT Architecture Based on a Deep Neural Network against Cyber Attacks for Automated Guided Vehicles. Sensors 2021, 21, 8467. [Google Scholar] [CrossRef]
- Liu, J.; Dong, Y.; Liu, Y.; Li, P.; Liu, S.; Wang, T. Prediction Study of the Heavy Vehicle Driving State Based on Digital Twin Model. In Proceedings of the 2021 IEEE International Conference on Power Electronics, Computer Applications (ICPECA 2021), Shenyang, China, 22–24 January 2021; pp. 789–797. [Google Scholar] [CrossRef]
- Bottani, E.; Cammardella, A.; Murino, T.; Vespoli, S. From the Cyber-Physical System to the Digital Twin: The process development for behaviour modelling of a Cyber Guided Vehicle in M2M logic. In Proceedings of the XXII Summer School Francesco TurcoIndustrial Systems Engineering, Brescia, Italy, 8–10 September 2021. [Google Scholar]
- Guerra, R.H.; Quiza, R.; Villalonga, A.; Arenas, J.; Castano, F. Digital Twin-Based Optimization for Ultraprecision Motion Systems with Backlash and Friction. IEEE Access 2019, 7, 93462–93472. [Google Scholar] [CrossRef]
- Singh, S.; Weeber, M.; Birke, K.P. Implementation of Battery Digital Twin: Approach, Functionalities and Benefits. Batteries 2021, 7, 78. [Google Scholar] [CrossRef]
- Wu, B.; Widanage, W.D.; Yang, S.; Liu, X. Battery digital twins: Perspectives on the fusion of models, data and artificial intelligence for smart battery management systems. Energy AI 2020, 1, 100016. [Google Scholar] [CrossRef]
- Guo, J.; Li, Y.; Pedersen, K.; Stroe, D.I. Lithium-Ion Battery Operation, Degradation, and Aging Mechanism in Electric Vehicles: An Overview. Energies 2021, 14, 5220. [Google Scholar] [CrossRef]
- Li, W.; Rentemeister, M.; Badeda, J.; Jöst, D.; Schulte, D.; Sauer, D.U. Digital twin for battery systems: Cloud battery management system with online state-of-charge and state-of-health estimation. J. Energy Storage 2020, 30, 101557. [Google Scholar] [CrossRef]
- Sancarlos, A.; Cameron, M.; Abel, A.; Cueto, E.; Duval, J.L.; Chinesta, F. From ROM of Electrochemistry to AI-Based Battery Digital and Hybrid Twin. Arch. Comput. Methods Eng. 2021, 28, 979–1015. [Google Scholar] [CrossRef]
- Soleymani, A.; Maltz, W. Real Time Prediction of Li-Ion Battery Pack Temperatures in EV Vehicles. In Proceedings of the ASME 2020 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems, Online, 27–29 October 2020. [Google Scholar] [CrossRef]
- Wang, W.; Wang, J.; Tian, J.; Lu, J.; Xiong, R. Application of Digital Twin in Smart Battery Management Systems. Chin. J. Mech. Eng. 2021, 341, 34. [Google Scholar] [CrossRef]
- Sulzer, V.; Marquis, S.G.; Timms, R.; Robinson, M.; Chapman, S.J. Python Battery Mathematical Modelling (PyBaMM). J. Open Res. Softw. 2021, 9, 1–8. [Google Scholar] [CrossRef]
- Peng, Y.; Zhang, X.; Song, Y.; Liu, D. A low cost flexible digital twin platform for spacecraft lithium-ion battery pack degradation assessment. In Proceedings of the 2019 IEEE International Instrumentation and measurement technology conference (I2MTC), Auckland, New Zealand, 20–23 May 2019. [Google Scholar] [CrossRef]
- Herring, P.; Gopal, C.B.; Aykol, M.; Montoya, J.H.; Anapolsky, A.; Attia, P.M.; Gent, W.; Hummelshøj, J.S.; Hung, L.; Kwon, H.K. BEEP: A Python library for Battery Evaluation and Early Prediction. SoftwareX 2020, 11, 100506. [Google Scholar] [CrossRef]
- Dianov, A. Optimized Field-Weakening Strategy for Control of PM Synchronous Motors. In Proceedings of the 2022 29th International Workshop on Electric Drives: Advances in Power Electronics for Electric Drives (IWED), Moscow, Russia, 26–29 January 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Dianov, A.; Anuchin, A. Design of Constraints for Seeking Maximum Torque per Ampere Techniques in an Interior Permanent Magnet Synchronous Motor Control. Mathematics 2021, 9, 2785. [Google Scholar] [CrossRef]
- Venkatesan, S.; Manickavasagam, K.; Tengenkai, N.; Vijayalakshmi, N. Health monitoring and prognosis of electric vehicle motor using intelligent-digital twin. IET Electr. Power Appl. 2019, 13, 1328–1335. [Google Scholar] [CrossRef]
- Rassolkin, A.; Rjabtsikov, V.; Vaimann, T.; Kallaste, A.; Kuts, V.; Partyshev, A. Digital Twin of an Electrical Motor Based on Empirical Performance Model. In Proceedings of the 2020 XI International Conference on Electrical Power Drive Systems (ICEPDS), St. Petersburg, Russia, 4–7 October 2020. [Google Scholar] [CrossRef]
- Goraj, R. Digital twin of the rotor-shaft of a lightweight electric motor during aerobatics loads. Aircr. Eng. Aerosp. Technol. 2020, 92, 1319–1326. [Google Scholar] [CrossRef]
- Proksch, D.; Stutz, L.; Krotsch, J.; Hofig, B.; Kley, M. Development of a Digital Twin for an Induction Motor Bearing Voltage Simulation. In Proceedings of the 2021 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT), Amman, Jordan, 16–18 November 2021; pp. 103–107. [Google Scholar] [CrossRef]
- Xia, J.; Wang, L.; Zhou, Y. Design and Development of Digital Twin System for Intelligent Motor. In Proceedings of the 2020 IEEE International Conference on Advances in Electrical Engineering and Computer Applications (AEECA), Dalian, China, 25–27 August 2020; pp. 991–996. [Google Scholar] [CrossRef]
- Ruba, M.; Nemes, R.O.; Ciornei, S.M.; Martis, C.; Bouscayrol, A.; Hedesiu, H. Digital twin real-time fpga implementation for light electric vehicle propulsion system using EMR organization. In Proceedings of the 2019 IEEE Vehicle Power and Propulsion Conference (VPPC), Hanoi, Vietnam, 14–17 October 2019. [Google Scholar] [CrossRef]
- Abbate, R.; Caterino, M.; Fera, M.; Caputo, F. Maintenance Digital Twin using vibration data. Procedia Comput. Sci. 2022, 200, 546–555. [Google Scholar] [CrossRef]
- Bouzid, S.; Viarouge, P.; Cros, J. Real-Time Digital Twin of a Wound Rotor Induction Machine Based on Finite Element Method. Energies 2020, 13, 5413. [Google Scholar] [CrossRef]
- Ibrahim, M.; Rjabtsikov, V.; Jegorov, S.; Rassolkin, A.; Vaimann, T.; Kallaste, A. Conceptual Modelling of an EV-Permanent Magnet Synchronous Motor Digital Twin. In Proceedings of the 2022 IEEE 20th International Power Electronics and Motion Control Conference (PEMC), Brasov, Romania, 25–28 September 2022; pp. 156–160. [Google Scholar] [CrossRef]
- Anwar, M.; Alam, M.K.; Gleason, S.E.; Setting, J. Traction power inverter design for EV and HEV applications at general motors: A review. In Proceedings of the 2019 IEEE Energy Conversion Congress and Exposition (ECCE), Baltimore, MD, USA, 29 September–3 October 2019; pp. 6346–6351. [Google Scholar] [CrossRef]
- Mangkalajarn, S.; Ekkaravarodome, C.; Sukanna, S.; Bilsalam, A.; Jirasereeamongkul, K.; Higuchi, K. Comparative Study of Si IGBT and SiC MOSFET in Optimal Operation Class-E Inverter for Domestic Induction Cooker. In Proceedings of the 2019 Research, Invention, and Innovation Congress (RI2C), Bangkok, Thailand, 11–13 December 2019. [Google Scholar] [CrossRef]
- Hirao, T.; Onishi, M.; Yasuda, Y.; Namba, A.; Nakatsu, K. EV Traction Inverter Employing Double-Sided Direct-Cooling Technology with SiC Power Device. In Proceedings of the 2018 International Power Electronics Conference (IPEC-Niigata 2018-ECCE Asia), Niigata, Japan, 20–24 May 2018; pp. 2082–2085. [Google Scholar] [CrossRef]
- Lu, J.; Hou, R.; Di Maso, P.; Styles, J. A GaN/Si Hybrid T-Type Three-Level Configuration for Electric Vehicle Traction Inverter. In Proceedings of the 2018 IEEE 6th Workshop on Wide Bandgap Power Devices and Applications (WiPDA), Atlanta, GA, USA, 31 October–2 November 2018; pp. 77–81. [Google Scholar] [CrossRef]
- Milton, M.; De La, C.O.; Ginn, H.L.; Benigni, A. Controller-Embeddable Probabilistic Real-Time Digital Twins for Power Electronic Converter Diagnostics. IEEE Trans. Power Electron. 2020, 35, 9852–9866. [Google Scholar] [CrossRef]
- Wunderlich, A.; Santi, E. Digital twin models of power electronic converters using dynamic neural networks. In Proceedings of the 2021 IEEE Applied Power Electronics Conference and Exposition (APEC), Phoenix, AZ, USA, 14–17 June 2021; pp. 2369–2376. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, G.; Liu, Y.; Mo, L.; Qing, X. Condition Monitoring of Power Electronics Converters Based on Digital Twin. In Proceedings of the 2021 IEEE 3rd International Conference on Circuits and Systems (ICCS), Chengdu, China, 29–31 October 2021; pp. 190–195. [Google Scholar] [CrossRef]
- Wu, Q.; Wang, W.; Wang, Q.; Xiao, L.; Hu, B. Digital Twin Approach for Degradation Parameters Identification of a Single-Phase DC-AC Inverter. In Proceedings of the 2022 IEEE Applied Power Electronics Conference and Exposition (APEC), Houston, TX, USA, 20–24 March 2022; pp. 1725–1730. [Google Scholar] [CrossRef]
- Shi, H.; Xiao, L.; Wu, Q.; Wang, W. Digital Twin Approach for IGBT Parameters Identification of a Three-Phase DC-AC Inverter. In Proceedings of the 2022 IEEE Transportation Electrification Conference and Expo, Asia-Pacific (ITEC Asia-Pacific), Haining, China, 28–31 October 2022; pp. 1–4. [Google Scholar] [CrossRef]
- Liu, X.; Hofmann, M.; Streit, F.; Maerz, M. Digital Twin for Intelligent and SiC-based Drive Systems. In Proceedings of the 2021 11th International Electric Drives Production Conference (EDPC), Erlangen, Germany, 7–9 December 2021. [Google Scholar] [CrossRef]
- Xu, M.; Ng, W.C.; Lim, W.Y.B.; Kang, J.; Xiong, Z.; Niyato, D.; Yang, Q.; Shen, X.S.; Miao, C. A Full Dive into Realizing the Edge-enabled Metaverse: Visions, Enabling Technologies, and Challenges. arXiv 2022, arXiv:2203.05471. [Google Scholar] [CrossRef]
- Hyun, J.; Choi, H.; Kim, J. Deriving Improvement Plans through Metaverse Technology and Implications. Int. J. Intell. Syst. Appl. Eng. 2022, 10, 197–204. Available online: https://ijisae.org/index.php/IJISAE/article/view/2257 (accessed on 18 November 2022).
- Garg, R. Complex machine validations performed with multiphysics simulation: Intelligent performance engineering provides improvements in simulation, design and connectivity for machine builders. Plant Eng. 2021, 75, 40–43. Available online: https://go.gale.com/ps/i.do?p=AONE&sw=w&issn=0032082X&v=2.1&it=r&id=GALE%7CA667435375&sid=googleScholar&linkaccess=fulltext (accessed on 18 November 2022).
- Jung, S.; Ferber, S.; Cramer, I.; Bronner, W.; Wortmann, F. Bosch IoT Suite: Exploiting the Potential of Smart Connected Products. Connect. Bus. 2021, 267–282. [Google Scholar] [CrossRef]
Comparison | Model-Based DT | Data-Driven DT |
---|---|---|
Basis | Mathematical equations of physical lows (Model Simulation) | Sensory data of system’s inputs and outputs (grayor black box) |
Cost | More expensive | Less expensive |
Time of creation | Shorter | Longer |
Applications | Modellable physical systems | Cyber-physical systems, complex systems |
Manufacturer | DT Platform | Origin | Function |
---|---|---|---|
BMW | Nvidia Omniverse | Nvidia | Predictive maintenance, Virtual factory planning, Condition monitoring |
General Electric | Smart Signal | General Electric | Condition monitoring, Fault detection, Diagnosis, Forecasting |
Hyundai | Azure | Microsoft | Predicting EV battery lifespan, optimizing battery management and performance |
Kia | NX software | Siemens | Design optimization, Predictive maintenance |
Siemens | Siemens Xcelerator | Siemens | Testing simulations and calculations on digital versions |
Bosch | Bosch IoT Suite | Bosch | Condition Monitoring, Product testing |
Mitsubishi | MELSOFT Gemini | Mitsubishi | Visualization, Design optimization, Predictive maintenance |
Skoda Auto | Matterport DT | Matterport | Condition monitoring |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ibrahim, M.; Rjabtšikov, V.; Gilbert, R. Overview of Digital Twin Platforms for EV Applications. Sensors 2023, 23, 1414. https://doi.org/10.3390/s23031414
Ibrahim M, Rjabtšikov V, Gilbert R. Overview of Digital Twin Platforms for EV Applications. Sensors. 2023; 23(3):1414. https://doi.org/10.3390/s23031414
Chicago/Turabian StyleIbrahim, Mahmoud, Viktor Rjabtšikov, and Rolando Gilbert. 2023. "Overview of Digital Twin Platforms for EV Applications" Sensors 23, no. 3: 1414. https://doi.org/10.3390/s23031414
APA StyleIbrahim, M., Rjabtšikov, V., & Gilbert, R. (2023). Overview of Digital Twin Platforms for EV Applications. Sensors, 23(3), 1414. https://doi.org/10.3390/s23031414